Contents

PiXCL

__ v4d4/51
CIF, Integration Inc. command
Reference

Version
for Windows 9x / NT [2000

Windows 2D Graphics and Imaging Functions
Eile and Directory Management

String Functions

Math Functions

Time Functions

ClipBoard Functions

Menu Functions

Program Branching and Control Function
Screen and Keyboard 1/O Functions
Window Management Functions

INI file and Registry Access

MultiMedia Functions

TWAIN-compliant Device Functions

IDRISI for Windows™ rel mman
Miscellaneous Functions

Im ing im from TWAIN-compliant devi
Printin ments and im with PiXCL

Using the Windows Shell functions with PiXCL
User Defined Command Extensions

Error Messages
More Information

Detailed Alphabetical Command Reference

Image Processing Commands

Internet Technical Support

For Help on Help, Press F1

Overview of PiXCL v4.4 and v5.1 - the graphics and image
processing language tool for Windows 9x / ME / NT4 / 2000

Overview Getting Mouse Input
Memory Requirements Getting Keyboard Input
Rules and Syntax Running Other Programs
rtin Program Invoking on-line Help Files
Stopping a Program Managing Files and Directories
The Coordinate System Clipboard Operations
Drawing Tools reating an ing INI fil
Drawing and Writin Accessing and updating the Registry

Flow Control Commands Printing files

Message Boxes Building Runtime .EXE Files
Text Boxes reatin r own CD-ROM
List Boxes

ComboBoxes

Window: nd NT 4. mmon Control

Getting a Filename

Managing Windows

Pausing a Program

Building Menus

Building Toolbars and ToolWindows
3-D Command Buttons

Software License and Limited Warranty

Windows 2D Graphics and Imaging Functions

PiXCL includes a comprehensive set of commands to draw lines, rectangles, circles and ellipses in various colors and pen sizes.
There are also polygon flood and fill functions. The listed commands below produce a popup window. If you want full information,

use the Help Search options.

General Screen Draw Commands

BitMap Related Commands

AddFont CountBitmapColors
ChooseColor DrawBitMap
ChooseFont Drawlcon
CustomColor DrawlconFile
DrawArc DrawSizedBitMap
DrawChord DrawTrBitmap
DrawEdgeRectangle DrawTrSizedBitmap
DrawEllipse DrawZoomedBitmap
DrawFlood GetBitMapDim
DrawFloodExt GetlListBitMapDim
DrawGrid InvertRectangle
DrawLine LoadBitmap
DrawNumber PrintBitmap
DrawFpNumber RawDataParamBox
DrawShadowNumber ReadBitmapRect
DrawShadowFpNumber ReadRawBitmap
DrawPie Remaplmage
DrawPolyCurve RotateRectangle
DrawPolygon SetColorPalette
DrawPolyLine SaveBitmap
DrawRectangle SaveRectangle
DrawRoundRectangle SetDrawMode
DrawShadeRectangle ExportHistogram
DrawStatusText FlashBMWindow
DrawText SetBMWMouse
DrawShadowText DrawBMWPoint
DrawTextExt WriteBitmapRect
DrawShadowTextExt

DrawTriangle
GetTextSpacing
RotateRectangle

Miscellaneous Screen Commands

GetBackground
GetScreenCaps

UseBrush GetPixel
UseBrushPattern GetScreenWorkArea
UseFont DrawAnimatedRects
RemoveFont DrawBackGround
SetFontEscapement DrawBackgroundRegion
SetTextSpacing DrawCaption

UsePen DrawFocusRectangle

UseBackGround
UseCoordinates

File and Directory Management

File and Directory create, exist, move, copy and delete operations are supported. File size and total / free disk space commands
are available. You can also read and write system and application INI files.

The listed commands below produce a popup window with a summary of the syntax. If you want full information, use the Help

Search options.

DirChange FileGetSize
DirExplore FileGetTime
DirGet FileMove
DirGetSystem FileName
DirGetWindows FilePath
DirListFiles FileRead_ASCII
DirMake FileRead_Binary
DirRemove FileRead_INI
DiskChange FileRename
DragAcceptFile FileSaveAs
GetDragList FileWrite_ ASCII
DropFileServer FileWrite_Binary
FileCopy FileWrite INI
FileDelete FindExecutable
FileExist GetDiskSpace
FileExtension GetVolumeType
FileGet

FileGetDate

FileGetDateExt

FileGetTempName

String Functions

The listed commands below produce a popup window. If you want full information, use the Help Search options. All the
commonly used string and list handling functions are supported, as follows.

Ansi Right
Chr RightOf
EpStr Space
FpVal Str
HexToNum StrCmp
Instr StrCmpl
IltemCount StrRepl
ItemExtract StrReplAll
IltemLocate StrRev
ItemInsert Substr
ltemRemove Trim
LCase TrimExt
Left UCase
LeftOf Val

Len

NumToHex

Pad

Math Functions

PiXCL supporta floating point as well as integer variables, plus a set of standard math library functions. The four standard math
operations plus modulus are provided in command syntax.

Acos Log10
Asin LogE
Atan Negate
Average Pow
Cos Random
Cosh Sin
Exp Sinh
Float Sart
FpAbs Tan
FpStr Tanh
FpVal

Hypot

=3
=

Time Functions

These functions provide access to get and set the local and system time, get the current time zone setting, and return a usable
time string to programs. They can also be used for scheduling operations such as running other programs at specific times.

GetlocalTime
GetSystemTime
GetTimeZone
SetlLocalTime
SetSystemTime
TimeToASCII

Clipboard Functions

Clipboard Put, Get and Append ASCII data commands are available, plus transferring image data to the clipboard for transfer to
other imaging applications.

ClipboardAppend ClipboardGetBitmap
ClipboardEmpty ClipboardPutBitmap
ClipboardGet CopyWindowToClipboard

ClipboardPut
TWAIN_AcquireToClipboard

Menu Functions

A Main Menu bar and single level pull down menus are supported. While child menus are not supported in this version of PiXCL,
additional menu levels can be added by redrawing the complete menu bar. Each menu item can have as many pull-down items
as you require.

ChangeMenultem
GetMenuStatus

InfoMenu
SetMenu

SetPopupMenu

Program Branching and Control Functions

PiXCL supports the basic unstructured If..Then and Goto commands, plus the modern structured If...Else...Endif syntax. Thirty-
two levels of embedded If...Else...Endif structures are supported. Up to Thirty-two levels of embedded level Structured For-Next
and While-EndWhile loops are available. It is also possible to construct Do-While and Do-Until operations with the labels and
Goto statements. For integer variables, the Switch-Case-EndSwitch structure is provided.

Gosub

Goto

If-Then
If-Else-Endif
Return
For-Next Loops

While Loops
Switch Statements

Screen and Keyboard I/0 Functions

PiXCL provides a comprehensive set of input and output resources for common, built-in, custom and common dialog boxes,
common controls, keyboard and mouse, including support for the Microsoft Intellimouse™ and similar middle mouse button, and
the Explorer Mouse™ and similar X1 and X2 buttons..

Button SetMouse
DialogBox SetShftMouse
ImageBox SetCtrIMouse
ListBox SetDblMouse
ListBoxExt SetRightMouse
MessageBox SetShftRightMouse
PasswordBox SetCtrIRightMouse
TextBox SetDbIRightMouse
TextBoxExt SetMidMouse
SetEditControl SetShftMidMouse
ComboBox SetCtrIMidMouse
ProgressBar SetDbIMidMouse
UpdateProgressBar SetDrawMouse
StatusWindow SetWaitMode
DrawFrameControl Toolbar
DrawStatusWinText GetToolbarBtnStatus

ReportMouse

ChangeToolbarBtn
CustomizeToolBtn

SetEditControl UseCursor
SetKeyboard Waitlnput
SetMenu PXLResume
SetPopupMenu PXLresumeAt

GetCopyDataMs
SendCopyDataMs

Serial I/0 Functions

PiXCL includes support for simple communications using the serial ports COM1 - COM4. This support is designed to enable
devices such as digitizing pads and tables that output coordinate data strings, and accept control commands.

ClearCommPort
GetCommPort
EscCommFunction
ReadCommPort
SetCommPort
WaitCommEvent
WriteCommPort

Window Management Functions

PiXCL includes a set of commands to manage the appearance and size of any window.

EnumWindows
EnumChildWindows
SendKeys
SetSendKeysPriority

SetPriority
SetWindow

ProgressBar

UpdateProgressBar
StatusWindow

DrawStatusWinText

UseCaption
WinAdjustRect
WinClose
WinExist
WinGetActive
WinGetLocation
WinLocate
WinHelp
WinHTMLHelp
WinSetActive
WinShow
WinTitle

INI File and Registry Access Functions

PiXCL provides full read and write access to both initialization files and the Windows registration database or Registry.

FileRead_|INI
FileWrite_INI

RDBCloseKey
RDBCreateKey
RDBDeleteKey
RDBEnumKey
RDBOpenKey
RDBQueryKey

RDBQueryValue
RDBSetValue

Multimedia Functions

If you have a SoundBlaster™ compatible sound card installed in your PC, you can use these commands to play sounds and
control the card. Please note that not all cards support all functions. If a sound card is not installed in your PC, these
commands are ignored. If you are uncertain if your WAV play card is supported, try the first two commands in the list below and
see what capabilities are reported.

WAVGetDevCaps
WAVGetNumDevs

WAV GetPitch
WAV GetPlayRate
WAV GetVolume
WAVPIlaySound
WAV SetPitch

WAVSetPlayRate
WAV SetVolume

TWAIN-compliant Device Functions

PiXCL provides access to any TWAIN-compliant image import device, such as scanners and digital cameras. All commands start
with “TWAIN_” so they can be easily identified in a program source. See Importing im from TWAIN-compliant devi for
more detailed information.

TWAIN_AcquireNative TWAIN_Getstate TWAIN_IsAvailable
TWAIN_AcquireToClipboard TWAIN_LoadSourceManager
TWAIN_AcquireToFilename TWAIN_OpenDefaultSource
TWAIN_CloseSource TWAIN_OpenSourceManager
TWAIN_CloseSourceManager TWAIN_PxIVersion
TWAIN_DisableSource TWAIN_SelectSource
TWAIN_EnableSource TWAIN_SetBitDepth
TWAIN_GetBitDepth TWAIN_SetCurrentRes
TWAIN_GetBitmapParams TWAIN_SetCurrentUnits
TWAIN_GetCurrentRes TWAIN_SetPixelType
TWAIN_GetCurrentUnits TWAIN_UnloadSourceManager

TWAIN_GetPixelType

IDRISI for Windows related commands

The IDRISI GIS, copyright Clark University in Massachussets, is one of the most popular geographic information systems, world
wide. PiXCL versions provide direct access to the IDRISI environment to make development of additional applications using
PiXCL a relatively simple process.

Note very importantly that a licensed version of IDRISI for Windows v2.x must be running on the system and the API DLL’s
present to make use of the AP library functions, otherwise these commands do nothing. Functions in this group include:

IDR_Closeldrisi
IDR_GetDataDir
IDR_GetDir
IDR_GetExtensions
IDR_GetLanguage
IDR_GetProgress
IDR_InitProgressTracking
IDR_IsPresent
IDR_Launch
IDR_LaunchModule
IDR_RegisterClient
IDR_SetDataDirectory
IDR_SetDebugMode
IDR_SetExtensions
IDR_SetProgress
IDR_UnRegisterClient

Miscellaneous Functions

AbortShutDown GetPixel
AboutPiXCL GetSystemMetrics
AboutUser GetSysPowerStatus
AppWindowHandle GetTempPath
AutoProgressBar LogOff

Beep Listl oadedBitmaps
End MessageBeep
ExitWindows PrintFile
FreeBitMap SetROPcode
FreeBitMapAll SetEnvVariable
FreeVar Set Variable
FreeVarAll ShellAbout
GetCmdLine Shutdown
GetCPUlnfo WinVersion
GetEnvString

GetEnvVariable

GetFontFace

GetScreenCaps

User Defined Commands Extension

An optional component for PiXCL 5.0 and later, and included in geoPiXCL, is a Programmer’s API to support User Defined
Commands. This API contains all the necessary information to access the internal data structures of PiXCL and geoPiXCL, and
includes a Visual C/C++ 6 sample project that demonstrates how extension commands are implemented.

User defined commands can provide more image processing functions, new dialogs and other resources, and act as a bridge
into other third party DLLs.

To purchase the API, please contact VYSOR Integration Inc. or go to the purchase link on our Web pages.

More Information

This section is for knowledgeable Windows programmers who want more information on the internals of PiXCL and PiXCL
runtime programs. Most readers can skip this section. Windows internal programming terms are not defined, as technically
knowledgable readers are expected to understand them.

Firstly, please note that PiXCL50.exe, and PXL_make50.exe are a matched set by version and build number. PXL_make44
cannot use 16-bit versions of PiXCL or any versions of PiXCL 4.2 or earlier. In addition, the PXLimage.dll has a version number
as well. Several builds of PiXCL will use the same DLL version (e.g. PiXCL 4.10 — 5.0). When we update the DLL, we issue a
new version of PiXCL with the new DLL.

PiXCL is a simple interpreted language, hence a PiXCL script will not execute as fast as the equivalent application written in C or
C++ with a Windows compiler, but the development time is very significantly less, because all the complexity of Windows is
hidden away in the interpreter. Most of the PiXCL coding you will write is related to presenting a user interface, and the results
of image processing library functions. The PXLimage.DLL is written in C, and provides fast processing of command functions
when speed is required. In developing an application, however, the tool must match the job. If you find that the capabilities of
PiXCL are inadequate for your application, we suggest that MS-Visual C/C++ ™, MS-Visual Basic ™, or Borland Delphi ™ would
be better choices for development software, even though the development time is often significantly greater. The PiXCL Image
Processing Library APl is an available product.

A PiXCL application does not consume much of the system resources. According the Windows resource meter, when PiXCL is
running it uses 2-3 % of system, 1-2 % or user and 10-12 % of GDI resources. By way of comparison, MS-Word 7 requires 6-
10% of both system and user, and 10-12 % of GDI resources.

PiXCL accepts command line arguments. If you are testing a script e.g. with a PiXCL50 script.pxl commandline, the first
argument is expected to be a PiXCL script filename. This is the only argument that is accepted in this case, because Windows
will accept filenames with embedded spaces.

Additional command line arguments are supported by a PiXCL runtime, space delimited, and be can accessed with the
GetCmdLine(...) command.

PiXCL first checks if there is an attached script by looking for a string at a specific internal location. If the string is not found, it
either accesses the argument file (if any), or prompts for a script file.

Next, PiXCL checks for correct syntax in the target script, and displays an error message dialog box with the offending line of
code displayed. This will usually be the location of the error, unless the error is a missing } or ¢, as these characters are used to
delimit comments and strings. That is, the error may be offset in the file. If the error line syntax looks correct, look further back
into the file.

If everything is correct, the PiXCL window classname is registered with Windows, and the script is executed.

What PiXCL does is create a memory and screen display context. These are based on a bitmap created the current size and
pixel depth of the Windows display, e.g. 640x480, 1024x678, 1280x1024 or larger, and at 8, 16, 24 bits or 32 per pixel. All paint
and draw commands make changes in this bitmap, which then appear on your screen. It is possible to write only the screen
display context by using the SetDrawMode and SetROPcode commands with appropriate arguments.

PXL_make50 is the Runtime builder, and accepts command line arguments. Under user control, it takes the PiXCL interpreter,
verifies that is the correct version by reading several binary signatures in the PiXCL50.exe file, then combines it with the
encrypted specified script into a 32-bit Windows EXE file. It also sets a double word in the final binary so that the interpreter
knows that it has a script appended.

If you have access to a Resource Compiler tool you have the ability to modify the PiXCL interpreter resources. This is not

recommended, as it will change the size and binary composition of the interpreter such that the runtimes will not be able to
access an embedded script. The runtimes will likely still function, but only as a PiXCL interpreter that requests a script file.
Remember, PiXCL50.exe and PXL_make50.exe are a matched set by version.

Any modification the PiXCL binaries other than replacement of icons (dual mode 32x32 plus 16x16 16-color only) is also
an infringement of your user license agreement.

Suggestions for improvements and bug reports (hopefully a rare occurrence) are welcomed. Please contact VYSOR Integration
Technical Support.

Error Messages

Debugging Scripts

Error messages from the PiXCL interpreter are listed alphabetically below, with the typical cause and solution. In this version of

PiXCL, most reported errors are severe enough to be fatal and will cause the program to exit. This is usually because there is a

syntax error, or much less commonly, not enough system resources available. This can occur if you are running many programs
at once, more so with Windows 95/98 than Windows NT. Rebooting Windows will usually cure the problem. In some cases, you

can allow for the possible error condition in your script so that the program does not crash. Some errors are non-fatal (e.g. when
you try to Run(...) a program that does not exist), and display a MessageBox, then continue.

Error messages are listed below in alphabetical order.

AbortShutdown failed.

Cause: Your NT system would not allow the command to be executed, probably because the required privileges were
not set.
Solution: Try using the RunExt() command with the Shutdown command in the new script.

ANSI code must be from 0 to 255.
Cause: You used a code greater than 255 in the Chr() command.
Solution: Use a code in the range 0 - 255.

AdjustTokenPrivileges enable failed.

Cause: Windows NT has a problem with a Shutdown. AbortShutdown or ExitWindows command. Appropriate
privileges have not been set.
Solution: Issue the command from a script started with the RunExt() command.

Cannot access Clipboard. Another application has prevented access.

Cause: Your script cannot write or read ascii data from the ClipBoard. This would be most unusual. Some packages
make extensive use of the Clipboard.
Solution: Try using the ClipBoardEmpty command. Shutdown a few other applications.

Cannot locate the PiXCLmsg.dll file.";
Cause: The file is not in the PiXCL installation directory.
Solution: Locate the file or re-install PiXCL.

Cannot open the file.
Cause: An unreadable file (e.g. an EXE file) has been used as a PiXCL argument.
Solution: Check the contents of the argument file.

Cannot read the PXL script file.
Cause: An unreadable file (e.g. an EXE file) has been used as a PiXCL argument.
Solution: Check the contents of the argument file.

Cannot read the bitmap file.
Cause: A DrawBitmap command has tried to access an unrecognized image format.
Solution: Verify the image can be displayed, or convert the image to a known format.

Cannot run program.
Cause: Non-Fatal Error. A MessageBox appears with on of the following messages.
"Reported Cause: Out of Memory or Resources.";
"Reported Cause: EXE File not found.";
"Reported Cause: PATH not found.";
"Reported Cause: Bad EXE format.";
Solution: Check the format of the EXE file. An NT binary for another cpu type (e.g. MIPS or Alpha) will cause this error.

Can't send keys; try increasing PauseRespond parameter.

Cause: The SendKeys command is having problems communicating with another application.
Solution: Adjust you script.

Color value greater than 255.

Cause: You specified an illegal value in a Draw*() command or UseFont() command.
Solution: Values must be in the range 0 - 255.

Could not load RLE file.
Cause: A DrawBitmap command has tried to access an unrecognized image format.
Solution: Verify the image can be displayed, or convert the image to a known format.

CreatePalette() failed.
Cause: The system was unable to create a palette with the SetPalette90 command.
Solution: Check system resources. It may be necessary to reboot Windows.

Delimiter must be a valid character
Cause: Error in the ListBox() command.

Solution: Use an ANSI character in the range 0 - 255. The most common characters used are 'space’, 'colon (:)', 'semi-
colon"and 'pipe (|).

Divide by zero
Cause: Error in @ math operation
Solution: Ensure that the divisor is 1 or greater.

File is not valid bitmap format.
Cause: You have tried to load a bitmap that is not BMP or RLE format with DrawBitMap() or DrawSizedBitMap().
Solution: Convert the image file to BMP or RLE format.

Filter must contain pairs of filter elements.

Cause: The FileGet() command filter is incorrect. The error is being passed back to PiXCL from the COMMDLG.DLL
supplied with Windows.
Solution: Correct the filter syntax.
Fractional number.
Cause: A fractional number was entered. PiXCL 4.4 supports integers only.
Solution: Use an integer.

Invalid keystrokes argument.

Cause: The SendKeys command has located an invalid key sequence.
Solution: Check the sequence in your script.
Invalid number.
Cause: You entered a string that was not an integer.
Solution: Enter a valid integer.

Invalid repetition count in keystrokes argument.
Cause: The SendKeys command has located an invalid argument.
Solution: Check the argument in your script.

Label is multidefined.
Cause: A common error. There are two or more LABELs which are the same.
Solution: Ensure that all labels are unique.

Label not found.

Cause: PiXCL cannot find a LABEL referred to in a script command such as GoTo, SetMenu, SetKeyBoard or
SetMouse.

Solution: Put in the missing LABEL. The LABEL may also not be on the beginning of a line, or may start with a number.

MessageBox process failed: unsupported Button code.
Cause: A MessageBox command has used an invalid button code. Acceptable codes are 1, 2 or 3.
Solution: Correct your script.

Not enough memory.

Cause: A general purpose error that appears if a system call has failed through lack of memory.
Solution: Try shutting down unnecessary applications. If the problem persists, contact VYSOR Integration Inc Technical
Support.

Not a legitimate BitMap file.
Cause: A DrawBitmap command has tried to access an unrecognized image format.
Solution: Verify the image can be displayed, or convert the image to a known format.

Not enough memory to reallocate string.

Cause: A general purpose error that appears if a system call has failed through lack of memory.
Solution: Try shutting down unnecessary applications. If the problem persists, contact VYSOR Integration Inc Technical
Support.

Number cannot be negative in this command.
Cause: You used a negative number in a command that supports positive numbers only, such as UsePen.
Solution: Use only positive integers.

Number is too large or too small.
Cause: You have entered a number greater than 2**31 or less than -2**31
Solution: Check why you need such large numbers or check the input data.

Numeric underflow.
Cause: A math operation has tried to create a negative number less than -2**31.

Solution: Adjust the math code so that very large negatives cannot occur.

Numeric overflow.

Cause: A math operation has resulted in a number that will exceed 2**31.
Solution: Adjust the math code so that overflows cannot occur.
RETURN without GOSUB.
Cause: Either a missing GoSub command, or you have jumped into a subroutine in error.
Solution: Review the style of your code. Subroutines should have one entry point only. Multiple exit points (i.e.

Return commands) are allowable.

Script file is larger than 4 gigabytes.
Cause: Very unusual error. The script file specified appears to be enormous, or is corrupt.
Solution: Check that the script file is in text only format.

Starting location must be greater than 0.
Cause: A SubStr command requires a location value >= 1.
Solution: Correct you script.

Starting location greater than string length.
Cause: A SubStr command as tried to access a location outside of the string.
Solution: Correct your script or the code that generates the location.

Syntax error

Cause: Very common fault during development. There is an error somewhere. It may not necessarily be exactly in the
line indicated if the fault is unbalanced '} 'or ') ' characters.

Can also be caused if the script has been saved as other than TEXT only. You will get a get a MessageBox

window with garbage like in the window below, when the program starts.

Symbre mrror

0 [l

Typical error window for PiXCL script saved as a
.WRI, .DOC or .RTF file.

Solution: Check the line syntax in the indicated line. Re-save the script as a Text Only file. WordPad or NotePad are the
ideal editors for scripts.

System shutdown failed.

Cause: Your NT system would not allow the command to be executed, probably because the required privileges were
not set.
Solution: Try using the RunExt() command with the Shutdown command in the new script.

Timer not available. Close some applications and restart.
Cause: The system resources required cannot be allocated to PiXCL.
Solution: Close some applications and try again.

Too many GOSUB nesting levels.
Cause: More than 50 nested levels have been defined.
Solution: Reduce the complexity of the code.

Unable to create mutex.
Cause: A SendKeys command using the PiXCLmsg.DLL has failed.
Solution: Check your system resources. A reboot may be required to clear the problem.

Unable to load bitmap file.
Cause: A DrawBitmap command has tried to access an unrecognized image format.
Solution: Verify the image can be displayed, or convert the image to a known format.

Unable to open bitmap file.
Cause: A DrawBitmap command has tried to access an unrecognized image format.
Solution: Verify the image can be displayed, or convert the image to a known format.

Unable to read the specified .INI file.
Cause: The INI file specified either does not exist, does not exit in the directory, or is corrupted in some way.
Solution: Check your PATH. Check the format of the INI file.

Unable to return selected Font name.
Cause: A UseFont command has failed because the Font is unknown or not installed.
Solution: Correct the script, or install the required font.

Unbalanced comment markers
Cause: Very common development error. ' { ' withno '} ".
Solution: Check that the comment markers are balanced.

Internet Technical Support

VYSOR Integration has set up technical support to provide answers to the most frequently asked questions as well as news on
products, upgrades and techniques.

There are a variety of files available via anonymous ftp from
ftp.vysor.com/outgoing

Our email address is

techsupport@vysor.com

There are also World Wide Web pages at

http://www.vysor.com

Registered users have UserlD and Password controlled access to their own area where upgrades, bug fixes and development
news are provided.

Write to us at
VYSOR Integration Inc.,
91 rue Bocage, Suite B,
Gatineau, Quebec,
Canada J8T 5W5

Attention: Technical Support

or phone Canada (819) 246-7792
fax Canada (819) 568-6859

Software License and Limited Warranty

PiXCL Tools is copyright © (1994-2001) VYSOR Integration Inc. All Rights Reserved.

,'"" ﬂ q Copyright (1998
P, .)
"“-":1 AP Clark University. Portions of the command reference for the IDR series commands that interface to the
Idrisi GIS are adapted with permission from copyrighted Idrisi APl documents provided by Clark University, Massachussets.

Attention:

This licensed software is protected by Canadian and International Copyright Law. Read the following Software License
Agreement before continuing to use this product. By using this software you signify that you have read this Software
License Agreement and accept its terms.

IF YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, DO NOT USE THIS SOFTWARE, AND RETURN IT
PROMPTLY TO VYSOR INTEGRATION INC.

Software License Agreement

This is an agreement between you and VYSOR Integration Inc ("VYSOR"). By using this software, you are agreeing to
become bound by the terms of this agreement.

1. VYSOR Integration Inc grants you a non-exclusive license to use the software on a single computer or cpu. Multiple
licenses are available at additional cost.

2. VYSOR retains the copyright, title and ownership of the software and written materials regardless of the form and
media of the original. You may make one backup copy for backup purposes. This backup copy must include all copyright
notices that appear on the original disks.

3. You may physically transfer the software from one computer to another provided the software is used on one
computer at a time. You may not distribute copies of the software or accompanying documentation to others. You may
not transfer the software or documentation to any person without the prior written consent of VYSOR. In no event may
you transfer, assign, rent, lease or otherwise dispose of the software on a temporary basis.

4. You are not permitted to patch, disassemble or recompile the Windows resources. You are not permitted to add
additional resources or modify existing resources. The sole specific exception is the replacement of any of the existing
icons for program development purposes, and this must be done using a suitable icon replacement tool, not a resource
compiler, as the former does not change the binary file size.

5. This License is effective until terminated. This license will automatically terminate without notice from VYSOR if you
fail to comply with the provisions of the License.

6. DISCLAIMER OF WARRANTIES: VYSOR disclaims all other Warranties, expressed or implied, including, but not
limited to, any implied Warranty of Merchantability or fitness for a particular purpose.

7. VYSOR EXPRESSLY WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR INCIDENTAL
DAMAGES OF ANY KIND (INCLUDING DAMAGES ARISING FROM ANY THEORY OF LOSS OF PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, AND THE LIKE) WHATSOEVER ARISING OUT
OF THE USE OR INABILITY TO USE THE PRODUCT EVEN IF VYSOR HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

8. In any event where warranties are found to exist, such warranties shall be limited in duration to thirty (30) days
following the date of delivery to you. In no event shall VYSOR's liability to you exceed the amount paid for the license to
use the software.

9. This License shall be governed and construed in accordance with the laws of the Province of Quebec, CANADA and
shall benefit VYSOR, its heirs, successors and assigns.

OverView

PiXCL and its sibling, geoPiXCL, are 32 bit interpreted graphics, image display and image processing languages for Windows
95/98/ME/NT4/2000. The PiXCL commands allows you to simply perform such diverse functions as building custom menus and
customized imaging utilities, including floating toolbars to launch other applications, moving and resizing application windows,
and drawing a wide variety of graphic objects using different shapes, colors, and patterns in a window. PiXCL supports 15 of the
most commonly used bitmap formats. Here are some examples of what you can do with the PiXCL and geoPiXCL languages:

. Create custom image acquistion, processing, display and printing programs.

. Import and process images from TWAIN-compliant devices such as scanners and digital
cameras from Kodak, Sony, Panasonic, Olympus and many other manufacturers.

. Display, process and convert images from one format to another.
. Develop a Photo-CD image viewer and processor.

. Create front-end control or “glue” programs that link various other applications into a
functional suite.

. Write powerful draw programs that accept keyboard and mouse input.

. Build a computer-based interactive training system with images, sound files and On-line
Help.

. Create stand-alone CD-ROM titles.

. Build Windows demonstration, marketing and multimedia programs and prototypes
complete with custom windows, menus, toolbars, dialogs and messageboxes.

. Create your own install programs that build directories, copy files, and create program
groups in Explorer.

e Create your own simple backup utility.
e Customize the layout of your application windows.

Memory Requirements

PiXCL runs in the 32 bit Windows 95 / 98 / ME / NT4 / 2000 environment, and must co-exist with all the other programs,
including the Windows video device driver. Here's a summary of the impact PiXCL has on your PC.

e Size of PiXCL50.EXE (around 480KB) plus PiXCLmsg.DLL (18KB)

e Size of PXLimage.DLL (523KB).

e Size of PXLbtmps.DLL (304KB).

e Size of PXLtwain.DLL (92KB).

e Maximum size of a PiXCL script file (1 GB max, but 20 - 100 KB is typical.)

¢ Amount of dynamically assigned string variable memory (arbitrary).

. Any disk space or memory needed by bitmap files. This can be quite large, but Windows takes care of most of the memory
management, and PiXCL takes care most of the rest automatically. There are PiXCL commands for memory management
issues related to bitmap images and dialog boxes.

. A PiXCL application does not consume much of the system resources. According the Windows 95 resource meter, when

PiXCL is running it uses 2-3 % of system, 1-2 % or user and 10-12 % of GDI resources. By way of comparison, MS-Word
97 requires 6-10% of both system and user, and 10-12 % of GDI resources.

PiXCL is fully compatible with Windows 95/98/ME/NT4 and Windows 2000. The minimum system cpu and memory for any NT
system is a Pentium, Pentium Il or Ill, 64 MB, and for Windows 95/98, you should consider 32 MB as the workable absolute
minimum, with 64 MB a more realistic number. These are the numbers that the industry suggests for using these operating
systems, regardless of the applications running. If you need to run large memory hungry applications such as desktop publishing
or graphics manipulation, more memory is always better. For both Windows 95/98 and NT 4.0, a useful and usable system
should have at least 64 MB. Windows 2000 really needs 128MB or more to function well. A2MB vram video card capable of
1024x768x64K colors or better is recommended if you intend to work with images, as this provides a much better color
representation than any 256 color mode.

Rules and Syntax

The basic rules and syntax for PiXCL are quite simple. There are five classes of identifiers (i.e. names) in PiXCL: commands,
variables, tokens, labels and constants. Identifiers are not case sensitive. The sections that follow describe additional rules for
these identifiers.

Commands

Commands are the basic building blocks of a PiXCL script. Most PiXCL commands follow the syntax

DrawText (10,10, "This is a PiXCL program")

where a keyword (DrawText) is followed by parameters enclosed in parentheses. The keyword names the action the command
is to perform and can occur anywhere on a line. Parameters (also called arguments) provide the information necessary to
execute the command and are separated by commas. Parameters can be integers, text enclosed in double quotes, variables
(either string or integer), and tokens. Commands fall into two categories:

fixed argument number commands (such as DrawText above); and
variable argument number commands (such as SetMouse described later)

Other commands, such as the unstructured 1 £, follow the looser syntax

If <condition> Then <commands>

With these commands, the only rule is that the command elements must be separated by at least one space. You’ll find the
syntax for all PiXCL commands in the Command Reference Section of this Help file.

Variables

PiXCL lets you create string, 32 bit integer and 32 bit single precision floating point variables. To create either one, all you have
to do is use its name. In PiXCL 5, there is support for 64 bit integers and 64 bit double precision floating point, mostly related to
getting huge file sizes and passing these values to certain commands. You can use 64 bit variables in If, For and While
structures.

Variable names can be any length and can be upper or lower case. Variable names are case insensitive. A variable name can
use any of the characters A-Z, a -z, 0 -9, or _ (underscore), but it cannot start with a number. If a variable starts with a number,
it will be flagged as a syntax error when the program is tested or run.

Variables cannot start with, and cannot include the @ character: this is reserved as the first character in predefined constants,
discussed below.

Variables cannot start with, and cannot include the % character: this is reserved as the modulus operator.
Variables should not include [and] characters, as these are required for array variable support.

It is recommended that variables do not include the strings "Else" or "Endif", as these are keywords used with the structured If.
Using these strings in variable names will usually result in a syntax error.

To differentiate a string variable from an integer variable, you must place a dollar sign ($) at the end of the string variable’s
name, and for real variables, place an ampersand (&) at the end of the varible name. For example, PiXCL will treat Number as
an integer variable, Number$ as a string variable, and Number& as a real variable.

In PiXCL 5, there is also the 64 bit integer Number# and double Number#&.

Here are some other valid variable names:
Mousex 012 Foxtrots$ yl NEXT LINEO Degrees&

When you create an integer or real variable, PiXCL automatically initializes it to zero or 0.0 respectively. Likewise, a string
variable is automatically initialized to an empty string (""). You can also initialize variables yourself in the following manner:

Counter = 6
FileName$ = "CONFIG."
RealNumber& = 124.4558 or

RealNumber& = 1.244558e002

Here Counter is set to 6 and FileNames$ is set to the string "CONFIG.".
You can optionally use the Set command to initialize a variable, as in the following:
Set Counter = 6

In some situations, you won’t need to initialize a variable before using it. For example, some commands will set a variable for
you, as in the following command, which lets you get mouse input:

SetMouse(1,1,10,10,Mouse hit,x,y)

Here the x and y variables are set automatically by PiXCL when the command is executed; they indicate the point in the window
where the mouse pointer was sitting when the user clicked the mouse button.

You can also perform simple mathematical calculations using integers and store the result in an integer variable. For example,
the following command sets the integer variable Mouse x2 to the value in Mouse x1 multiplied by three:

Mouse x2 = Mouse x1 * 3

Integer variables are 32 bit positive or negative numbers i.e -2,147,483,647 to 2,147,483,648.
Floating point variables are 32 bit floating point numbers.

In PiXCL 5, 32 and 64 bit integer, string, floating point and double arrays are supported. Anywhere you use a variable name, and
array variable name of the same type can be used. E.g.

Number [0] is an integer array element
Numbers [0] is a floating point array element
Number$ [0] is a string array element.
Number# [0] is a 64 bit integer array element
Number#s& [0] is a double array element

The math operators available in PiXCL are

- Subtraction
Addition
* Multiplication
/ Division
% Modulus (integer variables only)

PiXCL also supports the following short forms of post increment and decrement.

++ Increment by 1

- Decrement by 1

+= Increment by number

—-— Decrement by number
For example,

Counter = Counter + 1 can be written as Counter ++ orCounter++ and

Counter = Counter - 1 can be written as Counter -- or Counter--

There does not need to be a space after the variable name. The short form is useful in processing loops, and will execute
slightly faster than the longer format.

Examples of incrementing or decrementing by a number are

Counter = Counter + 6 canbe written as Counter += 6 or Counter+=6 and
Counter = Counter - 4 canbe written as Counter -= 4 or Counter-=4

PiXCL also provides a positive integer random number generator command, Random(Range,Number).

In the case of string variables, you can perform concatenation. For example, the following command appends the string
"Consultants" to end of "Digital " and places the result in the string variable CompanyName$:

CompanyName$ = "Digital " + "Consultants"

See the Set command in the next Section for more information on variables.

Note: PiXCL lets you re-use string variable memory by freeing variables that you no longer need; see the FreeVar and
EreeVarAll commands in the next Section.

Tokens

Many PiXCL commands require that you use tokens as parameters. A token is a special identifier that has been predefined by
PiXCL. For example, in the following command syntax, PIXEL and METRIC are tokens:

UseCoordinates (PIXEL/METRIC)

For this command, you must use either PIXEL or METRIC for the parameter, and you must spell the token correctly. No other
parameter will be accepted, and will cause a Syntax Error.

When a command requires a token, the token appears in upper case in the command syntax, although the tokens are not case
sensitive. You’ll find as you create your PiXCL programs that it’s a good idea to follow this same convention.

Labels

Labels follow the same naming conventions as variables in PiXCL. For example, they can be any length and can be upper or
lower case. Labels have the additional restrictions that they must be placed at the start of a line (in the first column of the line),
and they must end with a : (colon). For example, here are some valid and invalid labels:

Next: {A valid label}
Wait for input:

{An invalid label because it isn’t located at the start of the line}

It is recommended that labels do not include the strings "Else" or "Endif", as these are keywords used with the structured If.

Constants

There is a small number of defined constants that can be used within a PiXCL script, and these are preceded by an ampersand
@ character.

PiXCL provides seven predefined integer constants for the Windows Registry access to permanently open keys.

(@QRDB_CLASSES_ROOT
(DRDB _CURRENT_USER
(@QRDB _LOCAL_MACHINE
(@QRDB _USERS
(DRDB_CURRENT_CONFIG
(QRDB_PERFORMANCE_DATA
(DRDB_DYN_DATA

A constant can be used in place of any integer argument where the substitution makes sense.
For example, to see the actual values of the above constants, the following commands can be used.

DrawText (10,10, "Constant Substitution")
DrawNumber (10,35, @RDB_CLASSES_ROOT)
DrawNumber (10, 60, @RDB_ CURRENT _USER)
DrawNumber (10,85, @RDB_ LOCAL MACHINE)
DrawNumber (10,110, @RDB_USERS)

DrawNumber (10,135, @RDB_PERFORMANCE_DATA)
DrawNumber (10,160, @RDB_ CURRENT CONFIG)

DrawNumber (10,185, @RDB_DYN DATA)

PiXCL also provides these logical (integer) constants as well.

@TRUE setto 1
@FALSE setto 0
@YES setto 1
@NO setto 0

PiXCL also provides these real constants as well.

@AMC (Atomic Mass Constant) set to 1.66043E-27
@AVOGADRO (Avogadro’s Number) set to 6.02252E23
@BOLTZMANN (Boltzman’s Constant) set to 1.38054E-23
@DEG2RAD (Degree to Radians) set to 0.017453292519943
@E (Naperian log) set to 2.718281828459045
@ELECTRIC (Electric Field Constant) set to 8.8541853E-12
@EULERS (Euler’s Constant) set to 0.5772156649015388
@FARADAY (Faraday Constant) set to 9.64870E4

@GFTSEC (Gravitation Acceleration, ft/sec) set to 32.174
@GMTSEC (Gravitation Acceleration, m/sec) set to 9.80665

@GRAVITATION (Gravity Constant) set to 6.670E-11
@LIGHTVEL (Light speed in m/sec) set to 2.997925E8
@MAGFIELD (Magnetic Field Constant) set to 1.256637

@PI set to 3.141592653589793
@RAD2DEG (Radians to Degrees) set to 57.29577951308232
Comments

All characters between { and } are treated as comments by PiXCL. You can place comments anywhere in a PiXCL text file. You
can also safely nest comments.

For example, the following program draws the cars bitmap (CARS.BMP) located in the Windows directory in a continuous line
across the screen. The program is generously commented to make it easier to read.

This program draws the cars bitmap across the screen a set number of pixels apart.

{Initialize}
UseCoordinates (PIXEL) {Use pixels, not millimeters}
{Starting x coordinate}
{Starting y coordinate}

Step = 32 {Step by 32 pixels at a time}

{Get the screen’s width in pixels}

GetScreenCaps (HORZRES, Pixels)

{Maximize the window}

SetWindow (MAXIMIZE)

{Get the Windows directory and build the path to CARS.BMP}
DirGetWindows (WindowsDir$)

CarsPath$ = WindowsDir$ + "\CARS.BMP"

{Loop to draw the cars bitmap across the screen}

Next: DrawBitmap (x,y,CarsPath$)

X = x + Step

If x < Pixels Then Goto Next

{Leave the finished window up until the user kills it}

WaitInput ()

White Space

White space is a general term for the elements that PiXCL ignores in a script. PiXCL treats as white space all blanks, tab
characters, carriage returns, line feed characters, split vertical bars (|), and comments. White space is ignored at any point in a
script.

Starting a Program

To start a PiXCL program from the command prompt, you must provide the name of the PiXCL executable file (PiXCL50.EXE)
followed by the name of the script file. For example, if PiXCL is located in the C:\PiXCLTools directory and your script file is
located in C:\WORK and is named SCRIPT.PXL, you would use the following command line:

C:\PiXCLTo0ls\PiXCL50 C:\WORK\SCRIPT.PXL

If you start PiXCL without providing a script file name, you’ll see a dialog box that prompts you for a script file.

Note: Because PiXCL’s command-line syntax is similar to Notepad’s (or any other application that lets you load a file on
startup), there are several ways you can simplify it. For example, if you’ve created a file association linking .PXL files to
PiXCL50.EXE, all you need to provide on the command line is the name of the PiXCL script file, as in SCRIPT.PXL.

In PiXCL 4.0 and later, the initial Window that is created is hidden. Your script should call either or both WinLocate(...) or
WinShow(...) (described further below) as the first commands to define the window starting location, styles and extended styles.

PiXCL also supports an arbitrary number of additional command line arguments which can be accessed from within the PiXCL
application script.

See also Building RunTime EXE files.

Stopping a Program

To stop a PiXCL program at any point, press CTRL+BREAK. PiXCL will display the message box shown below. To end the
program, select Yes. To have the program resume where it left off, select No.

PiXCL - HAPA0TOOLSAPDK\Shoicons_pxl |

'! 5 Are you sure you want to end this Windows application’?

The Coordinate System

In PiXCL the upper-left corner of your desktop window is the origin, or point (0,0). The X coordinate increments to the right along
the positive x axis, and the Y coordinate increments towards the bottom along the positive y axis. The actual window coordinate
space is much larger, and extends into the negative X and Y coordinate space. This larger space is often referred to as the
virtual desktop. Graphically, you can see how this appears in the image below.

hegative
co-ord
space
R\lI],[II
pasitve
co-ard
) space

The Windows Virtual Desktop

For Windows 98 and 2000, multiple monitors are supported when additional video cards are installed in the system. The effect is
that each monitor provides a window into the virtual desktop. Please see the Windows 98 / ME / 2000 help on setting up multiple
monitors for more information.

See also the UseCoordinate(PIXEL | METRIC) command,

and the WinLocate and WinGetLocation commands that either accept or generate positive and negative position arguments.

Drawing Tools

PiXCL provides you with a wide variety of tools to draw within its window client area. It lets you set up pens to draw lines,
rectangles, ellipses and polygonal shapes, brushes and user defined patterns to fill interiors and exteriors, and fonts to write text.
To create tools for drawing geometrical shapes, you use commands such as UsePen and UseBrush. To create fonts for writing
text, you use the UseFont command.

Note#1: If you do not establish any drawing tools before drawing in a window, PiXCL uses these default drawing tools: a black
pen, a white brush, and the System font.

Note#2: It is not possible to draw in the menu bar or title bar, or in any other Window not created by PiXCL.
Setting and using Background Colors

The default PiXCL application client area color is light gray (R,G,B = 192,192,192). You can set the desired background color
with the UseBackground command followed by a DrawBackground command at any time. If necessary, you can retrieve the
current background colors with the GetBackground command.

Using Pens

The UsePen command lets you assign a pen for drawing lines and borders. Pens can be solid, dashed, dotted, and more. For
example, the following example creates a solid black pen, two pixels wide:

Width=2

UsePen (SOLID,Width, 0,0,0)

The Width argument controls the width of the pen in pixels or millimeters (depending on the co-ordinate system in use). The
three arguments following the Width argument specify the color of the pen. They control the intensity of the colors red, green,
and blue in that order. In the example above, all the colors have 0 intensity, so the pen will be black. Conversely, the following
line would create a white pen:

UsePen (SOLID,Width, 255,255, 255)

The pen you specify with UsePen will be used in all subsequent drawing operations, or until you use UsePen again to change
the pen.

Note: The default pen is solid, black, and has a width of 1 pixel. If you use a command that draws a shape, but you haven’t yet
set up a pen with the UsePen command, PiXCL uses the default pen.

Using Brushes

The UseBrush command lets you establish brushes for drawing and filling areas in rectangles, ellipses, pies, and the like. You
can create brushes that are solid or hatched, have diagonal lines, horizontal lines, vertical lines, and more. For example, here’s
the command to create a solid blue brush:

UseBrush (SOLID, 0,255,0)

As you might have guessed, the last three arguments control the color of the brush.
Note: The default brush is solid white.

You can also create your own brush patterns (8x8 in Windows 95/98, up to 256x256 in Windows NT) and use these with the
flood and fill commands. For example,

LoadBitmap (Patternl$, FULL)
UseBrushPattern (Patternl$)

loads a user defined bitmap pattern and sets the current brush.

Using Fonts

You establish a font in PiXCL by using the UseFont or UseFontExt command and giving it a series of font attributes, including the
font name, width, height, style (bold, italics, or underline), and the color. PiXCL uses the font you’ve established the next time
you draw text or numbers on the screen. Here is an example of the UseFont command.

UseFo nt['l'A.riaI"l, 6,1 I],INDEU LD.’.” DITALICI,INDUN DERLI ME.’.“’D' I]I]

[_ Color (hlack)
Mot bold MNotitalics MNotunderlined

Height
Widlth
Font name

Note#1: PiXCL supports all the fonts installed in your system, including TrueType fonts and fonts installed with third-party font
packages, such as the Adobe Type Manager.

Note#2: By default, PiXCL uses a black System font.
Note#3: The Button, ComboBox and SetEditControl commands draw text in the current font.

Note#4: PiXCL has a default font escapement angle of 0, for horizontal text. This can be changed with the SetFontEscapement
command. The current escapement value is obtained with the GetFontEscapement command.

Note#5: You can load and unload any font that exists on your disk, with the AddFont and RemoveFont commands.

Drawing and Writing

PiXCL provides a variety of commands for drawing and writing output to the screen. The following sections give a brief overview
of these commands. For more detailed descriptions of these commands, see the command reference later in this chapter..

Drawing Text

To draw text in a window, you use the DrawText, DrawShadowText, DrawTextExt or the DrawShadowTextExt command. For
example, the following command displays the text "The ABC Company Shell" using the current font. The starting position of the
text is at the point (20,10).

DrawText (20,10, "The ABC Company Shell")

You can also specify a rectangle in which text is drawn in the current font, with automatic word-wrap and definable justification,
using the DrawTextExt command. This command draws the string centered in the rectangle specified.

DrawTextExt (20,10,120,45,"The ABC Company Shell",CENTER)

If you want to display a number in a window, you can use the DrawNumber command. For example, the following command
displays the number 200 starting at the point (50,60):

DrawNumber (50, 60,200)
DrawText, DrawTextExt, DrawShadowText, DrawShadowTextExt, and DrawNumber are also convenient for displaying the
contents of variables in a window.

You can also set the draw angle and character spacing with the SetFontEscapement and SetTextSpacing commands, as well as
add and remove any font from the Windows font table with the AddFont and RemoveFont commands.
Drawing Lines and Shapes

PiXCL provides a range of commands for drawing lines and shapes, as shown in a partial list Table 1. All of these commands use
the current pen to draw borders and the current brush to fill interiors.

Command

DrawArc

DrawChord

DrawEllipse

DrawFlood

Drawlcon

DrawLine

DrawPie

DrawPolygon

DrawRectangle

DrawTriangle

DrawEdgeRectangle

DrawRoundRectangle

Purpose

Draws an arc.

Draws a chord.

Draws an ellipse (or circle).

Floods an area with color using the current brush.

Draws one of the PiXCL or system icons.

Draws a line.

Draws a pie wedge.

Draws a polygon with up to 32 vertices.

Draws a rectangle.

Draws a triangle.

Draws a rectangle edge in several styles.

Draws a rectangle with rounded edges.

DrawShadeRectangle Draws a color gradient rectangle.

Table 1: Commonly used commands for Drawing Lines and Shapes

The following example shows how to use the DrawLine command to draw a line from the point (10,80) to the point (100,20):

DrawLine (10, 80,100, 20)

To draw a rectangle, you use the DrawRectangle command. The following command draws a rectangle that has its upper-left
and lower-right corners at the points (15,25) and (75,110):
DrawRectangle (15,25,75,110)

This function uses the current pen to draw the border of the rectangle and the current brush to fill the interior.

The DrawEllipse command lets you draw a circle or an ellipse. The following example draws an ellipse that is bounded by the
rectangle specified by the points (100,30) and (250,90):
DrawEllipse (100, 30,250, 90)

As with the DrawRectangle command, the DrawEllipse command uses the current pen to draw the border of the rectangle and
the current brush to fill the interior.

Drawing and Using Bitmaps

PiXCL has commands for placing the contents of Windows bitmap (BMP, JIF, JPEG, PCD, PCX, PPM, PNG, PSD, RAS, RLE,
TGA, TIF) files on the screen: DrawBitmap, DrawSizedBitmap, DrawTrBitmap, DrawTrSizedBitmap and DrawZoomedBitmap The
Draw[Tr]Bitmap commands are the simpler of the these: It lets you locate a bitmap starting at a specified point in a window. For
example, the following program places the Winlogo bitmap (WINLOGO.BMP) starting at the point (10,10):

Winlogo$ = "C:\WINDOWS\WINLOGO.BMP"

DrawBitmap (10,10,Winlogo$)

WaitInput ()

The Draw[Tr]SizedBitmap commands lets you stretch or compress a bitmap to fit within a specified rectangle. You indicate the
upper-left corner of the rectangle using the first two parameters and the lower-right corner using the second two. For example,
the following program displays the Winlogo bitmap within the condensed rectangle specified by the points (10,10) and (100,120):
Winlogo$="C:\WINDOWS\WINLOGO.BMP"

DrawSizedBitmap(10,10,100,120,Winlogo$)

WaitInput ()

You can also use the DrawSizedBitmap command to invert a bitmap as you place it on the screen (see the DrawSizedBitmap
command in the command reference for more details).

DrawSizedBitmap can also be used to load a bitmap without displaying it, by setting all the coordinates to zero. There is also the
equivalent LoadBitmap command. These two commands are equivalent.

DrawSizedBitmap(0,0,0,0, ImageFiles$)

LoadBitmap (ImageFile$, FULL)

There is also a potential system memory limit when drawing bitmaps, and especially sized bitmaps. If you want to display an
especially large image (i.e. more than about 3 MB), Windows may be unable to assign enough memory for the operation, or may
bog down in swapping data to and from the disk.

PiXCL also has a command, GetBitMapDim that accesses the supported format bitmaps, and returns the number of lines, pixels
and bits per pixel. This can be very useful in deciding whether to use DrawBitMap or DrawSizedBitmap, and where to draw the
bitmap in your application client area.

Other bitmap processing commands include DrawZoomedBitmap for zoom and roam operations, and all the image processing
commands. The DrawZoomedBitmap can also be used to animate images that are segmented into frames.

When you need to transparently overlay bitmaps, there are the DrawTrBitmap and Overlaylmage commands that let you specify
the transparency color.

PiXCL also supports a comprehensive set of point and geometric image processing commands, including image enhancement
and resampling, filtering and and bitmap format conversion. All the writable supported bitmap formats can be saved back to disk.

Flow Control Commands

PiXCL has seven classes of commands to control the flow of programs: unstructured If-Then and Goto, structured If-Else-Endif,
structured For-Next, structured While-EndWhile, structured Switch-Case-Endswitch, plus Gosub and Return.

The unstructured If command lets you make a decision when there are two alternative outcomes. It tests the value of a condition,
and if that condition is true, the program continues executing commands on the same line following the Then. If the condition is
false, the program begins executing commands on the next line following the If.

For example, the following If command tests the value of the variable Green to see if it is greater than 255. If it is, PiXCL
executes the Goto command on the same line. Otherwise, it executes the Waitlnput() command on the next line

If Green > 255 Then Goto Exit

WaitInput ()

Exit:

The Goto command transfers control unconditionally to a label. In the previous example, the Goto command causes the program
to branch to the label Exit.

The Gosub command lets you execute a block of code as a subroutine. When the subroutine is completed, PiXCL executes the
next command following the Gosub.

Supplementing PiXCL’s flow of control commands

With a little creativity you can easily use If, Goto, and labels to supplement PiXCL’s structures for controlling program flow. Here
are some examples:

IF / ELSE / ENDIF

If <condition> Then <do something> | <do something else> | Goto EndStr
<do something different>

EndStr:

FOR

StartLoop:

If <counter> = <value> Then Goto EndLoop
<a command>

<the next command>

<counter> = <counter> + 1

Goto StartLoop

EndLoop:

WHILE

BeginWhile:

If <counter> = <value> Then Goto EndWhile
<a command>

<the next command>

<counter> = <counter> + <some value>

Goto BeginWhile

EndWhile:

Structured If-Else-Endif in PiXCL

In PiXCL, the basic If <condition> Then <action#l actions#2 action#n> statement expects that atleast one
command or action exists on the current line. Each action must delimited by a suitable whitespace character ("|" is often
suitable). The I£ construction is terminated by a newline character.

In PiXCL, the structured command If...Else...Endif is supported according to the following rules.

The If...Endif structureis

If <condition> If the condition is false, script interpretation jumps to the next
action#tl command following the Endif keyword.
action#t2

Any whitespace characters after the <condition> and before

actionitn the newline character are ignored, as usual.

Endif
All additional commands are interpreted until the Endif
keyword is located.

and, extending the command with an E1se structure ...

If <condition> If the condition is true, script interpretation jumps to the next
action#t1l command following the <condition>. Once the Else keyword
: has been located, execution jumps to the next instruction
t t2
actiond after the Endif keyword.
action#tn . .
- Any whitespace characters after the <condition> and before
se the newline character are ignored, as usual.
action#fl
actiontf2 If the condition is false, script interpretation jumps to the next
command following the Else keyword.
action#fn
Endif All additional commands are interpreted until the Endif

keyword is located.

Embedded If-Else-Endif and If-Then statements are supported in all versions, up to 16 levels.

Structured For-Next in PiXCL

PiXCL supports For loops with the following general syntax.

For variable=n|variable To m|variable [By plvariable]
commands
If <condition> Then Break {optional}
commands

Next

Structured While-EndWhile in PiXCL

PiXCL supports While loops with the following general syntax. The Test variable can be a number or a string, must be initialized
beforehand. For example a While loop that tests a numeric variable ...

Count = 0
While Count <= 5

.. .commands

Count++

EndwWhile

and a While loop that tests a string variable ...

Count$ = "A"
While Count = "A"
.. .commands
If <condition> Then Count$ = "B"
commands
EndWhile

PiXCL 5: Structured Switch-Case-EndSwitch

PiXCL 5 supports the useful Switch structure, where you need to process more than two possible values of an integer variable.
For example,
X = A * B {where A, B have varying values}

Switch (X)
Case (1)
.. .commands
Break
Case (2)
.. .commands
Break
Default
.. .commands

EndSwitch

The Break command moves execution of the script to the command following the EndSwitch keyword. The above can also be
done with a series of If-Endif commands.

About Boxes

The Windows application style recommendations suggest that an AboutBox that describes the application is desirable. PiXCL
provides several options depending on what information you want to provide to the user. There is the AboutUser box that might
appear like the image below. Title and two text regions are user definable.

PixCL Tools w4.2

1'.{ Fi=CL Script Developer Shell
EXCL

Windows 9598 and NT application written and copyright
(1994-99) by W~'SOR Integration Inc, Gatineau, Quebec.
All Rights Feserved.

Funtime User Application builtwith PixCL 4.2, copyright €
(1994-1998) “'SOR Integration Inc. Gatineaw, Quebec,
CanaDa, Al Rights Resersed.

There is also the ShellAbout command that displays a dialog that reports some system information, plus some user defined text. An
example is shown below.

windows Shell AboutBox (User definable title) E3
H
' Eé! tdicrosoft
‘4 ' Windows 95

MICROSOFT.
WIHDOWS. Copyright © 1981-1995 Microsoft Corp.,

FixCL Graphics and Imaging Language.
copyright 1994-958 %'50R Integration Inc.

This productis licensed to:
stewart DIBES
WSOR Integration e

Physical Memony Available to Windows: JE.208 KB

oystem Resources: B1%: Free

Message Boxes

The MessageBox command lets you create your own custom message boxes with one, two or three buttons. For example, the
following command creates a message box with OK and Cancel buttons and a question-mark icon. (The second parameter, 1,
causes the OK button to be highlighted.) In addition, the message box displays the text "Do you want to exit?" and uses the
caption "Exit box."

MessageBox (OKCANCEL, 1, QUESTION,

"Do you want to exit?","Exit box",Button)

The button you select is returned in

the Button variable, starting from the The available Windows
left button numbered 1. The MessageBox and built
available MessageBox button style into PiXCL icon style
TOKENS which also define the TOKENS are

button text are

OK QUESTION
YESNO EXCLAMATION
OKCANCEL INFORMATION
RETRYCANCEL STOP
YESNOCANCEL NOICON
ABORTRETRYIGNORE ICONO1-ICON19

The message text string can be multiple lines if you either
a) add carriage returns in the message; or

b) type it all on one line.

Windows will sort out how the message text is displayed.

PiXCL also provides custom dialog boxes with up to sixty pushbuttons, radio buttons, checkboxes, edit controls, comboboxes,
list boxes and static text with the DialogBox command.

Text Boxes

PiXCL’s TextBox and TextBoxExt commands lets you solicit input from the user. They display a dialog box with a single-line edit
control. For example, the following commands produce the text box shown below.

Example of a TextBox |

hake a few changes to the highlighted text in the edit
b, Click Ok to Continue; Click CANCEL to Ignore

(04 Cancel
Text$ = "Make a few changes to the highlighted text in the edit box. Click OK to continue;
Click CANCEL to Ignore"
Caption$ = "Example of a TextBox"
Score$ = "Default text can be displayed, like this, and edited"

TextBox (Text$,Caption$, Score$, ButtonPushed)

The button you select is returned in the ButtonPushed variable. TextBoxExt is similar, and provides a third Help button that
displays a MessageBox with the help string defined in the command.

PiXCL also provides custom dialog boxes with up to sixty pushbuttons, radio buttons, checkboxes, edit controls, comboboxes,
list boxes and static text with the DialogBox command.

List Boxes

The ListBox and ListBoxExt commands display a dialog box with a list box inside, so that you can choose from an alphabetically
sorted list of items. ListBoxExt supports multi-column lists and multi-item selections, plus user defined context Help.

For example, the following commands produce the list box shown below.

Select an item from the list___ |

[term#(] a
[term#&02
[term#03 o
[term#04
[term#
tern#0E d|

(0] 4 Cancel

Caption$ = "Select and item from the list"
List$ = "Item#01l;Item#02;Item#03;Item#04; Item#05; Item#06"
Delimiters$ = ";"

ListBox (Caption$,List$,Delimiter$,Results$)

Notice that the list box gets its contents from the List$ string variable, and that the items in List$ are separated from one another
by semicolons. (PiXCL returns the chosen string in the Result$ string variable.) Delimiters can be any character you choose.
The most commonly useful are semi-colon (“;’) and pipe (“|”).

PiXCL also provides custom dialog boxes with up to sixty pushbuttons, radio buttons, checkboxes, edit controls, comboboxes,
list boxes and static text with the DialogBox command.

Combo Boxes

The ComboBox command produces edit controls with drop down lists, as shown in the figure below. A combo box can include a
variety of inputs, such as 3D buttons, radio buttons, and text or numeric input. The DrawFrameControl , SetEditControl and
Button commands in PiXCL allow you to create all these styles of client area dialogs.

You would use a
one of the
ComboBox styles
where you have

Popup Menu Testing
Exitt Testing MNewStuff Common Dialogs Saving Bitmap

multiple lists of
GEFE | [Coaore 5] [Combobedtt g e
CBarg#d - CBarg#1 ﬂ and a list box dial’og
CBarg#3 CBarg#d ;Soru%t 0t:e best

CBarg#3 =] ’

CBarg#s
CBarg#b (I
CBarg#? -

% PiXCL built-in Frame Controls

Frame controls are

Exitt Test Frame Contraols Help gf:;igonaésé?;ggte

that uses the
(. Button Caontrols various mouse
commands to
activate them.
x "? D E Caption Contrals
& [|
Menu Contrals
> e VvV >)

v v ‘ | ’ A |L acroll Contrals
|

Status Window o

The set of frame controls. Not all styles are shown.

—Yalue Selections

IString Entry C Invert

[1776558 E & MNormal o

I

V| Check Cancel

Button styles and Edit controls.

One or more of the following mouse commands are used with a DrawFrameControl command.

SetMouse() Text or numeric entry edit windows, or radio buttons are
activated by clicking in each window.

SetShftMouse() Text or numeric entry edit windows, or radio buttons are
activated by clicking in each window.

SetCtrIMouse() Text or numeric entry edit windows, or radio buttons are
activated by clicking in each window.

SetDbIMouse() Text or numeric entry edit windows, or radio buttons are
activated by clicking in each window.

SetRightMouse() Text or numeric entry edit windows, or radio buttons are
activated by clicking in each window.

SetShftRightMouse() Text or numeric entry edit windows, or radio buttons are
activated by clicking in each window.

SetCtrIRightMouse() Text or numeric entry edit windows, or radio buttons are
activated by clicking in each window.

SetDblRightMouse() Text or numeric entry edit windows, or radio buttons are

SetMidMouse()

activated by clicking in each window.

Text or numeric entry edit windows, or radio buttons are
activated by clicking in each window.

SetShftMidMouse() Text or numeric entry edit windows, or radio buttons are
activated by clicking in each window.

SetCtrIMidMouse() Text or numeric entry edit windows, or radio buttons are
activated by clicking in each window.

SetDbIMidMouse() Text or numeric entry edit windows, or radio buttons are

DrawRectangle()

activated by clicking in each window.
Draw an edit window of a specified size.

DrawFlood() Fill inside a region (e.g. a background area) with a color
DrawFloodExt() Fill outside a region (e.g. a background area) with a color
Drawlcon() Draws one of the PiXCL or system icons at any size and

DrawEllipse()

coordinates.

Simulate a radio button. The button should be mouse
active.

SetKeyBoard() Set up a series of alphabetic or numeric key entry handlers.

UseBrush() Sets an edit window fill color.

UsePen() Sets edit window border color. Black is commonly used.

Button() Draws pushbuttons, radio buttons, checkboxes and group
boxes.

SetEditControl() Draws any number of edit controls for string or numeric

input.

See also the PXL code sample program, KEYBOARD.PXL.

ComboBoxes are drawn in the application client area. Note that buttons and edit controls are actually child windows of the PiXCL
application. Buttons have the highest display priority, or Z-order, so if the positions of a button and an edit control overlap, the
button will appear to overlap the edit control.

PiXCL also provides custom dialog boxes with up to sixty pushbuttons, radio buttons, checkboxes, edit controls, comboboxes,
list boxes and static text with the DialogBox command.

ImageBoxes and PasswordBoxes
PiXCL also supports two additional dialog box styles, the ImageBox and PasswordBox.

ImageBox Title line |

Textthat appears in the imagebox,
line #2 jcifl;kajdakd; dkf: kajt;

Line#3 akdhf;kakdhf dvtoweyah udyaio
Line#d kdfuad fadf;kahfdhf g dayf'aldf
Line#5 kadfajdifuahtoadkiho

Line#6 ksjdfpo psivia auidf apifap dpt
Line#? adjtajdpf siuyf adipadiidapt
Line#f

Line#3 kjadfja fj dad fahd fpwoeyvhbie
Line#10

Line#11 kjadfja f] dad fahd fpwoeybie

tore Info

An image box provides a thumbnail image and eleven line text display dialog, with two user defined buttons, and is generally
used to provide information about an image or images on your hard disk.

The Password box is similar in appearance to a TextBox, but provides a secure text entry. Any text entered appears as a string of
asterisk characters, as shown in the figure below. The title bar, instruction text and the labels on the buttons are programmable.

» PasswordBox title#3 m

Yerify a password £

E Accept Beject

PiXCL also provides custom dialog boxes with up to sixty pushbuttons, radio buttons, checkboxes, edit controls, comboboxes,
list boxes and static text with the DialogBox command.

Windows Shell Dialogs

In PiXCL 4.40 and later, there is access to a number of dialogs that are built into the Windows Shell. The Windows Explorer uses
many of these for searching and reporting file information. Full Shell functionality is available with the system file SHELL32.DLL
v4.72 or later. If you have Windows 98 or 2000, or Windows 95/NT with Internet Explorer 4.01 or later and with Active Desktop
installed, you have the latest shell version already.

The Shell GetSpecialFolder command provides a way to get various types of file, system and network information, with a dialog
as shown below.

Browse for Folder 7 x|

Locate Metwork Infarmation

Ik Cancel

Custom DialogBoxes

In PiXCL 4.20 and later, you can define your own custom popup modal dialog boxes, with combinations of push buttons, radio
buttons, checkboxes, group boxes, edit controls, static text, List box, and combo boxes, with the DialogBox command. These
same input controls can be created in the PiXCL client area using other commands.

DialogBox provides you with the tool to make a exactly the user interface you want, in a separate window, rather than with the
Button, SetEditControl and ComboBox commands in the PiXCL main client area.

Custom Dialog Box controls for PiXCL 4.2

—Anather Grouping————— —Group Modes
. q QK |
L]
v " Help2
Complete Something Cancel
DDmplEtE Another F Checkl |7 Check?

ICDmebe Control j

This is some centered text -
in & static contral region IE'j't Contral
e.g. for errar messages or

other instructions, The font | 2ra listinfo =
used for all dislog item text |Listtest data _
is the same as all the more test information
built-in dialogs. still more follows
test list infarmation d

You can include any combination of the dialog items shown above, and position the custom dialog anywhere relative to the
PiXCL client area, or centralized in the screen. Up to sixty controls of any of the above types can be created in a custom dialog
box.

There are code writing Helper applications with the PiXCL MDI editor that assist in the development of DialogBox code. The
cre8tapp.pxl sample generates a working application and also includes a selection of ready-made dialog templates that can be
pasted into your application. There is also a dialog editor application in which you create the dialog visually, then the template
code is pasted into you application.

Windows 95 /98 / NT4 / 2000 Common Controls

Windows 95/98/NT4/2000 include a set of common controls, accessed in a file called COMCTL32.DLL that is found in the
system directory. These common controls include multi-part status bars which generally appear at the bottom of the application
client area, progress bars that get updated under program control as the application proceeds to completion, trackbars, and a
selection of frame control button bitmaps.

#* Progress Bar Example

The example window, above, shows both a status bar and a progress bar.

Both types of common control are child windows of the PiXCL application, and must be enabled or disabled under program
control.

The commands available to use are

StatusWindow, DrawStatusWinText, ProgressBar and UpdateProgressBar, DrawFrameControl

Getting a Filename

PiXCL’s FileGet and EileSaveAs commands lets you get a filename using the same FileOpen / FileSaveAs common dialog
boxes that appears in many Windows applications. An example is shown below. This uses the Windows library
COMDLG32.DLL. PiXCL provides commands to access the ChooseFont, ChooseColor and printer common dialogs as well.

Trst of Imagany w1 185 DL

e [Pl =] = e [

&) lidedzrmy cmp Eﬁ:‘lr;".‘l"&' bimr (3] famtare benp
E|lidned bire B BrstrdZbme (Bl sidesinp
iddniesz bing rebird 2 bimg [B] beslLen
E|liddne=Z b ElBrabird=h | leslienp
=] liddnest bmp B Brafarddbmp Ethames amp

&) Tidedrotl bines m ndf bime
E|Tidizs_tomp Bl Bretndlbmg
EJ'IldL{-mJ'.Ll'up _ﬂ: BrzloM e birp
=) brmap bmp B Brsic?E4bmrp

File ramie ﬁ Open I
Filzs aftepe: |EIh'P"Ila=.-|“ brren 3 Cancal
In PiXCL 4.10 and later, the FileGet command has been extended to support single and multiple file selection, as well as

checking if the selected or entered file and path exists. A command option adds a Help button which displays a MessageBox with
user defined title and text.

Managing Windows

PiXCL offers the following commands for working with application windows:

EnumWindows Create a delimited list of all parent window title
strings.

EnumChildWindows Create a list of child windows of a parent window.

SetWindow Lets you maximize, minimize, or restore the PiXCL
window.

UseCaption Lets you set the text that appears in the title bar of
the PiXCL window.

WinClose Closes any specified window by title string.

WinExist Determines whether a parent window is running.

WinGetActive Returns the name of the foreground window.

WinGetClientRect Returns the coordinates of the specified window
client area.

WinGetLocation Gets the location a parent window and returns the
specified coordinates.

WinHelp Starts the Windows Help utility and displays the
requested Help file and topic.

WinAdjustRect: Returns the window coords for a specified client
area.

WinLocate Locates a parent window at the specified
coordinates.

WinSetActive Activates a running application.

WinShow Hides, unhides, minimizes, maximizes, or restores a

specified window. Can also set any window to
topmost or not topmost.

WinTitle Sets the text that appears in the title bar of a
window.

Pausing a Program

In PiXCL, you can pause a program a specified number of seconds, or you can pause it indefinitely. Both require the Waitlnput
command.

Pausing a Specified Number of Seconds

By using the Waitinput command with an argument, you can pause a PiXCL program a specified number of seconds. For
example, the following program displays the message "Waiting...". Next, it pauses the program for three seconds and then
erases the window’s contents.

DrawText (10,10, "Waiting...")
WaitInput (3000) {Pause the program for 3 seconds}
DrawBackground {Erase the window’s contents}

WaitInput ()

While the parameter for the Waitinput command is in milliseconds, PCs have a timer granularity effect, that is, the minimum tick
of the system click is actually 64 milliseconds, so Waitlnput(1) is in effect the same as Waitinput(64).

Pausing Indefinitely

By using the Waitinput command without an argument, you can pause a PiXCL program indefinitely. In general, you should use
Waitlnput() whenever you are not performing any work in your PiXCL window, because it makes more system resources
available to other programs.

If you fail to use Waitlnput() at some point in your program, one of two things will happen: either the window will disappear
immediately after executing your script or, if you are stuck in a continuous loop, the hour-glass icon will always be present.

The Waitlnput() command is also important for building your own custom menus and 3-D command buttons, and for getting
keyboard or mouse input. The examples in the next few sections will give you more of a feel for how Waitinput() works. It is
often necessary to pause the program so that Windows can catch up and update other windows and background, by using the
Waitlnput(100) command.

Interprocess Communications

One PiXCL application can also contain a PXLResume command that sends a message to another PiXCL application that is
paused indefinitely with a Waitlnput() command, and it will resume operation. The PXLresumeAt command extends this
capability and lets one PiXCL application (or any other application that has been programmed appropriately) tell another PiXCL
application to start execution at a specific label. This can be very useful if you want several PiXCL applications to run at the
same time and respond to input received from each other.

For example, you can have several applications running that are processing different aspects of and image data set. An
additional PiXCL application could be the controller that selects processing or pen and brush functions. Once a new function has
been selected, an INI file or registry setting could be made, and the secondary applications all instructed to read the updated
control parameters, and commence processing. The controller application would then wait until each secondary application had
sent a message (via a PXLresumeAt message) that processing was complete.

A useful additional interprocess command is GetCopyDataMsg that is used when another application (PiXCL runtime or user
program in C or C++) needs to send a data string such as a filename to be loaded.

PiXCL also acts a dropfile server and drop file client, such that you can drag and drop text and image files into a PiXCL window
(client mode) or drag from a PiXCL window to another application client window (server mode). See the DropFileServer,

DragAcceptFile and GetDragList commands for more information.

Building Menus

To build your own custom menus in PiXCL, you use the SetMenu command to define a menu template. Then, when the program
is pausing for input (a Waitlnput() command is in effect) and the user selects a menu item, the program branches to the label
associated with that menu item, as defined in the template.

PiXCL also supports floating popup menus invoked with a right mouse click, via the SetPopupMenu command.

For example the following program creates a simple menu with two menu items: Write and Exit!. If you select the Write option,
the program branches to the Run_write label where Windows write is launched. If you select the Exit! option, the program ends.

{Define the menu template}
SetMenu ("Write",Run write,
ENDPOPUP,

"Exit!", Leave,
ENDPOPUP)

Wait for input:
WaitInput ()

Run write:

Run ("WRITE.EXE")
Goto Wait for input
Leave:

End

Because the SetMenu command uses strings enclosed in quotes, you can also use string variables (e.g. Menu_ltem$) in the
command. This can be very useful when you need to dynamically change the text in a menu, without having to write a new
SetMenu (...) command in your script.

If you use the SetMenu () command without any arguments, it removes the menu bar from the Window. The first time that you
use the SetMenu () command, it must be immediately preceded with a WwaitInput (100) command. This is to allow Windows
to catch up and complete the redrawing of the new PiXCL application window. i.e.

WaitInput (100) {let NT and 95 catch up}

SetMenu(...)

If you don’t do this, the screen will often flash when Windows attempts to redraw the client area.

Changing Menu Characteristics

PiXCL has two commands for changing the appearance of menu bar pop-up items: ChangeMenultem and GetMenuStatus. The
ChangeMenultem command checks, unchecks, grays, or enables a main menu bar item: they have no effect on popup menu
items created with the SetPopupMenu command. Building on the previous example, suppose you want to place a checkmark
next to the Write option immediately after you launch Windows Write. Here’s the command you would use immediately after

Run ("WRITE.EXE")

ChangeMenulItem ("Write", CHECK, Result)

Because you may want to examine a menu item’s appearance before changing it, PiXCL offers the GetMenuStatus command.
For example, this sequence checks to see whether the Write option is grayed. If so, the program enables the menu item
(removes the gray) before placing a checkmark next to it.

GetMenuStatus ("Write", GRAYED, Result)

If Result = 1 Then ChangeMenultem("Write",ENABLE,Result)

ChangeMenulItem ("Write", CHECK,Result)

Building ToolBars and ToolWindows

PiXCL supports a user definable and customizable toolbar with automatic tooltips that provides fast equivalents to menu item

selections, or functions that you do not want to define as a menu item. There is a set of standard toolbar buttons that are built
into the Windows Common controls. Additional button bitmaps are built into PiXCL itself, in the same way that there is a set of
icon images.

. Standard, View, History and Custem Toolbars in PiX
File Toolbar Commands Toolwindow Commands Mouse Reporing

SRR E R

PHistoy] DL
AN EEE el |EEE

View Bins #1] [View Bins #2]
s (] & £F
el B = &l ol
=1k A e %

CNEHEL Pl

A
4
o
-
[if
iy
R

The ToolWindow command has a similar syntax and function to the Toolbar command, but creates an arbitrary number of floating
button windows, in POPUP mode that creates a toolwindow that floats anywhere in the screen.

A toolbar or toolwindow can be raised or flat style, and can each have up to 76 buttons, in a variety of initial states and styles.
Once a toolbar is displayed, buttons can be moved around and deleted without recreating the toolbar by double clicking on the
toolbar background. The image above shows the set of large size Standard toolbar with groups of buttons, plus floating
toolwindows that show the large size View and PiXCL built-in buttons, plus the small size History buttons.

Toolbars and toolwindows are used to provide buttons that
. equate to menu shortcuts for commonly used selections
. provide a set of paint and draw selections for which a menu item may not be appropriate.

Changing Toolbar and ToolWindow Button Characteristics

You can query and update the state of any button in a toolbar or toolwindow with the GetToolbarBtnStatus and
ChangeToolbarBtn commands. Toolbars and toolwindows can be customized with the CustomizeToolBtn command, or by double
clicking on a toolbar or toolwindow background. If you need to change button bitmaps or tooltips, you must re-issue the ToolBar
or ToolWindow command.

3-D Command Buttons

PiXCL’s Button command lets you create standard Windows 3-D pushbuttons, radio buttons, check boxes and group boxes, and
place them anywhere within the PiXCL window. When the program is pausing for input and the user clicks on a button, the
program branches to the label associated with that button. The figure below shows a variation of the previous menu example
with some buttons added to mimic the actions of the menu items.

Buttons are active for the left mouse only.
Here’s the code used to produce the example:

{Define the menu template}
WaitInput (100)
SetMenu ("Write",Run write,
ENDPOPUP, "Exit!", Leave,

ENDPOPUP)

{Draw 3-D buttons}
Button(20,20,60,35,"Write",Run_write,
20,45,60,60,"Exit", Leave)
Wait for input:
WaitInput ()
Run_write:
Run ("WRITE.EXE")
Goto Wait for input
Leave:

End

As the example shows, PiXCL automatically provides mouse support for 3-D command buttons. If you want to test for mouse
clicks in other areas of the PiXCL window, you’ll need to use the SetMouse command, described next. If you want the user to be
able to select a 3-D button using the keyboard, you’ll need to use the SetKeyboard command (see "Getting Keyboard Input"
later).

During development testing on some early Windows 95 machines, we often had problems with programs hanging when a Button
command was reached. This was usually fixed by loading the latest video device driver. If you are having problems on a
Windows 95/98 or NT4 PC, please check with your PC supplier or video card vendor for the latest driver. If you still have
problems, please contact VYSOR Technical Support at http://www.vysor.com.

3D Command Buttons with BitMaps

In PiXCL 5.0 and later, the Button command supports the specification of BMP or RLE images and ICO icon files on the button,
instead of a text string. In addition, you can specify any of the PiXCL 20 or so built-in icons plus around another 70 icons from
the Windows SHELL32.DLL. Buttons are active for the left mouse only.

Alternatively, if you want buttons that support middle and right mouse clicks, with a bit of ingenuity with the DrawBitmap
command and one or more of the SetMouse commands, you can create 3-D command buttons with bitmaps and place them
anywhere within the PiXCL window. When the program is pausing for input and the user clicks on a BitMap button (actually a
mouse active region), the program branches to the label associated with that mouse hit.

The bitmaps you use should ideally be 16 color, as this minimizes the amount of data to read off the disk (or from the system
disk cache if it exists). When making "pushed" bitmaps, the traditional style is to move the bitmap design right and down one
pixel. You can also use the InvertRectangle. that negates the bitmap colors to indicate that a bitmap region had been selected
with the mouse.

{Define the button Bitmaps}
ButtonPos$ = "btn pos.bmp" {32x32 16-color}
ButtonNeg$ = "btn neg.bmp" {32x32 l6-color}
DrawBitMap (20,20, ButtonPos$)
{set up the mouse hit regions}
SetMouse (20,20,51,51,Run_write,X,Y)
SetMenu ("Exit", Leave, ENDPOPUP)
Wait for input:

WaitInput ()

Run_write:
DrawBitMap (20,50, ButtonNeg$)
WaitInput (250) {click in the button and wait}
DrawBitMap (20, 50, ButtonPos$)
Run ("WRITE.EXE")
Goto Wait for input
Leave:

End

You can also use any of the icons built into PiXCL, as well as the system defined MessageBox icons as images in buttons. The
method is essentially the same as shown above, except the DrawBitmap command is replaced by a Drawlcon command. Other
related commands that are useful to create pushbuttons with images are DrawEdgeRectangle and InvertRectangle.

The icons built into PiXCL and hence a PiXCL runtime can also be changed to whatever you require, using an icon management
tool.

Getting Mouse Input

To get mouse input in a PiXCL program outside of 3-D command buttons, you use one or more of the SetMouse, SetShftMouse,
SetCtrIMouse, SetDblMouse, SetRightMouse, SetCtrIRightMouse SetShftRightMouse or SetDbIRightMouse commands and
define rectangular regions on the screen as mouse hit-testing regions. If you have a Microsoft Intellimouse™ or similar,
SetMidMouse, SetShftMidMouse, SetCtriIMidMouse or SetDbIMidMouse commands are also available. Then, when the program
is pausing for input and you click the mouse within a mouse hit-testing region, the program branches to the label associated with
that region, as defined by the SetMouse command. The argument syntax is the same for all twelve mouse commands. Mouse
active areas can be overlapped. Set[*]Mouse and SetDbl[*]Mouse should generally NOT be overlapped, as the Set[*]Mouse
command will catch the area first. All the double mouse commands can be overlapped.

You can also define polygon shaped mouse active regions by creating a set of overlapped or adjacent rectangles that cover the
desired polygonal region.

For example, suppose you want to modify the previous program to display a warning message when the user clicks within the
window, but misses a 3-D button. Here’s the code to accomplish this:

{Define the menu template}
SetMenu ("Write",Run write,
ENDPOPUP,

"Exit!", Leave,

ENDPOPUP)

{Draw 3-D buttons}
Button(20,20,60,35,"Write",Run _write,
20,45,60,60,"Exit", Leave)
{Use pixel coordinates for mouse hit testing; more accurate}
UseCoordinates (PIXEL)
{Set mouse hit-testing region to entire screen}
GetScreenCaps (HORZRES, x) {Get screen’s vert. resolution}
GetScreenCaps (VERTRES, y) {Get screen’s horiz. resolution}
SetMouse (0,0,x,y,Missed, Temp, Temp) {Branch to Missed on miss-hit}
Wait for input:
WaitInput ()
Run_write:
Run ("WRITE.EXE")
Goto Wait for input
Leave:
End
{Put up message box when user misses 3-D button with mouse}
Missed:
MessageBox (OK, 1, EXCLAMATION,
"Click on a button or select a menu item!",
"You missed...",Temp)

Goto Wait for input

In this example, the entire screen is set up as a hit-testing region by the SetMouse command. By using the GetDeviceCaps
command, the program determines the pixel resolution of the screen driver. For example, if you are using a SuperVGA driver, the
hit-testing region is defined as (0,0) to (1023,767). If you click the mouse within this region but miss a 3-D button, the program

branches to the Missed label where a message box is displayed telling you to click on a button.

Getting Keyboard Input

PiXCL provides you with three ways to input data from the keyboard. Firstly, if there are multiple string or numeric data that
potentially needs editing on entry, via the SetEditControl command, secondly, using a TextBox dialog for single lines of text or
numeric data, and thirdly when there are a set of keystrokes (e.g. accelerator keys for user defined functions and buttons) that
are required via the SetKeyboard command.

The SetEditControl command is similar to the Button command, and is generally used in conjunction with it to create client area
dialogs. SetEditControl creates an arbitrary number of single line edit windows of arbitrary size, with text displayed in the
currently selected font. Edit controls can be used to enter string variable characters, without having to resort to the SetKeyboard
method described below.

Popup Menu Testing

Exitt Testing MNewStuff Common Dialogs Saving Bitmaps

Imnre text input

[196 Eiial

[124 =
|1gg E |—Sﬂmple—|

Imnre text here

Example of multiple edit controls using the SetEditControl and Button commands.

To read single keystrokes in a PiXCL program, you use the SetKeyboard command to define the keys that you’ll accept. Then,
when the program is pausing for input and you press a specified key, the program branches to the label associated with that key.

Syntax:

SetKeyboard() This clears all previous SetKeyBoard commands.
or

SetKeyboard("a",Label,"*a",Label,vkey,Label)

Parameters:

"a" Any white key on the keyboard (except function keys and certain keys on
the numeric keypad). For example, "a" represents lowercase a and "R"
represents uppercase R.

"ha" Any white key on the keyboard (except function keys and certain keys on
the numeric keypad) in combination with CTRL. For example, "*b"
represents CTRL+b and "V" represents CTRL+V.

vkey A virtual key number taken from the Table below. For example, the virtual
key number for the F1 function key is 112. Using a virtual key number is the
only way to test for certain keys, including function keys and several keys
on the numeric keypad.

Label A label you want PiXCL to branch to when the user presses the preceding

key. For example, the command SetKeyboard("C",Run_calc) causes the
program to branch to the label Run_calc when the user presses C.

Value Description

8 BACKSPACE

13 ENTER
18 ALT

27 ESCAPE
34 PGDN
37 LEFTARROW

45 INSERT
49
52
55
65
68
70
73
76
79
82
85

cCxoOr—mo>»N»-~-

90

N

98 Numeric key pad 2

(NUMLOCK must be
on)

101 Numeric key pad 5

(NUMLOCK must be
on)

104 Numeric key pad 8

(NUMLOCK must be
on)

107 Numeric key pad +

111 Numeric key pad /

116 Function Key F5
119 Function Key F8
122 Function Key F11
125 Function Key F14
144 NUM LOCK

Value Description

9 TAB

16 SHIFT

19 PAUSE (or CTRL +
NUMLOCK)

32 SPACEBAR

35 END

38 UPARROW

40 DOWNARROW

46 DELETE

50 2
53 5
56 8
66 B
69 E
71 G
74 J
77 M
80 P
83 S
86 V
88 X

96 Numeric key pad 0

(NUMLOCK must
be on)

99 Numeric key pad 3

(NUMLOCK must
be on)

102 Numeric key pad 6
(NUMLOCK must

be on)

105 Numeric key pad 9
(NUMLOCK must

be on)

109 Numeric key pad -

12 Function Key F1
114 Function Key F3

17 Function Key F6
120 Function Key F9

123 Function Key F12
126 Function Key F15

145 SCROLL LOCK

The following key codes apply to US keyboards only:

186 Colon/semi-colon

187 Plus/equal

Value Description

12 5 on numeric keypad

with
NUMLOCK off
17 CTRL

20 CAPS LOCK

33 PGUP

36 HOME

39 RIGHTARROW
44 PRINTSCREEN
48
51
54
57
67

O © o wo

72
75
78
81
84
87
89
97 Numeric key pad 1

(NUMLOCK must
be on)

100 Numeric key pad 4

(NUMLOCK must
be on)

103 Numeric key pad 7

(NUMLOCK must
be on)

106 Numeric key pad *

<sHpzxzT

110 Numeric key pad .

(NUMLOCK must
be on)

113 Function Key F2
115 Function Key F4
118 Function Key F7
121 Function Key F10
124 Function Key F13
127 Function Key F16

188 Less than/comma

189 Underscore/hyphen

190 Greater than/period

191 Question/slash

192 Tilde/backwards single quote

219 Left curly brace/left square brace

220 Pipe symbol/backslash

221 Right curly brace/right square bracket
222 Double quote/single quote

Virtual Key Numbers Table

Suppose you want to add keyboard support to the previous example so that when you press w or W the program runs Write and
when you press e or E, the program exits. Here’s how you would modify the program:

{Define the menu template}

SetMenu ("Write",Run write, ENDPOPUP,
"Exit!", Leave,
ENDPOPUP)

{Draw 3-D buttons}
Button(20,20,60,35,"&Write",Run write,
20,45,60,60,"&Exit", Leave)

{Set up keyboard support for buttons}
SetKeyboard ("W",Run write,
"w",Run_write,

"E", Leave,

"e", Leave)

{Use pixel coordinates for mouse hit testing; more accurate}
UseCoordinates (PIXEL)
{Set mouse hit-testing region to entire screen}
GetScreenCaps (HORZRES, x) {Get screen’s vert. resolution}
GetScreenCaps (VERTRES, y) {Get screen’s horiz. resolution}
SetMouse (0,0, x,y,Missed, Temp, Temp)
{Branch to Missed on miss-hit}
Wait for input:
WaitInput ()
Run_write:
Run ("WRITE.EXE")
Goto Wait_ for_ input
Leave:
End
{Put up message box when user misses 3-D button with mouse}
Missed:
MessageBox (OK, 1, EXCLAMATION,

"Click on a button or select a menu item!",

"You missed...",Temp)

Goto Wait for input

Note#1: It is also possible to use a SetKeyBoard() command to catch a large number of key codes, and write directly into an edit
dialog region in the client area. See the sample program keyboard.pxl for one way of doing this.

Sound Card Support

PiXCL provdes a set of commands to play WAV files on standard SoundBlaster™ compatible sound cards. WAV files can be
played synchronously or asynchronously, and volume, pitch and playrate are adjustable.

Using WAV files can add useful help or other audible prompting to your applications, and are commonly used in multimedia
presentations.

One of the ways that sound can be used in to create a WAV file of say, introductory music and speech that runs for a set length
of time, and play it asynchronously. The PiXCL application continues while the WAV is playing, and at set times, you can update
the screen with new text and images. Careful use of the Waitlnput command ensures that your application plays more or less the
same on systems with a variety of cpus and cpu clock speeds.

PiXCL 5.0 and later also support the set of Multimedia Control Interface (MCI) commands that many devices support. MCI
commands can be used to play overlapping audio files at the same time.

Serial Communications with PiXCL

PiXCL provides programmed read/write access to your PC serial ports, COM1, COM2, COM3 and COM4, for purposes such as
reading data streams from input devices like digitising tables, and commanding or reading devices that are controlled from an
RS-232 port. These can be as diverse as smart home appliances to model trains.

Most PCs have two serial ports only, COM1 and COM2, with COM2 often assigned to a modem for Internet access. Some PCs
use COM1 for the mouse input, while most newer PCs have a PS2 style mouse port, which leaves COM1 available for other
devices.

The PC design supports four standard serial ports that share only two interrrupt lines. Hence, COM1 and COM3 share one, and
COM2 and COM4 share the other. This means that if you want install two serial cards and use two serial devices on COM1 and
COMS3, your software will have to be able to support shared interrupts.

COM port support in PiXCL is not a device driver, and does not support shared interrupts.

Communications Commands:
ClearCommPort GetCommPort ReadCommPort SetCommPort WaitCommEvent WriteCommPort

Importing images from TWAIN-compliant devices

PiXCL provides command support for TWAIN compliant data source devices. These are typically scanners, digital still and video
cameras, and some photocopiers with a scanner output function.

Both 16 and 32 bit data sources are supported in TWAIN v1.6. Please note that in TWAIN v1.7 (released September’97), support
for 16 bit devices has been dropped. See the TWAIN Working Group site at http://www.twain.org for details.

There are hundreds of TWAIN devices on the market, some with only 16 bit drivers, some with both16 and 32 bit drivers. We
have found that some of the older 16 bit devices do not have very well behaved drivers, and can cause a 32 bit program trying to
acquire an image to crash. We very strongly suggest that

a) you locate the latest TWAIN driver from the device supplier, if 16 bit;

b) you locate a TWAIN 32 bit driver for the device in preference to a 16 bit driver; and

c) if the device is more than five years old, or out of production, that purchase of a new device is justifyable.

Support for TWAIN devices requires the following four files to be present in your Windows directory: TWAIN.DLL and
TWAIN_32.DLL, and TWUNK_16.EXE and TWUNK_32.EXE. The last two provide the necessary conversion between 16 bit
TWAIN data sources and 32 bit applications such as PiXCL. These four DLLs are provided with PiXCL, and are installed if
necessary. In addition, PiXCL 4.14 and later also provide PXLtwain.DLL, which is the command interface between PiXCL and
TWAIN_32.DLL. PXLtwain.DLL is also stored in the windows directory.

If you have a file TWAIN32.DLL (note no “_”) in your windows or windows\system directory, it should be deleted, as it is a beta
release library, and is no longer valid for Windows 95/98 or NT 4.0.

In addition, your TWAIN device will come with one or more .DS files. These are the binary drivers (actually DLLs with a DS file
extension) that TWAIN_32.DLL needs to work. 16 bit .DS files are stored in your windows\twain directory, and 32 bit .DS files
in the windows\twain_32 directory.

PiXCL provides twenty-five commands to control the TWAIN device. You can acquire images and write them to the PiXCL image
list, copy the image to the Clipboard directly, or write the image to a file.

See the sample program twaindev.pxI for examples of using the TWAIN commands.

Running Other Programs

By using the Run (.. .) and RunExt (...) commands you can execute other applications from within a PiXCL program. For

example, the following program starts Notepad and then launches a copy of a command interpreter, CMD.EXE:
Run ("NOTEPAD.EXE")

Run ("C:\APPS\CMD.EXE")
WaitInput ()

Each program you start takes on a life of its own independently of the PiXCL script that invoked it. This means that PiXCL does
not pause after executing a Run command, but continues with the next command in the script. For example, in the previous
program, PiXCL starts Notepad then immediately starts CMD.EXE.

If PiXCL could not run the specified program, four error conditions are trapped, as follows:

* the PATH specified is invalid or does not exist.

¢ the EXE file cannot be found.

¢ the EXE file is corrupted or unreadable.

¢ Windows does not enough memory or resources available.

The last error is unlikely to occur with commercial release version programs. If the specified file cannot be run, a MessageBox
appears informing you of the name of the EXE file, and the apparent reason that the file could not be run. The script will continue

processing in all cases, so it is up to you to decide what to do if the program does not run. The most useful check is to verify that
the new window created by the EXE actually exists, using the WinExist command.

Using the Windows Shell functions with PiXCL

PiXCL has two commands, ShellAbout and FindExecutable , that use Windows shell functions directly, but there are more
functions available with a bit of simple programming.

The files c:\windows\RundlI32.exe (Windows 95/98) and c:\winnt\system32\RundlI32.exe (Windows NT) are used
extensively by Windows 95 and NT4 to launch a wide range of actions defined in DLLs. For example, many of the Control Panel
applets are defined in a series of .cpl files, and can be run as part of a PiXCL program, using a command line passed to the Run
or RunExt command. These applets all produce a dialog that can be used as necessary in your PiXCL applications.

If you do a search in c:\windows\system you will find 16 or so .cpl files. These are binary files (actually DLLs with specific entry
functions), but there are ways to investigate the contents. An easy way is to use the Start:Run window on the Taskbar, with the
command line syntax shown below.

The general PiXCL Run command syntax of the shell command line is
Run(“path\rundlI32.exe shell32.dll,Control_RunDLL filename.cpl,@number[,page_number]”)

or alternatively
Run(“path\control.exe filename.cpl,@number[,page_number]”)

where
@number the 0-based ordinal for a multi-function applet.
page_number the optional sometimes 1 and sometimes 0-based property sheet number on a multi-page applet

dialog. Its SUPPOSED to be 1-based according to Microsoft. You’ll need to experiment.

For example, if you right click the Windows 98 screen background and select Properties, you get the Display Properties
dialog, typically with tabs named Background, ScreenSaver, Appearance, Effects, Web and Settings, which are
numbered left to right 0,1,2,unknown, unknown,3. Hence, to display the Settings tab, the command would be

Run(“path\control.exe desk.cpl,@0,3”)

Note that there are no spaces in shell32.dll,Control_RunDLL and filename.cpl,@number[,page_number]. Note also that
Control_RunDLL is case sensitive, as it’s the entrance point into the shell dll.

Here is a list of some of the Control Panel Applets you will find on your system. The list is not exhaustive, and your system may
well be different.

AppWiz.cpl

0 Remove/Install applications

Desk.cpl

0 Display Properties (multi-page)
FindFast.cpl

0 FindFast dialog

Inetcpl.cpl

0 Internet Properties (multi-page)

Intl.cpl

0 Regional Settings Properties (multi-page)
Joy.cpl

0 Joystick Properties

Main.cpl

0 Mouse Properties (multi-page, but sheet indices don't work)
1 Keyboard Properties (multi-page)

2 Printer Icons window

3 Fonts Icons window

ML32cfg.cpl

0 MS Exchange Settings Properties (multi-page)
Mmsys.cpl

0 MultiMedia Properties (multi-page)

1 Sounds Properties (multi-page)

Modem.cpl

0 Modems Properties (multi-page)

Sysdm.cpl

0 System Properties (device manager) (multi-page)
1 Add New Hardware Wizard

Timedate.cpl

0 Date / Time Properties

Another shell command allows you to bring up the format floppy disk dialog. The PiXCL command is
Run(“path\rundlI32.exe shell32.dIl, SHFormatDrive™)

You can display the “Open With” dialog with the PiXCL command. The dialog displayed is slightly different if the <filename.ext>
is included in the command line.

Run(“path\rundll32.exe shell32.dll,OpenAs_RunDLL <filename.ext>")

Invoking on-line Help Files

You can invoke any Windows Help file (*.HLP) with the either the PiXCL Run (...) command or WinHelp (...) command. The
standard Help file viewer engine is c:\windows\winhlp32.exe, in Windows 95/98 and c:\windows\system32\winhlp32.exe in
Windows NT i.e. an standard executable file. PiXCL 4.22 and later also support the new compiled HTML (.CHM) format that
comes with Windows 98 and later, with the WinHTMLHelp command.

For example, the following code fragments start WINHLP32 with the argument to display a Help file.

Run ("WINHLP32 newapp.hlp")
WaitInput ()

and
WinHelp ("newapp.hlp", "Contents","")

WaitInput ()
are functionally equivalent

The .EXE extension is not necessary as Windows assumes this is correct. It is also not necessary to include a PATH with
WINHLP32, as Windows already knows where it is.

See the complete details in the sections on the Run command and the WinHelp and WinHTMLHelp commands.

Printing documents and images with PiXCL

There are several ways to print a document in Windows. The way you are likely most familiar with is starting a document editor
like NotePad, Write or WordPad, or an image editor like Paintbrush, opening the desired file then selecting the Print menu
option. Most Windows utilities and many third party applications also provide a command line print argument.

For example, if you invoke NotePad with a /p argument, it will open the selected document, start the Print Manager, print the file,
then close NotePad.

In a PiXCL program, you can use the Run or RunExt commands to print a document or image. The command syntax could be

Run ("NotePad /p textfile.txt")
or
PrintJob$ = "NotePad /p textfile.txt"
RunExt (PrintJob$,NORMAL, "",WinDir$, 0,0,0,0, NOWAIT,O)

You can also locate the executable file associated with a particular file type with the EindExecutable command. For example, if
your PiXCL application works with a TIF file, on one PC the associated EXE file may be Paint Shop Pro ™, and on another
ThumbsPlus™. The FindExecutable returns the correct application to print the file, and this is plugged into the Run or RunExt
command as the first argument.

If you want to print a large file, you could set the NotePad windows to run minimized, using the EnumWindows and WinShow
commands. You can also set the printing application window (defaults of 0,0,0,0 above) to negative numbers i.e. outside of the
viewable area.

The following Windows utilities support command line printing:
NotePad, Write, Paintbrush, CardFile

For printing documents with other applications, check in the application documentation or the manufacturer. Most new 32 bit
applications also write information into the Windows Registry that lists the arguments needed for printing documents. You can
access the registry with the RegEdit program which is purposely hidden by Microsoft in the Windows directory. Search in the
CLASSES tree for the relevent program name, then look in the shell branch for the references to print commands.

PiXCL also provides full read and write access into the Windows Registry. See Access to the Windows Registry for more
information.

The second method is to use the PrintFile command that is built into PiXCL. This is similar to the above method, but does it all in
one command. Windows supports a so called shell processor that provides document printing support. The shell looks at the
document type (e.g. INI, TXT, DOC, BMP and so forth), looks up the Registry for the necessary application that is indicated as
being able to print the document, starts the application in the background and prints it. Finally, the printing application is closed
automatically. PrintFile is a very handy command, as it enabled you to print any document if the application is installed on your
PC.

Please note that PrintFile is not meant to provide comprehensive document and imaging print services. If you need to print, for
example, a Microsoft Word™ document, or a large CORELdraw™ vector file, then the Run(...) method or PrintFile(...) method
described above is the appropriate choice. PrintFile is designed for text and other document type files.

You can also print any of the supported bitmap formats with the PrintBitmap command. With this command, you have the option
of displaying the PageSetup and Print common dialog boxes.

Managing Files and Directories

PiXCL has a wide range of commands that let you manage files and directories, as shown in the table below. For example, here
is how you use the FileCopy command to copy all the files in the C:\LETTERS directory with a .TXT extension to the root
directory of drive A:

FileCopy ("C:\LETTERS*.TXT","A:\",Copied Files)

Here the Copied_Files variable reports the number of files successfully copied.

Command Purpose

DirChange Makes a specific directory the current directory.

DirExplore Created as Explorer window that lists the current directory
contents.

DirGet Gets the current directory.

DirGetSystem Gets the Windows system directory.

DirGetWindows Gets the Windows directory.

DirMake Creates a new directory.

DirRemove Deletes an existing directory.

DiskChange Makes another disk drive current.

FileCopy Copies one or more files from one directory to another.

FileDelete Deletes one or more files from disk.

FileExist Tests whether a file exists.

FileExtension Extracts the file extension from a filename string.

FileGetDate Reads the date stamp in a file’s directory entry.

FileGetSize Reads the size in bytes of the specified file.

FileGetTime Reads the time stamp in a file’s directory entry.

FileMove Moves one or more files from one directory to another.

FileName Extracts the rootname from a filename string.

FilePath Extracts the path from a filename string.

FileRead_INI Read section and key strings from any INI file

FileRename Changes the name of one or more files.

FileWrite_INI Write section and key strings to any INI file.

GetDiskSpace Returns the disk type, total space and free space.

As another example, here’s how you can use the DirGet commands to place the source and current directory in the
SourceDir$ and CurrentDir$ string variables:

DirGet (SourceDir$)

some FileGet commands or similar ...

DirGet (CurrentDir$)

This command is useful to locate the starting directory of a program and store it in a string variable, then change to another
directory. This is analogous to the Program Manager: File Properties "Command Line" and "Working Directory" entries.

PiXCL 4.0 and later also support the use of initialization or INI files to store application parameters. INI files should always be
created and edited with NotePad. PiXCL commands FileRead_INI and FileWrite INI provide access to any INI file in your
computer, including SYSTEM.INI and WIN.INI.

An INI file for a PiXCL application could include such information as

program startup display coordinates
default background color
last time a certain file was accessed
a bitmap to be displayed

More than one INI file can be accessed by your PiXCL application. For example, if you have a PiXCL program that works in
conjunction with another application called BMPDSPLA.EXE that, say, keeps track of a working directory, and both applications
need to work from that same directory, using the FileWrite INI command to change BMPDSPLA.INI allows either application to
set the working directory.

Any information that can be stored in an INI file can be written into the Windows Registry, also known as the Registration
Database. Microsoft suggests that all new 32-bit applications make use of the Registry rather than using INI files. PiXCL
provides a set of commands starting with RDB (i.e. Registration DataBase) to read and write the Registry.

See also Access to the Windows Registry for more information.

Clipboard Operations

PiXCL has three commands for reading text from and writing ASCII text to the Windows Clipboard, plus a command to empty the
Clipboard.

ClipboardAppend — Adds text to the end of the Clipboard’s existing text.
ClipboardGet — Reads text from the Clipboard.

ClipboardPut — Copies text to the Clipboard, replacing Clipboard’s current contents.
ClipBoardEmpty — Clears the Clipboard of text and images and other binaries.

The Clipboard functions are extremely useful for passing text information between programs. For example, a control program
can pass a set of directories or filenames to subsidiary programs.

PiXCL supporta some binary image data access to the Clipboard too. For example, the TWAIN_AcquireToClipboard command
will copy a bitmap from a scanner type device, to the clipboard.

Images can be copied to and from the clipboard with the
ClipboardGetBitmap — Gets a bitmap into the PiXCL image list in memory.

ClipboadPutBitmap -- Copies a bitmap from the image list.
CopyWindowToClipboard -- Copies a selected window to the clipboard i.e. window capture.

Creating and using INI files

PiXCL provides two commands, FileRead_INI and FileWrite_INI to access any system or application initialization file. For
example, you may need to invoke a paint and draw program with a standard set of startup parameters like working image and
saving image directories, default position or file type. A PiXCL program with perhaps 20 to 50 lines of code can be created to
access these desired parameters in your own INI file, and update the application INI file before running the application. If the
DropFileServer command is used, you can even select a group of files of various formats and have the application load them
sequentially.

PiXCL also provides access to the Windows Registration Database that is used to store information in the same way as INI files.

See also Access to the Windows Registry for more information.

Access to the Windows Registry or Registration Database

You are probably aware of and used to using Windows application initialization files, or INI files as they are more commonly
known. These are described in moderate detail in the section of this manual that references the FileRead IN| and FileWrite INI
commands.

INI files are very useful for storing a wide variety of application and system parameters, but with the advent of 32 bit Windows
and more particularly Microsoft Object Linking and Embedding 2, or OLEZ2, the basic INI file format is too limiting for the types of
reference data that needs to be stored, so most new Windows applications make use of the Registration Database or Registry to
store a wide variety of information about applications. The Registry has been a part of Windows since v3.0, and it can be
accessed by anyone who can locate the Windows Registry edit utility in the Windows directory.

This utility is made less obvious on purpose because it is very possible to corrupt the Registry if the common "trial and error"
approach is used by inexperienced users (and by some experienced users too !). If the Registry becomes corrupted, you may
not be able to reboot Windows, and a full re-install will often be necessary.

If you make a mistake and corrupt the Registry, providing you have previously saved the registry, you can restore the registry as
follows.

Click the Start button, and then click Shut Down.
Click Restart The Computer In MS-DOS Mode, and then click Yes.

Change to your Windows directory. For example, if your Windows directory is C:\Windows,
you would type the following:

cd c:\windows

Type the following commands, pressing ENTER after each one. (Note that System.da0 and
User.da0 contain the number zero.)

attrib -h -r -s system.dat
attrib -h -r -s system.da0
copy system.da0 system.dat
attrib -h -r -s user.dat

attrib -h -r -s user.da0

copy user.da0 user.dat
5 Restart your computer.

Following this procedure will restore your registry to its state when you last successfully started your computer.

The Registry contains information that is critical to the correct operation of your computer, so before accessing and modifying
the contents of the Registry, you should make a back up copy of the Registry. You can do this using the RegEdt32 (Win NT) or
RegEdit (Win 95, also found in NT)) utility, as detailed in the REGEDIT on-line help.

On-line Help information on the Registry is very limited in Windows 95, so we will discuss it in moderate detail here. A full
discussion of the Registry data formats and structures is beyond the scope of this User Manual, so if you need more detailed
information, may we suggest a visit to your nearest computer bookstore to look in the Windows programming section.

The Registry is a hierarchical database made up of keys that are linked together to form hierarchies or tree structures similar in
general format to the file system you are likely familiar with by now. These keys are the fundamental entities in the database.

The Registry has six keys, also called root keys, that serve as entrypoints to the database for any application. Links provide a
mechanism to traverse the database from a root key to other subkeys. The link between two keys also serves to establish the
relationship of a subkey, so the subkey is further from the root of the hierarchy than the other key in the link.

Each key has a name and a default value. A key can also have other named values associated with it. A value can be named
or unnamed and has its own storage area for a data value. The data value can store binary, numerical, string, delimited strings,

or other types of data.

PiXCL provides six predefined constants for Registry access to permanently open keys.

(DRDB_CLASSES_ROOT

This tree stores information about file type associations and most applications parameters. Newly installed applications will
generally store information in new keys created in this tree. A PiXCL application is most likely to access registry data in this
tree.

(DRDB _CURRENT_USER
Application events, configuration, system and software information.

(@RDB _LOCAL_MACHINE
Application events, configuration, system and software information.

(@RDB _USERS
Information about user accounts and individual software and setup options.

@RDB_CURRENT_CONFIG
Display and system parameters.

(@QRDB_DYN_DATA
Configuration Manager and Performance statistics.

Handles are usually negative integers. You can access a permanently open handle (i.e. one of the predefined constants), or by
specifying a handle returned by the RDBOpenKey command.

Using the Registry access commands in PiXCL

To use the Registry access commands in PiXCL, you will need to become familiar with using the RegEdit Registry Editor,
because in most cases what you will be wanting to do is extract and possibly update registry entries from within a PiXCL
application program. For example, many programs keep a list of the 'n' previously accessed files, or perhaps the current file
types, working and storage directories.

Elj FBrush If you start up RegEdit, and look in the
i P CLASSES_ROQT tree, and find the entry
oo "-j w for Pbrush, you will see the subtree shown

Ellj pratocal left with some common subkey names.

=0 StdFileEditing

Clsid Class Identifier, used with OLE 2. This is obtained by developers from Microsoft and is supposed to
be unique for any applications.

protocol Also used with OLE 2

shell The command used with the command shell

Other commonly used subkey names.

Defaulticon The icon that is used in the Start bar e.g. app.exe,1
RecentFileList A delimited list of ‘n’ files previously edited.

Subkey names are arbitrary, and can contain spaces if required. For example, RecentFileList and Recent File List (with
spaces) are different subkeys.

PiXCL Commands to access the Registry
There are eight commands in PiXCL 4.4 to read and write the Registry. Briefly, these are

RDBCloseKey(InHandle, Result)

The RDBCloseKey function releases the handle of the specified key. Permanently open keys cannot be closed, and if
used, Result returns 0.

RDBCreateKey(InHandle, SubKey$, ObjectType$, OutHandle, Result)
The RDBCreateKey function creates the specified key. If the key already exists in the registry, the function opens it.

RDBDeleteKey(InHandle, SubKey$,Result)
Windows 95: The RDBDeleteKey function deletes a key and all its descendants.

Windows NT: The RDBDeleteKey function deletes the specified key. This function cannot delete a key that has
subkeys, so it is necessary to delete the last key in each branch at a time.

RDBEnumKey(InHandle,Index,SubKeyName$,ClassName$,Result)

RDBEnumKey enumerates subkeys of the specified open registry key InHandle. The function retrieves information
about one subkey each time it is called.

RDBOpenKey(InHandle,SubKey$,0OutHandle)
RDBOpenKey returns a handle of the specified subkey.

RDBQueryKey(InHandle,ClassName$,NumberOfSubKeys,NumberOfValues,Result)
RDBQueryKey returns an assortment of information about a specified key or predefined constant, useful in defining

other registry commands.

RDBQueryValue(InHandle,SubKey$,SubKeyRtn$,Result)
RDBQueryValue returns the value associated with the specified subkey.

RDBSetValue(InHandle,SubKey$,Value$, TOKEN, Result)

The RDBSetValue function stores data in the value field of an open registry key. It can also set additional value and type
information for the specified key.

For more detailed information, see

RDBCloseKey, RDBCreateKey, RDBDeleteKey, RDBEnumKey, RDBOpenKey, RDBQueryKey, RDBQueryValue, RDBSetValue

Building Runtime .EXE Files

Both FreePiXCL 4.48 and PiXCL Registered versions come with a free unlimited runtime .EXE builder that you can use to share
your programs with as many people as you want—even if they don’t own PiXCL. Here are the main features of the runtime:

U Your PiXCL program is transformed into a standalone executable (.EXE) file.

J You can start the resulting .EXE file just like any other Windows program. Command line
arguments are supported.

. No PiXCL interpreter is needed as it is built into the EXE.
J You can distribute your FreePiXCL and PiXCL programs royalty free.

Runtime Builder Directions

To turn a PiXCL program into a standalone executable (.EXE) file, you use PXL_make50.EXE, which is part of the PiXCL MDI
Editor, and is invoked by clicking the appropriate button. It prompts you for the following items:

J The name of your PiXCL script file (for example, DEMO.PXL).
J The name you want to give the final executable file (for example, DEMO.EXE).
. Optionally, you can specify several Window style variations to the Runtime window style.

PXL_make will then create the final executable file on disk. For more information, see the PiXCL MDI Editor Help and PXL_make
Help.

Notes:

The PiXCL Runtime does not let you combine multiple PiXCL scripts into a single .EXE file. Instead, you must make a
separate .EXE file for each script. You will most likely find that this is never an issue, since a PiXCL script can be up to 1GB in
length.

Creating your own CD-ROMs

Windows 95 /98 / NT / 2000 support a feature called AutoPlay that enables a CD-ROM title to automatically start when the CD-
ROM is inserted into the drive. The AutoPlay feature can also be turned on and off by setting a value in the Control Panel, and
rebooting Windows so that the change takes effect.

AutoPlay automates the procedures for installing and configuring products designed for Windows-based platforms that are
distributed on compact discs. When you insert a disc containing AutoPlay into a CD-ROM drive on a computer running Windows,
AutoPlay automatically starts an application on the disc that installs, configures, and runs the selected product.

Enabling AutoPlay on a CD-ROM

If you are building an AutoPlay CD-ROM title, you must create an Autorun.inf file in the root directory of your CD application.
Suppressing AutoPlay

You can manually prevent the Autorun.inf file on a compact disc from being parsed and carried out by holding down the SHIFT
key when you insert the CD-ROM disc.

The Autorun.inf File

The Autorun.inf file is a text file located in the root directory of the CD-ROM disc. This file contains the name of the startup
application on the disc (the application that runs automatically when the disc is inserted in the CD-ROM drive), and the icon that
you want to represent the AutoPlay-enabled compact disc in the Windows user interface. The Autorun.inf file also can contain
optional menu commands that you want added to the shortcut menu, which is displayed when the user right-clicks the CD-ROM
icon.

At a minimum, an Autorun.inf file contains three lines of text and identifies the startup application and the icon, as shown in the
following example:

[autorun]
open=filename.exe
icon=filename.ico

An application's setup program is often called Setup.exe, but it can be any name you choose.

The [autorun] section identifies the lines that follow it as AutoPlay commands. An [autorun] section is required in every
Autorun.inf file. The open command specifies the path and file name of the startup application, and the icon command specifies
the file that contains the icon information.

The open command also supports arguments and path statements. For example, you may want a program in a sub-directory to
be started by AutoPlay, because the root directory has other information in it. The open command might be in this case ...

open=.\subdir\filename.exe arg#l

The icon command also has several forms. You can specify an icon file as in the example above, and write the icon file into the
root directory of your CD, or alternatively, specify an icon resource in an executable file. For example, you could use

open=setup.exe
icon=setup.exe, 1l

The “, 1” indicates that the first icon in the Setup.exe should be used as the default icon that appears in the Windows TaskBar
when the application specified by the open command is running.

You will want to test that the AutoPlay function on your new CD title is working correctly, without wasting a blank CD. The solution
is to enable AutoPlay on any disk. This is done by changing the NoDriveTypeAutoRun Value

Setting the NoDriveTypeAutoRun Value

The NoDriveTypeAutoRun value in the registry is a 4-byte binary data value of the type REG_BINARY. The first byte of this
value represents different kinds of drives that can be excluded from working with AutoPlay. The initial setting for this byte is 0x95,
which excludes the unrecognized type drive, DRIVE_UNKNOWN, DRIVE_REMOVEABLE, and DRIVE_FIXED media types from
being used with AutoPlay.

You can enable a floppy disk drive or other removable disk drive (e.g. read-write optical drives, lomega ZIP™ and JAZZ™
drives) for AutoPlay by resetting bit 2 to zero, or by specifying the value 0x91 to maintain the rest of the initial settings. A table
identifying the bits, bitmask constants, and a brief description of the drives follows:

Bit number Bitmask constant Description

0 (low-order bit) DRIVE_UNKNOWN Drive type not identified.

1 DRIVE_NO_ROOT_DIR Root directory does not
exist.

2 DRIVE_REMOVEABLE Disk can be removed from
drive.

3 DRIVE_FIXED Disk cannot be removed
from drive (a hard disk).

4 DRIVE_REMOTE Network drive.

5 DRIVE_CDROM CD-ROM drive.

6 DRIVE_RAMDISK RAM disk.

7 (high-order Reserved for future use.

bit)

Note For Windows 95 and NT, you must restart Windows Explorer before any changes take effect.
Using the Registry to Change AutoPlay Settings

The registry is a feature of Windows that supersedes the initialization (.INI) and application configuration files. For information
about manipulating the registry within a PiXCL application, see Using the Reqistry .

If your product records and uses initialization information, you can use the registry to store and retrieve this information. Your
startup application can use the information in the registry to determine whether the product needs to be installed. If there are no
registry entries for your product—which means your product is being used for the first time—you could display a dialog box that
lists the setup options. If your product is listed in the registry—which means it has already been installed—you could skip the
setup options.

By changing the system registry, you can enable a computer to read the Autorun.inf file from a floppy or other removable disk.
This feature of implementing AutoPlay on a floppy disk is provided only to help you debug your Autorun.inf files before you burn
the compact disc. AutoPlay is intended for public distribution on compact disc only. To implement AutoPlay on a floppy disk, carry
out the following procedure:

. In the Registry Editor (Regedit.exe), click Edit, and then click Find.
. In the Find What box, type the following, and then click Find Next:
NoDriveTypeAutoRun
e Click Edit, and then click Modify.
e Change the data of the NoDriveTypeAutoRun value from 0000 95 00 00 00 to 0000 91 00 00 00, and then click OK.

This enables AutoPlay on any drive. You must, however, start AutoPlay manually when it is installed on a removable disk. To do
this, double-click the floppy disk icon, or right-click the floppy disk icon, and then click AutoPlay.

e After you complete your tests of Autorun.inf, reset the value of NoDriveTypeAutoRun to 0000 95 00 00 00.

Note #1: Because implementing AutoPlay on a floppy disk provides an easy way to spread computer viruses, it is appropriate to
suspect that any publicly distributed floppy disk that contains Autorun.inf files is contaminated.

Note #2: It is considered polite practice for a CD-ROM title to be able to run directly from the CD-ROM, without installed any files
to the user’s hard disk. A PiXCL application is self-contained, and so long as PXL_msg.DLL, PXLimage.DLL and PXLbtmps.DLL
are present in the same directory as the EXE file, your application will run from the CD-ROM.

GeoPiXCL: add PXLgeofn.DLL, PXLgeofmt.DLL, PXLshape.DLL and any user DLLs into the same directory as the
PXLimage.DLL.

DrawArc(x1 ,y1, x2, y2 ,x3, y3, x4, y4)

Draws an elliptical arc. The border is drawn according to the default pen, or the pen last set with the UsePen command.

DrawBackGround

Draw the background in either the default color or the color last set in the UseBackGround command. Backgrounds can also be
drawn as a bitmap with the DrawBitMap and DrawSizedBitMap commands.

DrawBitMap(x, y, FileName$)

Draw the bitmap specified, starting at the top left corner. Bitmaps must have either a .BMP, .RLE, .RAS, .TIF, .JPG, .JIF, .PCD,
PNG, .PCX or .TGA extension. Bitmaps will be drawn according to the available number of colors in the Windows palette.

The DrawPreviewBitmap command has the same syntax.

DrawZoomedBitmap(x1,y1,x2,y2,FileName$,px,py,ZoomFactor)

Zoom the specified bitmap into the target rectangle, on pixel px,py, at ZoomFactor 1 to 16.

DrawChord(x1, y1, x2, y2, x3, y3, x4, y4)

Draw a chord with the default pen or pen last defined in the UsePen command.

DrawEllipse(x1, y1, x2, y2)

Draw an ellipse or circle with the default or current pen defined by the UsePen command.

DrawFlood(x, y, 1, g, b)

Fills an enclosed shape or area bounded with the specified color. The shape can be square or a random polygon. The fill color is
either the default color or the color specified by the last UseBrush command.

DrawFloodExt(x,y,r,g,b,BORDER/SURFACE)

Fills out from a bounded enclosed shape or area while the specified color is found.The shape can be square or a random
polygon. The fill color is either the default color or the color specified by the last UseBrush command.

DrawLine(x1, y1, x2, y2)

Draw a line between the two coordinate points with the pen defined in the last UsePen command.

Drawlcon(x, y, width, height, TOKEN)

Draws one of the sixteen embedded PiXCL icons or one of four system icons at the specified coordinates. If either width or
height are zero, the icon is drawn at the default size.

DrawlconFile(x, y, width, height, File$, TOKEN1,TOKEN2)

Draws an external icon or cursor file at the specified location and size. TOKEN1 defines CURSOR or ICON, TOKEN2 defines
OPAQUE or TRANSPARENT.

DrawNumber(x, y, n)

Draw the number at the specified coordinates, in the default font or the font specified in the last UseFont command.

DrawPie(x1, y1, x2, y2, x3, y3, x4, y4)

Draws a pie wedge.

SetColorPalette(BITMAP/GENERATE)

Controls whether PiXCL uses a BitMap’s own color palette or generates its own evenly distributed color palette.

UseBrush(token, r, g, b)

Fill an enclosed region with the color and TOKEN pattern. Tokens are
SOLID

DIAGONALUP

DIAGONALDOWN

DIAGONALCROSS

HORIZONTAL

VERTICAL

CROSS

NULL

UseFont(FontName$,Width,Height,tokens,r,g,b)

Draw text in the specified font, size and color. Three Tokens are required, one each from each pair listed below.

BOLD / NOBOLD
ITALIC / NOITALIC
UNDERLINE / NOUNDERLINE

UsePen(token,Width,r,g,b)

Use the specified width and color pen in DrawLine commands. Token is

SOLID draw a solid line

NULL no line is visible
DASH draw a dashed line - - ---- -
DOT draw a dotted line

DASHDOTDOT drawaline __ ..__

DrawEdgeRectangle(x1,y1,x2,y2, TOKEN1, TOKEN2, TOKEN3)

Draw a rectangle at the coordinates above in the current background color, with the selected 3D border styles.

DrawRectangle(x1, y1, x2, y2)

Draw a rectangle at the coordinates above. The border is in the current UsePen command, and the rectangle is filled with the
current UseBrush color, if its TOKEN is not to NULL.

DrawShadeRectangle(x1,y1,x2,y2,r1,91,b1,r2,g2,b2, TOKEN)

Draw a color gradient rectangle at the coordinates above. either TOPBOTTOM or BOTTOMTOP, from RGB color 1 to RGB color
2.

DrawRoundRectangle(x1, y1, x2, y2, x3, y3)

Draws a rectangle with rounded corners, radius x3, y3. The border is in the current UsePen command, and the rectangle is filled
with the current UseBrush color, if its TOKEN is not to NULL.

DrawSizedBitMap(x1, y1, x2, y2, FileName$)

Draw the named Bitmap file (.BMP or .RLE only) into the rectangle specified. RLE bitmaps should be created with multiples of
four pixels, or else the fill pixels will appear as a black vertical line on the side of the image. BMP files of the same size do not
have this problem. Bitmaps can be 1, 4, 8 or 24 bits per pixel. The image will be displayed in the available colors in the Windows
video driver static palette. In a 256 color driver the static map is 20 colors, and in 64K color driver, the static map is usually

4096 colors.

DrawStatusText(x1,y1,x2,y2, Text}, NOBORDER | POPOUT

Draws a single line of text in a status bar with a medium gray background (192,192,192) and either a 3D border (the default), or
no border, according to the TOKEN.

DrawStatusWinText(Part, Text$)

Draws the relevent text into the specified part of the status bar, if it has been enabled.

DrawText(x,y, Text$)

Draws the specified single line text string in the current font at the coordinates.

DrawTextExt(x1, y1, x2, y2,Text$,LEFT | CENTER | RIGHT)

Draws a single or multi-line text string in the current font, in the rectangle specified, and justified according to the TOKEN
argument.

GetBitMapDim(Filename$,Lines,Pixels,BitsPerPixel)

Access the specified bitmap file and report the number of lines, pixels per line and the number of bits per pixel (1, 4, 8 or 24).

GetScreenCaps(TOKEN, Result)
Available TOKENS are

HORZSIZE / VERTSIZE get the horizontal or vertical size in millimeters (METRIC mode)
HORZRES / VERTRES get the horizontal or vertical size in pixels (PIXEL mode)
NUMCOLORS get the number of colors in the static color map.

For 8 bit displays, this returns a number (typically 20), and for displays with more than 256 colors, returns the value -1. For 24
bit displays, the static color map has 4096 entries.

DESKTOPHORZRES For NT only.
DESKTOPVERTRES get the virtual horizontal or vertical size in pixels (PIXEL mode)

NUMBRUSHES
NUMPENS
NUMFONTS
SIZEPALETTE
COLORRES
NUMRESERVED

UseBackGround(OPAQUE/TRANSPARENT,r,g,b)

Controls the background mode and color.

OPAQUIE fills the background of character cells, and is faster.
TRANSPARENT does not fill the background of character cells, and is the slower mode.

UseCoordinates(PIXEL / METRIC)

Use the appropriate screen coordinate system. PIXEL mode uses a 1000x1000 grid and is the most accurate for drawing
graphics and text. METRIC mode uses increments of 1mm, and is far less precise.

For applications that support many resolutions, it often looks better to use PIXEL mode for all displays.

DirChange(DirectoryName$,Result)

Sets the current directory to the specified drive and path. It is often useful to check if the target directory actually exists.

DirGet(DirectoryName$)

Gets the current directory, including the full disk and path. It is often used for tracking the directory of source files, libraries, or
getting the new directory selected in a FileGet operation. The current directory can be changed by using the CHANGEDIR token
in the FileGet command.

We suggest that DirGet() be used in the initialization of all PiXCL programs, so the start up directory (the initial current directory)
can be saved in a string variable for later use.

DirGetSystem(DirectoryName$)

Gets the Windows system directory and path. This will usually be "c:\windows \system".

DirGetWindows(DirectoryName$)

Gets the Windows directory. This will usually be "c:\windows".

DirMake(DirectoryName$, Result)

Creates a new directory. If successful, Result is set to 1, otherwise it is set to 0.

DirRemove(DirectoryName$, Result)

Removes an existing directory.

DiskChange(DriveLetter$, Result)

Sets the active disk drive.

DropFileServer(ENABLE | DISABLE,FileList$)

Enables or disables the dropfile server function. FileList$ should be a null string with the DISABLE call.

FileCopy(SourceName$,DestinationName$,Result)

Copies a file from one directory to another. See also the FileMove command.

FileExtension(FileName$,Extension$,Result)

Extracts the extension of a disk-path-filename string.

FileName(FileName$,RootName$,Result)

Extracts the rootname of a disk-path-filename string.

FilePath(FileName$,Path$,Result)

Extracts the Path of a disk-path-filename string.

FileGet(Filter$,InitFile$,InitDir$,Caption$,token,ChosenFile$)
Lets you get a file using the Windows common dialog box library COMMDLG.DLL. The available TOKENS are

CHANGEDIR

CHANGEDIRMULTI

CHANGEDIR_EXIST

CHANGEDIRMULTI_EXIST

NOCHANGEDIR

NOCHANGEDIRMULTI

NOCHANGEDIR_EXIST

NOCHANGEDIRMULTI_EXIST

On exit of the command, change the current disk\directory to the selected
directory from the initial directory specified. This will affect the result of a
DirGet() command.

Enables file multi-select operations.

Checks if the file and path exists. An error dialog appears if the file cannot
be located.

Combination of the above.

If a new disk\directory was selected, do not change the current directory
setting.

Enables file multi-select operations.

Checks if the file and path exists. An error dialog appears if the file cannot
be located.

Combination of the above.

FileDelete(FileName$, Result)

Deletes the specified file or files. Wildcards "*" and "?" are allowed.

FileExist(Filename$, Result)

Lets you determine if a file exists.

FileGetDate(Filename$, Year, Month, Day, Result)

Reads in a file's directory entry.

FileGetDateExt(Filename$, TOKEN, Year, Month, DayOfWeek, Day, Result)
Gets the extended information in Windows 95 and NT 3.51.

FileGetSize(Filename$,Size)

Gets the size of a specified file in bytes.

FileGetTime(Filename$,Hours, Minutes,Seconds,Result)

Reads in the file's time-stamp.

FileMove(SourceName$,DestinationName$,Result)

Moves the file from one directory to another.

FileRead_ASCII(FileName$,Offset,Length,Field$,Res)

Read a field from a text file.

FileRead_INI(INI_file$,Section$,Key$,Return$)

Reads the specified Windows or private initialization file section or key string.

FileRename(SourceName$,DestinationName$,Result)

Changes the name of one or more files.

FileWrite_ASCII(FileName$,Offset,Length,Field$,Result)

Writes a field to a text file.

FileWrite_INI(INI_file$,Section$,Key$,String$,(NO)WARN,Result)

Writes the specified Windows or private initialization file section or key string.

GetDiskSpace(Disk$,Type$,TotalSpace,FreeSpace)

Returns the disk type (FIXED, REMOVABLE, REMOTE, CD-ROM, RAMDISK, UNKNOWN), plus the total space and available
free space in Kbytes.

GetVolumeType(RootDir$,FileSysType$,Result)
Gets the filesystem of the named root directory (FAT, NTFS, HPFS)

ClipBoardAppend(String$, Result)
Adds text to the end of the Windows Clipboard.

ClipBoardEmpty
Empties the Windows Clipboard

ClipBoardGet(String$, Result)
Reads text from the Windows Clipboard.

ClipBoardPut(String$, Result)

Copies String$ to the Windows Clipboard, replacing the current contents.

Help Topics for PiXCL v4.0

Click on the green text to navigate around the hypertext links in the help document. Additional help is available by pressing the
F1 key.

The Windows GDI

The Graphics Display Interface is the set of high level commands that programs like PiXCL can call to draw pixels on the screen,

in any format ot style. The complexities of the specific hardware is insulated from the application by the Windows video driver
itself.

Ansi(String$, Code)

Returns the ANSI code for the first character in the string.

Chr(Code, String$)

Returns a one-character string based on the specified ANSI code.

Instr(String1$, String2$, Location)

Finds the starting location of one string within another.

LCase(String$)

Converts a string to lowercase.

Left(String$, Place, Result$)

Returns a specified number of characters from the left of the string.

LeftOf(String$, Location, Result$)

Returns all characters to the left of a location in a string.

Len(String$, Length)

Returns the length of a string.

Pad(String$, Length)

Pads a string with spaces to a specified length.

Right(String$, Places, Result)

Returns a specified number of characters from the right of the string.

RightOf(String$, Location, Result)

Returns all characters to the right of a location in a string.

Space(String$, Length)

Initializes a string to a specified number of spaces.

Str(Number, String$)

Converts a number to a string.

StrCmp(String1$, String2$, Result)

Compares two strings (case sensitive).

StrCmpl(String1$, String2$, Result)

Compares two strings (case insensitive).

StrRepl(String1$, OldSubString$, NewSubString$, Result)

Replaces the first instance of a substring in a string.

Substr(String$, Places, Location, Result$)

Returns a specified number of characters from a string starting at a specified location.

Trim(String$)

Trims trailing spaces from a string.

TrimExt(String$,L|R|A)

Trims leading and/or trailing spaces from a string.

UCase(String$)

Converts a string to upper case.

Val(String$, Number, Result)

Converts a string to a number. If successful the numbe is in the range 0 - 65535.

ChangeMenultem(ltem$, CHECK/UNCHECK/GRAY/ENABLE, Result)

Checks, unchecks, grays, or enables a pop-up menu item.

GetMenuStatus(ltem$, CHECKED/GRAYED, Result)

Checks whether a menu item is grayed or checked.

InfoMenu(REMOVE/ADD)

Lets you remove or replace the PiXCL Info menu item that when enabled, appears on the right hand side of the menu bar.

SetMenu(Top1$, IGNORE/Label, ..., ENDPOPUP)

Builds a custom menu. The command SetMenu() clears any existing menus, and will
leave the menu bar blank.

Gosub <Label>

Executes a subroutine. A "Return" statement is required.

Goto <Label>

Branches to <Label>.

If <condition> then <commands>

Executes commands conditionally. If true, any additional commands
on the SAME line will be executed.

If-Else-Endif

Executes commands conditionally, using the structured If.
If <condition>
commands
Else
commands
Endif

Return

Returns from a subroutine.

Button(Btn1_x1, btn1_y1, Btn1_x2, Btn1_y2, STYLE,Btn1Text$, Label, . . .)

Creates custom 3-D command pushbuttons, radio buttons, checkboxes or group boxes in any comnination. STYLE token can be
PUSH|RADIOJAUTORADIO|CHECKJAUTOCHECK|GROUP. These are the current system color, usually gray. The command
Button() clears any existing buttons assignments.

Eull details.

ListBox(Caption$, List$, Delimiter$, Result$)

Displays a dialog box with a list box inside.

ListBoxExt(Label$,List$,Delim$,Help$,Res$)

Displays a dialog box with an extended multi-line list box inside, as well as optional Help messagebox

MessageBox(OK/..., DefaultButton, STOP..., Text$, Caption$, ButtonPushed)

Creates a custom message box. The available button TOKENS are

OK OKCANCEL YESNO RETRYCANCEL YESNOCANCEL
ABORTRETRYIGNORE

The available icon TOKENS are
STOP INFORMATION EXCLAMATION QUESTION NOICON

SetKeyboard("a", label, "*a", label, vkey, label)

Sets up where the program branches to when the user presses a key.
The command SetKeyBoard() clears any existing key assignments.

SetMenu(ltem1$, IGNORE/Label, ..., ENDPOPUP)

Creates a custom menu. There is a SEPARATOR token as well.
The command SetMenu() clears any existing menus, and will
leave the menu bar blank.

SetWaitMode(NULL/FOCUS)

Controls how PiXCL behaves after a Run command starts another application and PiXCL encounters a Waitlnput command in
your script.

TextBox(Text$, Caption$, Input$, ButtonPushed)

Displays a dialog box with a single-line edit control.

TextBoxExt(Text$,Label$,Help$,Input$,Btn)

Displays a dialog box with a single-line edit control and optional Help messagebox.

UseCursor(TOKEN)

Controls the appearance of the mouse cursor. The available TOKENS are
APPSTARTING ARROW CROSS IBEAM

ICON NO SIZE SIZEALL SIZENESW

SIZENS SIZENWSE SIZEWE UPARROW

WAIT

EnumWindows(WindowList$,VISIBLE/ALL,Delimiter$)

Creates a delimited list of all parent windows.

SendKeys(WindowName$,KeyStrokes$,PauseRespond,PauseKeyStroke,Respond)

Sends virtual keystrokes to the Windows 95, NT 3.51 or Windows 3.1 application. Some restrictions apply. See details in text.

SetPriority(CommandLine$,IDLE/NORMAL/HIGH,Result)

Sets the priority of the PiXCL process, or a process launched by PiXCL.

SetSendKeysPriority(TOKEN)

Available TOKENS are
LOWEST
BELOW_NORMAL
NORMAL

ABOVE_NORMAL
HIGHEST

SetWindow(MAXIMIZE/MINIMIZE/RESTORE)

Maximizes, minimizes, restores the PiXCL window.

StatusWindow(TOKEN_1,TOKEN_2,Parts,End1,End2,End3,End4)
ENABLE|DISABLE the status bar window at TOP|BOTTOM. See also the DrawStatusWinText command.

ProgressBar(ENABLE|DISABLE,x1,y1,x2,y2)

Enable or disable a progress bar at the specified co-ordinates, or if all co-ordinates are zero, at the bottom of the client area. Use
the UpdateProgressBar command to modify the display.

UpdateProgressBar(Value,RELATIVE[ABSOLUTE|INCREMENT)

Update the the progress bar display according to the mode token. Use with the ProgressBar command.

UseCaption(Text$)

Sets the text that appears in the title bar of the current or selected window.

WinClose(WindowName$,Res)

Closes the specified window, if it exists. Use this command with the EnumWindows(...) command.

WinExist(Windowname$, Result)

Determines whether an application is running. The exact name must be checked.

WinGetActive(Windowname$)

Returns the name of the active application window. This is not usable with child windows.

WinGetLocation(WindowName$,X1,Y1,X2,Y2,Res)

Get the screen position of the specified window. The exact name must be known or acquired with the EnumWindows(...)
command. The returned co-ordinates can be negative.

WinLocate(Windowname$, x1, y1, x2, y2, Result)

Locates a window at the specified co-ordinates. The co-ordinate is specified in the current mode, either METRIC or PIXEL.
Negative co-ordinates are supported.

In PiXCL 4.0 and later, WinLocate or WinShow should be used in the program initialization stages to locate the PiXCL program
window at the desired co-ordinates.

WinSetActive(Windowname$, Result)

Activates the window whose title bar is specified by 'Windowname$'.

WinShow(Windowname$, TOKEN, Result)

Available TOKENS are

HIDE / UNHIDE / MINIMIZE / MAXIMIZE / RESTORE / TOPMOST / NOTOPMOST / TOP / BOTTOM / SHOMINNOACTIVE /
SHOWNOACTIVATE

Hides, unhides, maximizes, minimizes. or restores the specified window. In PiXCL 4.0 and later, WinLocate or WinShow should
be used in the program initialization stages to locate the PiXCL program window at the desired co-ordinates.

AbortShutDown

Cancels the Windows NT shutdown process initiated by the Shutdown command.
Not supported under Windows 95.

WinTitle(Windowname$, Title$)

Sets the text that appears in the title bar of a window. This can be the current Window or any other primary Window that is
open. It is not possible to change the title of child windows.

AboutPiXCL

Displays the standard PiXCL About dialog box. This is the same box that the InfoMenu command enables or removes.

AboutUser(Title$, Box1String$, Box2String$)

Displays a customisable About box that can be used to describe user Runtime programs.

Beep

Sounds the bell. Putting a Waitlnput(150) between Beep commands will make a suitable interval.

End

Terminates an PiXCL program. Windows will pass control to the next available Active Window. This will often but not
necessarily be the Program Manager.

ExitWindows

Works with Windows NT only. Ends the Windows session. Windows will shut down.

FreeBitMap(FileName$)

Frees the memory taken by the image the DrawBitmap command processes.

FreeBitMapAll

Removes all bitmaps from memory and recovers the memory space.

FreeVar(String$)

Removes a string variable from the string variable list and recovers the memory it occupied.

FreeVarAll

Removes all string variables from the string variable list and reclaims the memory they occupied.

GetPixel(X,Y,r,g,b,Result)

Returns the red / green / blue pixel value at the designated co-ordinate in the PiXCL window client area.

GetCmdLine(CommandLine$)

Returns the complete command line and any arguments used to start the current application. You can use the string commands
to extract the necessary arguments.

GetScreenCaps(HORSIZE/VERTSIZE/HORZREZ/VERTREZ/NUMCOLORS, Result)

Returns information about the screen driver's capabilities - for example, the number of supported colors and resolution.

Logoff

Logs off Windows NT or Windows 95 by closing running programs including Program Manager or Explorer.

MessageBeep(TOKEN)

Plays the waveform sound associated with an entry in the [sounds] section of WIN.INI. The available TOKENS are

BEEP ASTERISK EXCLAMATION HAND QUESTION OK

WAVPIlaySound(Sound$, TOKEN, ALIAS/FILENAME,Result)

Plays a specified waveform audio sound or an entry in the [sounds] section of the registry. The available TOKENS are

SYNC ASYNC LOOP NOSTOP

Random(Range,RandomNumber)

Returns a random positive integer within the range specified.

Negate(Number)

Returns the arithmetic negation (two’s complement) of the input number.

Set Variable = ..., Set Variable$ = ...

Assigns an integer or string variable. The Set keyword is provided for compatibility with earlier versions of PiXCL.

WinVersion(Major, Minor, Build, Pack$)

Provides the current Windows version and build numbers. In Windows NT these are reported as 3 51, and in Windows 95 as
4 0. The build number will vary for Windows NT depending on the processor type and release date. For Windows 95, the build
number is reported as 950. Pack$ is the Service Pack string in NT, or an arbitrary or null string in Win95/98.

Run("Transfer <ascii_filename> W/R")

Using the Clipboard, either Write or Read an ASCII file. The string passed to the Clipboard must be decoded for Read
operations, and for Write operations overwrites the existing file. In PiXCL v4.0, the ascii transfer buffer size is 5 KB.

Run("RpBMPDim <bmp_filename>")

OBSOLETE v2.5 Extension Function: See the GetBitMapDim command.
This function reports the number of bits per pixel, and the number of pixels and lines in the specified BMP file, by passing and
ASCII string to the Clipboard. The PiXCL script must get the string from the Clipboard and decode the desired information.

Shutdown(CpuName$,Msg$, Timeout,RESTART/NORESTART)

Shuts down Windows NT as though you had selected File Shutdown from the Program Manager.
Not supported under Windows 95.

Waitinput(), Waitinput(milliseconds)

Pauses a program a specified number of milliseconds, or indefinitely waits for user input.

WinHelp(HelpFile$, COMMAND_TOKEN,KeyWord$)

Activate the Windows Help sub-system.

DrawFrameControl(x1,y1,x2,y2,TYPE,STATE1,STATE2,Result)

FrameControls are the little bitmaps that are used to create controls in a window frame such as title bar buttons, scrollbar
buttons, grips, as well as radio buttons and push buttons. The DrawFrameControl function draws a frame control of the specified
type and style.

DrawCaption(Window$,x1,y1,x2,y2,(NO)ICON,COLOR|SMALLCAP,(NO)INBUTTON,Result)

Any window caption and its icon can be drawn in the client area,even if the window is not visible. The background of the
rectangle is the same as the current title bar background system color. The DrawCaption command is used to draw application
buttons similar to those in the Windows task bar.

DrawAnimatedRects(WindowName$,fx1,fy1,x2,fy2, tx1,ty1,tx2,ty2, 0PEN|CLOSE|CAPTION,Result)

The DrawAnimatedRects function draws a wire-frame rectangle and animates it to indicate the opening of an icon or the
minimizing or maximizing of a window.

SetDrawMouse(FOREGND|BACKGND|BOTH|DISABLE)

Enables or disables drawing withthe mousem using the current pen.

DrawTriangle(x1,y1,x2,y2,x3,y3)

Draws a triangle with the current pen and brush.

DrawPolygon(x1,y1,x2,y2,...,xn,yn)

Draws a convex or concave polygon with the current pen and brush.

DrawFocusRectangle(x1,y1,x2,y2)

Draws a rectangle with a dotted outline.

WAVSetPitch(Device,Pitch)

Sets the current pitch. Not supported on all cards.

WAVSetPlayRate(Device,PlayRate)

Sets the current playback rate. Not supported on all cards.

WAVSetVolume(Device, LVol, RVol,Result)

Sets the playback volume.

WAVGetDevCaps(Device, TOKEN,Return$,Result)

Get a set of device parameters.

WAVGetNumDevs(Number)

Returns the number of sound deviced loaded.

WAVGetPitch(Device,Pitch)

Gets the current pitch. Not supported on all cards.

WAVGetPlayRate(Device,PlayRate)

Gets the current playback rate. Not supported on all cards.

WAVGetVolume

Gets the current volume setting.

SetROPcode(TOKEN)
Sets the Raster Operation code. This is an advanced user command. See SetROPcode.

For-Next Loops

For variable = n|variable To m|variable [By p|variable]
commands
If <condition> Then Break {optional}
Next

While Loops

loopvariable = value
While loopvariable=number|string
commands
If <condition> Then Break {optional}
EndWhile

StrRev(String$)

Reverses the character order of a string.

InvertRectangle(x1,y1,x2,y2)

Inverts the colors of the specified rectangle. Windows will do its best to display the new color.

PXLResume(WindowsName$,Res)

Sends a ‘resume’ message to the target PiXCL application. Has no effect on other programs.

RDBCloseKey(InHandle, Result)

The RDBCloseKey function releases the handle of the specified key. Permanently open keys cannot be closed, and if used,
Result returns 0.

RDBCreateKey(InHandle, SubKey$, ObjectType$, OutHandle, Result)

The RDBCreateKey function creates the specified key. If the key already exists in the registry, the function opens it.

RDBDeleteKey(InHandle, SubKey$,Result)

Windows 95: The RDBDeleteKey function deletes a key and all its descendents.

Windows NT: The RDBDeleteKey function deletes the specified key. This function cannot delete a key that has subkeys, so it
is necessary to delete the last key in each branch at a time.

RDBEnumKey(InHandle,Index,SubKeyName$,ClassName$,Result)

RDBEnumKey enumerates subkeys of the specified open registry key InHandle. The function retrieves information about one
subkey each time it is called.

RDBOpenKey(InHandle,SubKey$,0utHandle)
RDBOpenKey returns a handle of the specified subkey.

RDBQueryKey(InHandle,ClassName$,NumberOfSubKeys,NumberOfValues,Result)

RDBQueryKey returns an assortment of information about a specified key or predefined constant, useful in defining other
registry commands.

RDBQueryValue(InHandle,SubKey$,SubKeyRtn$,Result)

RDBQueryValue returns the value associated with the specified subkey.

RDBSetValue(InHandle,SubKey$,Value$,TOKEN, Result)

The RDBSetValue function stores data in the value field of an open registry key. It can also set additional value and type
information for the specified key.

ChooseFont(Font$,Width,Height,r,g,b,Bold,ltalic,Underline,Strikeout)

Use a common dialog to select the current font and style.

ChooseColor(TOKEN,Red,Green,Blue)

Also ChooseColor(TOKEN,Red,Green,Blue,X,Y,Title$,Basic$,Custom$)
Use a common dialog to choose a color for painting and drawing. Tokens are STD|SMALL|SMALLRGB|FULL.

CustomColor(r1,91,b1,...r16,916,b16)

Define the set of 16 custom colors available within the ChooseColor common dialog.

RotateRectangle(x1,y1,x2,y2, TOKEN,Rate,Repeat)

Rotates vertically or horizontally the defined rectangle in the client area.

FileSaveAs(Filter$,InitFile$,InitDir$,Label$,CHANGEDIR,Name$)

Use a common dilaog to select or create a save filename. This does not actually save the file.
Essentially the same as the FileGet command. Tokens are the same as FileGet.

SetEditControl(x1,y1,x2,y2, TOKEN,Max,Min,Input$....)

Create any number of edit windows in the client area for text or numeric input. Tokens are STRINGINUMBER|NUMBERUD|
PASSWORD. Generally used with a Button command to terminate input. Can have and UpDown control on numeric input with
max and min values.

Edit strings are displayed in the current font.

SetPopupMenu(ltem$,Label,[SEPARATOR],Item$... ENDPOPUP)

Create a floating menu invoked with the right mouse click in the client area.

PasswordBox(Title$, Text$,Btn1$,Btn2$,Btn,Password1$)

Create a dialog with secure text entry.

ImageBox(Title$,Image$, Text$,Btn1$,Btn2$,Btn)

Create a dialog with text and thumbnail image (all supported formats) display.

LoadDLL(DLLname$,Result)
Loads a third party Dynamic Link Library.

FreeDLL(DLLname$,Result)
Frees (i.e. unloads) a third party Dynamic Link Library.

SaveBitmap(ImageName$,Result)

Saves the current bitmap in one of the supported bitmap formats.

SaveRectangle(x1,y1,x2,y2,ImageName$,Result)

Saves the specified client area rectangle to an image file.

RotateRectangle(x1,y1,x2,y2, TOKEN,Rate,Count)

Rotates the specified client area rectangle at Rate, Count times.

GetSystemTime(Year,Month,DayofWeek,Day,Hour,Minute)

Gets the current system time (GMT).

SetSystemTime(Year,Month,DayofWeek,Day,Hour,Minute)

Sets the current system time (GMT).

GetLocalTime(Year,Month,DayofWeek,Day,Hour,Minute)

Gets the current local time (GMT +/- bias time).

SetLocalTime(Year,Month,DayofWeek,Day,Hour,Minute)

Sets the current local time (GMT +/- bias time).

GetTimeZone(Zone$)

Gets the current timezone string.

TimeToASCII(SYSTEM|LOCAL,mode_TOKEN,Time$)

Returns the time string in one of five format variations.

LoadBitmap(ImageFile$,PREVIEW|FULL)

Loads an image into memory without displaying it. This is equivalent to DrawSizedBitmap(0,0,0,0,ImageFile$).

NumToHex(Number,Hex$)

Converts a 32 bit number to the equivalent hexadecimal string.

HexToNum(Hex$,Number,Result)

Converts an 8 character hexadecimal string into the equivalent number.
If the conversion fails, both Number and Result return 0.

GetSystemMetrics(TOKEN,Value)

Returns a value that defines a metric for a system window object, such as menubar size. Can also return bootmode and number
of mouse buttons.

GetSysPowerStatus(AC,BFlag,BLifePc,BLife,LifeTime)

Returns a set of values for a DC power management system. Only relevent to laptop systems, or systems with built-in DC power
supplies.

ComboBox(x1,y1,x2,y2,STYLE,List$,Delim$,Input$)
Creates one or more ComboBox controls in SIMPLE, DROPDOWN, and DROPDOWNLIST styles.

FindExecutable(File$,Path$,EXE_File$,Result)

Locate the executable file that is associated with the selected specific file. If no EXE is associated, EXE_File$ returns NULL.

ReportMouse(x1,y1,x2,y2,xOff,yOff,xZ,yZ, TOKEN)
Report client area mouse coordinates and optionally RGB values in the status bar. Tokens are DISABLE, NORGB, RGB.

PXLresumeAt(ToWindow$,LABEL,FromWindow$,Res)

Send a message to another PiXCL application in a WaitInput() loop to start processing at a specific label.

Toolbar(MODE,SIZE,Index,State,Style,Tip$,Label,...)

Create a standard windows toolbar with up to 48 buttons.

ToolWindow(x1,y1,x2,y2, TYPE,MODE,SIZE,Index,State,Style, Tip$,Label,...)
Create a series of CHILD or POPUP toolwindows.

GetToolbarBtnStatus(Toolbar$,Index,STATE,Result)
Check that Toolbar$ button of Index is STATE.

ChangeToolbarBtn(Toolbar$,Index,STATE,Result)
Change Toolbar$ button of Index to STATE.

EnumChildWindows(Parent$,Child$,VISIBLE|ALL,Delimiter$)

List all the child windows of the specified parent.

CustomizeToolBtn(ToolWindow$)

Start the system customize toolbar or toolwindow button dialog. Set ToolWindow$ to a NULL string
to customize the toolbar.

ListLoadedBitmaps(List$,Delimiter$,Count)

Returns a delimited list of the images currently in the PiXCL Bitmap List. If none present, returns a
null string and 0 count.

CountBitmapColors(Image$,Count)

Returns the number of unique colors in any of the supported bitmap formats. Count returns 0 if the
image is not found in memory or on disk, otherwise returns a number in the range 1 to a number <=

maximum number of colors defined by the image format, and not greater than the number of pixels
in the image.

GetBackground(Red,Green,Blue)

Returns the current RGB background color.

DrawTrBitmap(x1,y1,Image$,Tr,Tg,Tb)

Draws the bitmap with transparent color Tr,Tg, Tb.

DrawTrSizedBitmap(x1,y1,x2,y2,Image$,Tr,Tg,Tb)

Draws the sized bitmap with transparent color Tr,Tg, Tb.

SetDrawMode(FOREGND|BACKGND|BOTH)

Sets the mode for the DrawBitmap commands. Often used in simple animation.

DrawBackgoundRegion(x1,x2,y1,y2)

Copies the region from the background memory to the client area bitmap. Often used in simple
animation.

PrintBitmap(Image$,SETUP|PRINT,Result)
Prints the selected bitmap to the current printer identified by the SETUP token pass.

PrintFile(Filename$,Result)

Prints a document file with the application associated with the file type. The application must be
installed and available.

WinAdjustRect(x1,y1,x2,y2,(NO)MENU,wx1,wy1,wx2,wy2)

Returns the necessary window coordinates for the desired client area.

DrawPolyLine(x1,y1,...,xn,yn)

Draw a connected series of line segments, usign the current pen.

DrawPolyCurve(x1,y1,...,xn,yn)

Draw a cubic Bezier curve using the specified points, usign the current pen.

ClearCommPort(COMx)

Clears the buffers and resets error status on the specified port.

GetCommPort(COMx,baud,data,parity,stop,X)

Gets the selected port current settings.

ReadCommPort(COMx,Data$)

Reads the selected port data into a string variable.

SetCommPort(COMx,Settings$,XON|XOFF,Res)
Sets the selected port parameters eg "9600,8,N,1"

WaitCommEvent(R|W,COMx,<label>,Timeout)

Waits for a comm port read or write event. Follow with a Waitinput().

WriteCommPort(COMx,Data$)

Write the string variable to the selected port.

EscCommFunction(COMx,token)

Send one of CLRDTR, CLRRTS, SETDTR, SETRTS, SETXOFF, SETXON, SETBREAK, CLRBREAK to the specified comm
port.

UseBrushPattern(ImageName$)

Set the current brush to a user defined 8x8 bitmap. If the pattern bitmap is not in the PiXCL image list, it is
loaded.

DrawGrid(x1,y1,x2,y2,Hcell,Vcell,R,G,B,border_style)

Draw a grid of cell size in the rectangle, using a 1 pixel wide color pen. Border styles are NONE, STYLE_1,
STYLE_2, STYLE_3.

DragAcceptFile(ENABLE|DISABLE,<label>)

Enables or disables drag-and-drop operations to <label>,

GetDragList(List$)
Get the file list that was dropped into the PiXCL application window.

TWAIN_AcquireNative(Image$, TOKEN,Handle)

Acquire an image and load it into the PiXCL image list.

TWAIN_AcquireToClipboard(Result)

Acquire an image and write it to the clipboard,

TWAIN_AcquireToFilename(Filename$,Result)

Acquire the image and write it direct to the file on disk.

TWAIN_CloseSource(Result)

Close the current data source.

TWAIN_CloseSourceManager(Result)
Close the Source Manager i.e. TWAIN_32.DLL

TWAIN_DisableSource(Result)

Disable the current data source.

TWAIN_EnableSource(Result)

Enable the current data source.

TWAIN_GetBitDepth(Bits)

Return the bit depth (bits/color/channel) of the current source.

TWAIN_GetBitmapParams(Handle,Lines,Pixels,Bits,Colors)

Return the parameters of the image loaded into the PiXCL list from the TWAIN data source.

TWAIN_GetCurrentRes(Resolution)

Return the current scanner resolution.

TWAIN_GetCurrentUnits(Units)

Return the current source device unit setting.

TWAIN_GetPixelType(Pixel_Type)

Return the current type setting.

TWAIN_Getstate(Result)

Return the current data source state.

TWAIN_IsAvailable(Result)

Result = 0 if no TWAIN devices are known, otherwise = 1.

TWAIN_LoadSourceManager(Result)
Loads TWAIN_32.DLL data source manager.

TWAIN_OpenDefaultSource(Result)

Opens the current data source and displays its dialog, if present.

TWAIN_OpenSourceManager(Result)
Opens the source manager, TWAIN_32.DLL.

TWAIN_PxIVersion(Result)

Returns the version of PXLtwain32.DLL. Used for debug purposes. Result will be 106 or greater. i.e. v1.06 or later.

TWAIN_SelectSource(Result)
Displays the Select Source dialog from TWAIN_32.DLL.

TWAIN_SetBitDepth(Depth)

Tries to set the source device bit depth.

TWAIN_SetCurrentRes(Resolution)

Try to set the current resolution.

TWAIN_SetCurrentUnits(Units)

Set the current unit parameter.

TWAIN_SetPixelType(Type)
Try to set the current pixel type.

TWAIN_UnloadSourceManager(Result)
Unload TWAIN_32.DLL.

GetCopyDataMsg(Message$)

Retrieves the ASCII string message that has been sent to the PiXCL application.

SendCopyDataMsg(Window$,Message$)

Send a label and message string to the named window.

FlashBMWindow(WinID,TOGGLE|RESET)

Change the state (active or inactive) of a bitmap window title bar.

SetBMW[Right]Mouse(WinlID,Label,x,y,...)

Enables left or right mouse actions in bitmap windows.

DrawBMWPoint(WinID,x,y,STYLE)

Draws a point into the a bitmap and bitmap window at the coordinates, using the current pen color.

AutoProgressBar(ENABLE|DISABLE)

Enables (the default) or disables the progress bar display during image load and image processing operations.

GetScreenWorkArea(wx1,wy1,wx2,wy2)

Returns the coordinates of the screen area, less the area used by the Windows Taskbar/System tray, and any other tray-type
windows.

DirExplore(DirName$,Result)

Displays the contents of a directory in an Explorer window.

ShellAbout(Title$, Text$,ICON)

Displays the Windows Shell About dialog with user defined information.

DrawShadowText(x,y,Text$,R,G,B,Offset)

Draw a text string with a defined shadow color, offset in the x, y directions.

DrawShadowTextExt(x1,y1,x2,y2, Text$,LEFT|CENTER|RIGHT,R,G,B,Offset)

Draws a single or multi-line text string in the current font, in the rectangle specified, justified according to the TOKEN argument,
and with a shadow color and x, y offset.

SetFontEscapement(AngleX10)

Set the escapement angle in 0.1 dgrees that text is drawn using the DrawText family of commands. Default value is 0.

GetListBitMapDim(Filename$,Lines,Pixels,BitsPerPixel)

Access the specified bitmap file in the PiXCL image list and report the number of lines, pixels per line and the number of bits per
pixel.

DrawShadowNumber(x,y,Number,R,G,B,Offset)

Draw a number with a defined shadow color, offset in the x, y directions.

FileRead_Binary(File$,Offset,Value,FWD|REV,Result)

Read an integer value from the file at the specified byte offset.

FileWrite_Binary(File$,Offset,Value,FWD|REV,Result)

Write a 32-bit binary value at the specified offset in the file.

AppWindowHandle(Handle,Handle$)

Return the binary and string version of the application window handle. This command will be used by programmers of extension
functions.

FileGetTempName(Dir$,Prefix$,Number,File$)

Generate a temporary filename.

GetTempPath(Path$)

Return the current temporary file path from the process environment.

GetFontFace(Face$)

Get the current font face for text writing.

GetEnvString(Delimiter$,EnvStr$)

Returns the current process environment string variables.

GetEnvVariable(Var$,Value$)

Returns an environment variable.

SetEnvVariable(Var$,Value$)

Sets a new value, or modifies an existing environment variable value.

StrReplAll(String1$, OldSubString$, NewSubString$, Result)

Replaces all instances of a substring in a string.

ReadBitmapRect(Image$,x1,y1,x2,y2,Result)

Read a rectangle of interest from a BMP or TIF file.

WriteBitmapRect(Image$,x1,y1,x2,y2,Result)
Write a rectangle in a BMP or TIF file.

Remaplmage(RGB_Array$,Result)

Using a palette string array read from an ascii file, remap colors in the current image.

DrawFpNumber(x,y,Number&,Digits)

Draw a floating point number at the coordinates,with a defined number of significant digits.

DrawShadowFpNumber(x,y,Number&,Digits,R,G,B,Offset)

Draw a floating point number at the coordinates,with a defined number of
significant digits, using the specified shadow color.

FpStr(Number&,Number$)

Convert a floating point number into a string.

FpVal(Number$,Number&,Result)

Convert a string into a floating point number.

ItemCount(List$,Delimiter$,Count)

Count the number of items in a string list.

ItemExtract(List$,Delimiter$,Index,ltem$,Result)

Extract a specific item from a strin