
Contents

 

PiXCL 
v4.4 / 5.1 
Command 
Reference

Windows 2D Graphics and Imaging Functions 
File and Directory Management 
String Functions 
Math Functions    
Time Functions    
ClipBoard Functions 
Menu Functions 
Program Branching and Control Functions 
Screen and Keyboard I/O Functions 
Window Management Functions 
INI file and Registry Access 
MultiMedia Functions 
TWAIN-compliant Device Functions 
IDRISI for Windows™ related commands 
Miscellaneous Functions 

Importing images from TWAIN-compliant devices 
Printing documents and images with PiXCL 
Using the Windows Shell functions with PiXCL 

User Defined Command Extensions 
Error Messages 
More Information 

Detailed Alphabetical Command Reference 
Image Processing Commands 

Internet Technical Support 

For Help on Help, Press F1

Overview of PiXCL v4.4 and v5.1 -    the graphics and image 
processing language tool for Windows 9x / ME / NT4 / 2000

Overview    
Memory Requirements 
Rules and Syntax 
Starting a Program 
Stopping a Program 
The Coordinate System 
Drawing Tools 
Drawing and Writing 
Flow Control Commands 

Getting Mouse Input 
Getting Keyboard Input 
Running Other Programs 
Invoking on-line Help Files 
Managing Files and Directories 
Clipboard Operations 
Creating and using INI files 
Accessing and updating the Registry    
Printing files 



Message Boxes 
Text Boxes 
List Boxes 
ComboBoxes 
Windows 95 and NT 4.0 Common Controls
Getting a Filename 
Managing Windows 
Pausing a Program 
Building Menus 
Building Toolbars and ToolWindows 
3-D Command Buttons 

Building Runtime .EXE Files    
Creating your own CD-ROMs 

Software License and Limited Warranty 



Windows 2D Graphics and Imaging Functions

PiXCL includes a comprehensive set of commands to draw lines, rectangles, circles and ellipses in various colors and pen sizes.
There are also polygon flood and fill functions. The listed commands below produce a popup window. If you want full information,
use the Help Search options.    

General Screen Draw Commands
AddFont 
ChooseColor 
ChooseFont 
CustomColor 
DrawArc 
DrawChord 
DrawEdgeRectangle 
DrawEllipse 
DrawFlood 
DrawFloodExt 
DrawGrid    
DrawLine 
DrawNumber 
DrawFpNumber 
DrawShadowNumber 
DrawShadowFpNumber 
DrawPie 
DrawPolyCurve 
DrawPolygon    
DrawPolyLine 
DrawRectangle    
DrawRoundRectangle 
DrawShadeRectangle 
DrawStatusText 
DrawText 
DrawShadowText 
DrawTextExt 
DrawShadowTextExt
DrawTriangle 
GetTextSpacing 
RotateRectangle 
UseBrush 
UseBrushPattern 
UseFont 
RemoveFont 
SetFontEscapement 
SetTextSpacing    
UsePen 

BitMap Related Commands
CountBitmapColors 
DrawBitMap 
DrawIcon 
DrawIconFile 
DrawSizedBitMap    
DrawTrBitmap 
DrawTrSizedBitmap 
DrawZoomedBitmap 
GetBitMapDim 
GetListBitMapDim 
InvertRectangle 
LoadBitmap 
PrintBitmap 
RawDataParamBox
ReadBitmapRect 
ReadRawBitmap 
RemapImage 
RotateRectangle 
SetColorPalette 
SaveBitmap    
SaveRectangle 
SetDrawMode 
ExportHistogram
FlashBMWindow 
SetBMWMouse 
DrawBMWPoint
WriteBitmapRect 

Miscellaneous Screen Commands
GetBackground 
GetScreenCaps    
GetPixel 
GetScreenWorkArea
DrawAnimatedRects 
DrawBackGround 
DrawBackgroundRegion 
DrawCaption 
DrawFocusRectangle 
UseBackGround    
UseCoordinates    



File and Directory Management
File and Directory create, exist, move, copy and delete operations are supported. File size and total / free disk space commands 
are available. You can also read and write system and application INI files.

The listed commands below produce a popup window with a summary of the syntax. If you want full information, use the Help 
Search options.

DirChange 
DirExplore
DirGet 
DirGetSystem 
DirGetWindows 
DirListFiles 
DirMake 
DirRemove 
DiskChange 
DragAcceptFile 
GetDragList 
DropFileServer 
FileCopy 
FileDelete 
FileExist 
FileExtension 
FileGet 
FileGetDate 
FileGetDateExt 
FileGetTempName

FileGetSize 
FileGetTime 
FileMove 
FileName 
FilePath 
FileRead_ASCII    
FileRead_Binary 
FileRead_INI 
FileRename 
FileSaveAs 
FileWrite_ASCII 
FileWrite_Binary
FileWrite_INI    
FindExecutable 
GetDiskSpace 
GetVolumeType 



String Functions
The listed commands below produce a popup window. If you want full information, use the Help Search options. All the 
commonly used string and list handling functions are supported, as follows.

Ansi 
Chr 
FpStr 
FpVal 
HexToNum 
Instr 
ItemCount 
ItemExtract 
ItemLocate 
ItemInsert 
ItemRemove  
LCase
Left 
LeftOf 
Len 
NumToHex 
Pad

Right 
RightOf 
Space
Str 
StrCmp
StrCmpI 
StrRepl 
StrReplAll
StrRev 
Substr
Trim
TrimExt 
UCase
Val



Math Functions 

PiXCL supporta floating point as well as integer variables, plus a set of standard math library functions. The four standard math 
operations plus modulus are provided in command syntax.

Acos 
Asin 
Atan 
Average 
Cos 
Cosh 
Exp 
Float 
FpAbs 
FpStr 
FpVal 
Hypot    
Int

Log10 
LogE 
Negate
Pow 
Random
Sin 
Sinh 
Sqrt 
Tan 
Tanh 



Time Functions
These functions provide access to get and set the local and system time, get the current time zone setting, and return a usable 
time string to programs.    They can also be used for scheduling operations such as running other programs at specific times. 

GetLocalTime 
GetSystemTime    
GetTimeZone 
SetLocalTime 
SetSystemTime
TimeToASCII 



Clipboard Functions
Clipboard    Put, Get and Append ASCII data commands are available, plus transferring image data to the clipboard for transfer to
other imaging applications.

ClipboardAppend ClipboardGetBitmap 
ClipboardEmpty ClipboardPutBitmap    
ClipboardGet CopyWindowToClipboard
ClipboardPut 
TWAIN_AcquireToClipboard 



Menu Functions
A Main Menu bar and single level pull down menus are supported. While child menus are not supported in this version of PiXCL, 
additional menu levels can be added by redrawing the complete menu bar. Each menu item can have as many pull-down items 
as you require.

ChangeMenuItem
GetMenuStatus 
InfoMenu 
SetMenu 
SetPopupMenu 



Program Branching and Control Functions
PiXCL supports the basic unstructured If..Then and Goto commands, plus the modern structured If...Else...Endif syntax.    Thirty-
two levels of embedded If...Else...Endif structures are supported. Up to Thirty-two levels of embedded level Structured For-Next 
and While-EndWhile loops are available. It is also possible to construct Do-While and Do-Until operations with the labels and 
Goto statements. For integer variables, the Switch-Case-EndSwitch structure is provided.

Gosub
Goto
If-Then 
If-Else-Endif 
Return
For-Next Loops 
While Loops 
Switch Statements 



Screen and Keyboard I/O Functions
PiXCL provides a comprehensive set of input and output resources for common, built-in, custom and common dialog boxes, 
common controls, keyboard and mouse, including support for the Microsoft Intellimouse™ and similar middle mouse button, and 
the Explorer Mouse™ and similar X1 and X2 buttons..
    

Button 
DialogBox  
ImageBox 
ListBox 
ListBoxExt 
MessageBox 
PasswordBox 
TextBox 
TextBoxExt 
SetEditControl 
ComboBox 
ProgressBar 
UpdateProgressBar 
StatusWindow 
DrawFrameControl 
DrawStatusWinText 

ReportMouse 
SetEditControl 
SetKeyboard    
SetMenu    
SetPopupMenu 

SetMouse 
SetShftMouse 
SetCtrlMouse 
SetDblMouse 
SetRightMouse 
SetShftRightMouse 
SetCtrlRightMouse 
SetDblRightMouse 
SetMidMouse 
SetShftMidMouse 
SetCtrlMidMouse 
SetDblMidMouse 
SetDrawMouse 
SetWaitMode 
Toolbar 
GetToolbarBtnStatus 
ChangeToolbarBtn 
CustomizeToolBtn 
UseCursor 
WaitInput    
PXLResume 
PXLresumeAt 
GetCopyDataMsg 
SendCopyDataMsg 



Serial I/O Functions
PiXCL includes support for simple communications using the serial ports COM1 - COM4. This support is designed to enable 
devices such as digitizing pads and tables that output coordinate data strings, and accept control commands.

ClearCommPort 
GetCommPort 
EscCommFunction    
ReadCommPort 
SetCommPort 
WaitCommEvent 
WriteCommPort 



Window Management Functions
 
PiXCL includes a set of commands to manage the appearance and size of any window.

EnumWindows 
EnumChildWindows 
SendKeys 
SetSendKeysPriority 
SetPriority 
SetWindow 

ProgressBar 
UpdateProgressBar 
StatusWindow 
DrawStatusWinText 

UseCaption 
WinAdjustRect 
WinClose    
WinExist 
WinGetActive 
WinGetLocation 
WinLocate 
WinHelp 
WinHTMLHelp    
WinSetActive 
WinShow 
WinTitle 



INI File and Registry Access Functions
PiXCL provides full read and write access to both initialization files and the Windows registration database or Registry.

FileRead_INI 
FileWrite_INI

RDBCloseKey 
RDBCreateKey 
RDBDeleteKey 
RDBEnumKey 
RDBOpenKey 
RDBQueryKey 
RDBQueryValue 
RDBSetValue 



Multimedia Functions
If you have a SoundBlasterÔ compatible sound card installed in your PC, you can use these commands to play sounds and 
control the card. Please note that not all cards support all functions. If a sound card is not installed in your PC, these 
commands are ignored.    If you are uncertain if your WAV play card is supported, try the first two commands in the list below and
see what capabilities are reported.

WAVGetDevCaps 
WAVGetNumDevs 
WAVGetPitch 
WAVGetPlayRate 
WAVGetVolume 
WAVPlaySound 
WAVSetPitch 
WAVSetPlayRate
WAVSetVolume 



TWAIN-compliant Device Functions
PiXCL provides access to any TWAIN-compliant image import device, such as scanners and digital cameras. All commands start
with “TWAIN_” so they can be easily identified in a program source.    See Importing images from TWAIN-compliant devices for 
more detailed information.

TWAIN_AcquireNative 
TWAIN_AcquireToClipboard 
TWAIN_AcquireToFilename 
TWAIN_CloseSource 
TWAIN_CloseSourceManager 
TWAIN_DisableSource 
TWAIN_EnableSource 
TWAIN_GetBitDepth  
TWAIN_GetBitmapParams 
TWAIN_GetCurrentRes 
TWAIN_GetCurrentUnits 
TWAIN_GetPixelType 

TWAIN_Getstate TWAIN_IsAvailable 
TWAIN_LoadSourceManager 
TWAIN_OpenDefaultSource 
TWAIN_OpenSourceManager 
TWAIN_PxlVersion 
TWAIN_SelectSource 
TWAIN_SetBitDepth 
TWAIN_SetCurrentRes 
TWAIN_SetCurrentUnits
TWAIN_SetPixelType 
TWAIN_UnloadSourceManager 



IDRISI for Windows related commands 

The IDRISI GIS, copyright Clark University in Massachussets, is one of the most popular geographic information systems, world 
wide. PiXCL versions provide direct access to the IDRISI environment to make development of additional applications using 
PiXCL a relatively simple process.

Note very importantly that a licensed version of IDRISI for Windows v2.x must be running on the system and the API DLL’s 
present to make use of the API library functions, otherwise these commands do nothing. Functions in this group include:

IDR_CloseIdrisi 
IDR_GetDataDir 
IDR_GetDir 
IDR_GetExtensions 
IDR_GetLanguage 
IDR_GetProgress 
IDR_InitProgressTracking 
IDR_IsPresent 
IDR_Launch 
IDR_LaunchModule 
IDR_RegisterClient 
IDR_SetDataDirectory 
IDR_SetDebugMode 
IDR_SetExtensions 
IDR_SetProgress 
IDR_UnRegisterClient 



Miscellaneous Functions

AbortShutDown 
AboutPiXCL 
AboutUser 
AppWindowHandle 
AutoProgressBar 
Beep 
End 
ExitWindows 
FreeBitMap 
FreeBitMapAll 
FreeVar 
FreeVarAll 
GetCmdLine 
GetCPUInfo 
GetEnvString 
GetEnvVariable 
GetFontFace
GetScreenCaps

GetPixel 
GetSystemMetrics 
GetSysPowerStatus 
GetTempPath
LogOff 
ListLoadedBitmaps 
MessageBeep 
PrintFile 
SetROPcode 
SetEnvVariable
Set Variable 
ShellAbout
Shutdown
WinVersion 



User Defined Commands Extension

An optional component for PiXCL 5.0 and later, and included in geoPiXCL, is a Programmer’s API to support User Defined 
Commands. This API contains all the necessary information to access the internal data structures of PiXCL and geoPiXCL, and 
includes a Visual C/C++ 6 sample project that demonstrates how extension commands are implemented.

User defined commands can provide more image processing functions, new dialogs and other resources, and act as a bridge 
into other third party DLLs.

To purchase the API, please contact VYSOR Integration Inc. or go to the purchase link on our Web pages.



More Information

This section is for knowledgeable Windows programmers who want more information on the internals of PiXCL and PiXCL 
runtime programs. Most readers can skip this section.    Windows internal programming terms are not defined, as technically 
knowledgable readers are expected to understand them.

Firstly, please note that PiXCL50.exe, and PXL_make50.exe are a matched set by version and build number. PXL_make44 
cannot use 16-bit versions of PiXCL or any versions of PiXCL 4.2 or earlier. In addition, the PXLimage.dll has a version number 
as well. Several builds of PiXCL will use the same DLL version (e.g. PiXCL 4.10 – 5.0). When we update the DLL, we issue a 
new version of PiXCL with the new DLL.

PiXCL is a simple interpreted language, hence a PiXCL script will not execute as fast as the equivalent application written in C or
C++ with a Windows compiler, but the development time is very significantly less, because all the complexity of Windows is 
hidden away in the interpreter.    Most of the PiXCL coding you will write is related to presenting a user interface, and the results 
of image processing library functions. The PXLimage.DLL is written in C, and provides fast processing of command functions 
when speed is required.    In developing an application, however, the tool must match the job. If you find that the capabilities of 
PiXCL are inadequate for your application, we suggest that MS-Visual C/C++ Ô, MS-Visual Basic Ô, or Borland Delphi Ô would
be better choices for development software, even though the development time is often significantly greater. The PiXCL Image 
Processing Library API is an available product.

A PiXCL application does not consume much of the system resources. According the Windows resource meter, when PiXCL is 
running it uses 2-3 % of system, 1-2 % or user and 10-12 % of GDI resources. By way of comparison, MS-Word 7 requires 6-
10% of both system and user, and 10-12 % of GDI resources.

PiXCL accepts command line arguments. If you are testing a script e.g. with a    PiXCL50      script.pxl    commandline,    the first 
argument is expected to be a PiXCL script filename. This is the only argument that is accepted in this case, because Windows 
will accept filenames with embedded spaces.    

Additional command line arguments are supported by a PiXCL runtime, space delimited, and be can accessed with the 
GetCmdLine(...) command.

PiXCL first checks if there is an attached script by looking for a string at a specific internal location. If the string is not found, it 
either accesses the argument file (if any), or prompts for a script file.

Next, PiXCL checks for correct syntax in the target script, and displays an error message dialog box with the offending line of 
code displayed. This will usually be the location of the error, unless the error is a missing } or “, as these characters are used to 
delimit comments and strings. That is, the error may be offset in the file. If the error line syntax looks correct, look further back 
into the file.

If everything is correct, the PiXCL window classname is registered with Windows, and the script is executed.

What PiXCL does is create a memory and screen display context. These are based on a bitmap created the current size and 
pixel depth of the Windows display, e.g. 640x480, 1024x678, 1280x1024 or larger, and at 8, 16, 24 bits or 32 per pixel. All paint 
and draw commands make changes in this bitmap, which then appear on your screen.    It is possible to write only the screen 
display context by using the SetDrawMode and SetROPcode commands with appropriate arguments.

PXL_make50 is the Runtime builder, and accepts command line arguments. Under user control, it takes the PiXCL interpreter, 
verifies that is the correct version by reading several binary signatures in the PiXCL50.exe file, then combines it with the 
encrypted specified script into a 32-bit Windows EXE file. It also sets a double word in the final binary so that the interpreter 
knows that it has a script appended.

If you have access to a Resource Compiler tool you have the ability to modify the PiXCL interpreter resources. This is not 
recommended, as it will change the size and binary composition of the interpreter such that the runtimes will not be able to 
access an embedded script. The runtimes will likely still function, but only as a PiXCL interpreter that requests a script file. 
Remember, PiXCL50.exe and PXL_make50.exe are a matched set by version. 

Any modification the PiXCL binaries other than replacement of icons (dual mode 32x32 plus 16x16 16-color only) is also
an infringement of your user license agreement.

Suggestions for improvements and bug reports (hopefully a rare occurrence) are welcomed. Please contact VYSOR Integration 
Technical Support.





Error Messages

Debugging Scripts
Error messages from the PiXCL interpreter are listed alphabetically below, with the typical cause and solution. In this version of 
PiXCL, most reported errors are severe enough to be fatal and will cause the program to exit. This is usually because there is a 
syntax error, or much less commonly, not enough system resources available. This can occur if you are running many programs 
at once, more so with Windows 95/98 than Windows NT. Rebooting Windows will usually cure the problem. In some cases, you 
can allow for the possible error condition in your script so that the program does not crash. Some errors are non-fatal (e.g. when 
you try to Run(...) a program that does not exist ), and display a MessageBox, then continue.

Error messages are listed below in alphabetical order.

AbortShutdown failed.
 Cause: Your NT system would not allow the command to be executed, probably because the required privileges were 

not set. 
Solution: Try using the RunExt() command with the Shutdown command in the new script.

ANSI code must be from 0 to 255.
Cause: You used a code greater than 255 in the Chr() command.
Solution: Use a code in the range 0 - 255.

AdjustTokenPrivileges enable failed.
Cause: Windows NT has a problem with a Shutdown. AbortShutdown or ExitWindows command. Appropriate 

privileges have not been set.
Solution: Issue the command from a script started with the RunExt() command.

Cannot access Clipboard. Another application has prevented access.
Cause: Your script cannot write or read ascii data from the ClipBoard. This would be most unusual. Some packages 

make extensive use of the Clipboard.
Solution: Try using the ClipBoardEmpty command. Shutdown a few other applications.

Cannot locate the PiXCLmsg.dll file.";
Cause: The file is not in the PiXCL installation directory.
Solution: Locate the file or re-install PiXCL.

Cannot open the file.
Cause: An unreadable file (e.g. an EXE file) has been used as a PiXCL argument.
Solution: Check the contents of the argument file.

Cannot read the PXL script file.
 Cause: An unreadable file (e.g. an EXE file) has been used as a PiXCL argument.
Solution: Check the contents of the argument file.

Cannot read the bitmap file.
Cause: A DrawBitmap command has tried to access an unrecognized image format.
Solution: Verify the image can be displayed, or convert the image to a known format.

Cannot run program.
Cause: Non-Fatal Error. A MessageBox appears with on of the following messages.

"Reported Cause: Out of Memory or Resources.";
"Reported Cause: EXE File not found.";
"Reported Cause: PATH not found.";
"Reported Cause: Bad EXE format.";

Solution: Check the format of the EXE file. An NT binary for another cpu type (e.g. MIPS or Alpha) will cause this error.

Can't send keys; try increasing PauseRespond parameter.



Cause: The SendKeys command is having problems communicating with another application.
Solution: Adjust you script.

Color value greater than 255.
Cause: You specified an illegal value in a Draw*() command or UseFont() command.
Solution: Values must be in the range 0 - 255.

Could not load RLE file.
Cause: A DrawBitmap command has tried to access an unrecognized image format.
Solution: Verify the image can be displayed, or convert the image to a known format.

CreatePalette() failed.
Cause: The system was unable to create a palette with the SetPalette90 command.
Solution: Check system resources. It may be necessary to reboot Windows.

Delimiter must be a valid character
Cause: Error in the ListBox() command. 
Solution: Use an ANSI character in the range 0 - 255. The most common characters used are 'space', 'colon (:)', 'semi-

colon' and    'pipe ( | )'.

Divide by zero
Cause: Error in a math operation
Solution: Ensure that the divisor is 1 or greater.

File is not valid bitmap format.
Cause: You have tried to load a bitmap that is not BMP or RLE format with DrawBitMap() or DrawSizedBitMap().
Solution: Convert the image file to BMP or RLE format.

Filter must contain pairs of filter elements.
Cause: The FileGet() command filter is incorrect. The error is being passed back to PiXCL from the COMMDLG.DLL 

supplied with Windows.
Solution: Correct the filter syntax.

Fractional number.
Cause: A fractional number was entered. PiXCL 4.4 supports integers only.
Solution: Use an integer.

Invalid keystrokes argument.
Cause: The SendKeys command has located an invalid key sequence.
Solution: Check the sequence in your script.

Invalid number.
Cause: You entered a string that was not an integer.
Solution: Enter a valid integer.

Invalid repetition count in keystrokes argument.
Cause: The SendKeys command has located an invalid argument.
Solution: Check the argument in your script.

Label is multidefined.
Cause: A common error. There are two or more LABELs which are the same.
Solution: Ensure that all labels are unique.

Label not found.
Cause: PiXCL cannot find a LABEL referred to in a script command such as GoTo, SetMenu, SetKeyBoard or 

SetMouse.
Solution: Put in the missing LABEL. The LABEL may also not be on the beginning of a line, or may start with a number.



MessageBox process failed: unsupported Button code.
Cause: A MessageBox command has used an invalid button code. Acceptable codes are 1, 2 or 3.
Solution: Correct your script.

Not enough memory.
Cause: A general purpose error that appears if a system call has failed through lack of memory. 
Solution: Try shutting down unnecessary applications. If the problem persists, contact VYSOR Integration Inc Technical 

Support.

Not a legitimate BitMap file.
Cause: A DrawBitmap command has tried to access an unrecognized image format.
Solution: Verify the image can be displayed, or convert the image to a known format.

Not enough memory to reallocate string.
Cause: A general purpose error that appears if a system call has failed through lack of memory. 
Solution: Try shutting down unnecessary applications. If the problem persists, contact VYSOR Integration Inc Technical 

Support.

Number cannot be negative in this command.
Cause: You used a negative number in a command that supports positive numbers only, such as UsePen.
Solution: Use only positive integers.

Number is too large or too small.
Cause: You have entered a number greater than 2**31 or less than -2**31
Solution: Check why you need such large numbers or check the input data.

Numeric underflow.
Cause: A math operation has tried to create a negative number less than -2**31.
Solution: Adjust the math code so that very large negatives cannot occur.

Numeric overflow.
Cause: A math operation has resulted in a number that will exceed 2**31.
Solution: Adjust the math code so that overflows cannot occur.

RETURN without GOSUB.
Cause: Either a missing GoSub command, or you have jumped into a subroutine in error.
Solution: Review the style of your code. Subroutines should have one entry point only. Multiple exit points (i.e. 

Return commands) are allowable.

Script file is larger than 4 gigabytes.
Cause: Very unusual error. The script file specified appears to be enormous, or is corrupt.
Solution: Check that the script file is in text only format.

Starting location must be greater than 0.
Cause: A SubStr command requires a location value >= 1.
Solution: Correct you script.

Starting location greater than string length.
Cause: A SubStr command as tried to access a location outside of the string.
Solution: Correct your script or the code that generates the location.

Syntax error
Cause: Very common fault during development. There is an error somewhere. It may not necessarily be exactly in the 

line indicated if the fault is unbalanced ' } ' or ' ) ' characters.

Can also be caused if the script has been saved as other than TEXT only. You will get a get a MessageBox 



window with garbage like in the window below, when the program starts.

Typical error window for PiXCL script saved as a
 .WRI, .DOC or .RTF file. 

Solution: Check the line syntax in the indicated line. Re-save the script as a Text Only file. WordPad or NotePad are the
ideal editors for scripts.

System shutdown failed.
Cause: Your NT system would not allow the command to be executed, probably because the required privileges were 

not set. 
Solution: Try using the RunExt() command with the Shutdown command in the new script.

Timer not available. Close some applications and restart.
Cause: The system resources required cannot be allocated to PiXCL.
Solution: Close some applications and try again.

Too many GOSUB nesting levels.
Cause: More than 50 nested levels have been defined.
Solution: Reduce the complexity of the code. 

Unable to create mutex.
Cause: A SendKeys command using the PiXCLmsg.DLL has failed.
Solution: Check your system resources. A reboot may be required to clear the problem.

Unable to load bitmap file.
Cause: A DrawBitmap command has tried to access an unrecognized image format.
Solution: Verify the image can be displayed, or convert the image to a known format.

Unable to open bitmap file.
Cause: A DrawBitmap command has tried to access an unrecognized image format.
Solution: Verify the image can be displayed, or convert the image to a known format.

Unable to read the specified .INI file.
Cause: The INI file specified either does not exist, does not exit in the directory, or is corrupted in some way.
Solution: Check your PATH. Check the format of the INI file.

Unable to return selected Font name.
Cause: A UseFont command has failed because the Font is unknown or not installed.
Solution: Correct the script, or install the required font.

Unbalanced comment markers
Cause: Very common development error. ' { ' with no ' } '.
Solution: Check that the comment markers are balanced.



Internet Technical Support
VYSOR Integration has set up technical support to provide answers to the most frequently asked questions as well as news on 
products, upgrades and techniques. 

There are a variety of files available via anonymous ftp from

ftp.vysor.com/outgoing

Our email address is 

techsupport@vysor.com  

There are also World Wide Web pages at

http://www.vysor.com 

Registered users have UserID and Password controlled access to their own area where upgrades, bug fixes and development 
news are provided.

Write to us at 

VYSOR Integration Inc.,
91 rue Bocage, Suite B, 
Gatineau, Quebec,
Canada J8T 5W5

Attention: Technical Support

or phone          Canada (819)    246-7792
          fax                 Canada (819)    568-6859



Software License and Limited Warranty

PiXCL Tools is copyright © (1994-2001) VYSOR Integration Inc. All Rights Reserved.

 Portions of the command reference for the IDR series commands that interface to the 
Idrisi GIS are adapted with permission from copyrighted Idrisi API documents provided by Clark University, Massachussets.

Attention: 
This licensed software is protected by Canadian and International Copyright Law.    Read the following Software License 
Agreement before continuing to use this product. By using this software you signify that you have read this Software 
License Agreement and accept its terms.

IF YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, DO NOT USE THIS SOFTWARE, AND RETURN IT 
PROMPTLY TO VYSOR INTEGRATION INC.

Software License Agreement
This is an agreement between you and VYSOR Integration Inc ("VYSOR"). By using this software, you are agreeing to 
become bound by the terms of this agreement.

1. VYSOR Integration Inc grants you a non-exclusive license to use the software on a single computer or cpu. Multiple 
licenses are available at additional cost.

2. VYSOR retains the copyright, title and ownership of the software and written materials regardless of the form and 
media of the original. You may make one backup copy for backup purposes. This backup copy must include all copyright
notices that appear on the original disks.

3. You may physically transfer the software from one computer to another provided the software is used on one 
computer at a time. You may not distribute copies of the software or accompanying documentation to others. You may 
not transfer the software or documentation to any person without the prior written consent of VYSOR. In no event may 
you transfer, assign, rent, lease or otherwise dispose of the software on a temporary basis. 

4. You are not permitted to patch, disassemble or recompile the Windows resources. You are not permitted to add 
additional resources or modify existing resources. The sole specific exception is the replacement of any of the existing 
icons for program development purposes, and this must be done using a suitable icon replacement tool, not a resource 
compiler, as the former does not change the binary file size.

5. This License is effective until terminated. This license will automatically terminate without notice from VYSOR if you 
fail to comply with the provisions of the License.

6.    DISCLAIMER OF WARRANTIES: VYSOR disclaims all other Warranties, expressed or implied, including, but not 
limited to, any implied Warranty of Merchantability or fitness for a particular purpose.

7. VYSOR EXPRESSLY WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR INCIDENTAL 
DAMAGES OF ANY KIND (INCLUDING DAMAGES ARISING FROM ANY THEORY OF LOSS OF PROFITS, 
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, AND THE LIKE) WHATSOEVER ARISING OUT 
OF THE USE OR INABILITY TO USE THE PRODUCT EVEN IF VYSOR HAS BEEN ADVISED OF THE POSSIBILITY 
OF SUCH DAMAGES.

8. In any event where warranties are found to exist, such warranties shall be limited in duration to thirty (30) days 
following the date of delivery to you. In no event shall VYSOR's liability to you exceed the amount paid for the license to 
use the software.

9. This License shall be governed and construed in accordance with the laws of the Province of Quebec, CANADA and 
shall benefit VYSOR, its heirs, successors and assigns.



OverView

PiXCL and its sibling, geoPiXCL, are 32 bit interpreted graphics, image display and image processing languages for Windows 
95/98/ME/NT4/2000. The PiXCL commands allows you to simply perform such diverse functions as building custom menus and 
customized imaging utilities, including floating toolbars to launch other applications, moving and resizing application windows, 
and drawing a wide variety of graphic objects using different shapes, colors, and patterns in a window. PiXCL supports 15 of the 
most commonly used bitmap formats. Here are some examples of what you can do with the PiXCL and geoPiXCL languages:

· Create custom image acquistion, processing, display and printing programs.
· Import and process images from TWAIN-compliant devices such as scanners and digital

cameras from Kodak, Sony, Panasonic, Olympus and many other manufacturers.
· Display, process and convert images from one format to another.
· Develop a Photo-CD image viewer and processor.
· Create front-end control or “glue” programs that link various other applications into a 

functional suite.
· Write powerful draw programs that accept keyboard and mouse input.
· Build a computer-based interactive training system with images, sound files and On-line 

Help. 
· Create stand-alone CD-ROM titles.
· Build Windows demonstration, marketing and multimedia programs and prototypes 

complete with custom windows, menus, toolbars, dialogs and messageboxes.
· Create your own install programs that build directories, copy files, and create program 

groups in Explorer.
· Create your own simple backup utility.
· Customize the layout of your application windows.



Memory Requirements

PiXCL runs in the 32 bit Windows 95 / 98 / ME / NT4 / 2000 environment, and must co-exist with all the other programs, 
including the Windows video device driver.    Here's a summary of the impact PiXCL has on your PC.

· Size of PiXCL50.EXE (around 480KB) plus PiXCLmsg.DLL (18KB)
· Size of PXLimage.DLL (523KB).
· Size of PXLbtmps.DLL (304KB).
· Size of PXLtwain.DLL (92KB).
· Maximum size of a PiXCL script file (1 GB max, but 20 - 100 KB is typical.)
· Amount of dynamically assigned string variable memory (arbitrary).
· Any disk space or memory needed by bitmap files. This can be quite large, but Windows takes care of most of the memory 

management, and PiXCL takes care most of the rest automatically. There are PiXCL commands for memory management 
issues related to bitmap images and dialog boxes.

· A PiXCL application does not consume much of the system resources. According the Windows 95 resource meter, when 
PiXCL is running it uses 2-3 % of system, 1-2 % or user and 10-12 % of GDI resources. By way of comparison, MS-Word 
97 requires 6-10% of both system and user, and 10-12 % of GDI resources.

PiXCL is fully compatible with Windows 95/98/ME/NT4 and Windows 2000. The minimum system cpu and memory for any NT 
system is a Pentium, Pentium II or III, 64 MB, and for Windows 95/98, you should consider 32 MB as the workable absolute 
minimum, with 64 MB a more realistic number. These are the numbers that the industry suggests for using these operating 
systems, regardless of the applications running. If you need to run large memory hungry applications such as desktop publishing
or graphics manipulation, more memory is always better.    For both Windows 95/98 and NT 4.0, a useful and usable system 
should have at least 64 MB. Windows 2000 really needs 128MB or more to function well. A 2MB vram video card capable of 
1024x768x64K colors or better is recommended if you intend to work with images, as this provides a much better color 
representation than any 256 color mode.



Rules and Syntax

The basic rules and syntax for PiXCL are quite simple. There are five classes of identifiers (i.e. names) in PiXCL: commands, 
variables, tokens, labels and constants. Identifiers are not case sensitive. The sections that follow describe additional rules for
these identifiers.

Commands

Commands are the basic building blocks of a PiXCL script. Most PiXCL commands follow the syntax 

DrawText(10,10,"This is a PiXCL program")

 where a keyword (DrawText) is followed by parameters enclosed in parentheses. The keyword names the action the command
is to perform and can occur anywhere on a line. Parameters (also called arguments) provide the information necessary to 
execute the command and are separated by commas. Parameters can be integers, text enclosed in double quotes, variables 
(either string or integer), and tokens. Commands fall into two categories:

· fixed argument number commands (such as DrawText above); and
· variable argument number commands (such as SetMouse described later)

Other commands, such as the unstructured If, follow the looser syntax 

If <condition> Then <commands>

With these commands, the only rule is that the command elements must be separated by at least one space. You’ll find the 
syntax for all PiXCL commands in the Command Reference Section of this Help file.

Variables
PiXCL lets you create string, 32 bit integer and 32 bit single precision floating point variables. To create either one, all you have 
to do is use its name. In PiXCL 5, there is support for 64 bit integers and 64 bit double precision floating point, mostly related to 
getting huge file sizes and passing these values to certain commands. You can use 64 bit variables in If, For and While 
structures.

Variable names can be any length and can be upper or lower case. Variable names are case insensitive.    A variable name can 
use any of the characters A - Z, a - z, 0 - 9, or _ (underscore), but it cannot start with a number. If a variable starts with a number,
it will be flagged as a syntax error when the program is tested or run. 

Variables cannot start with, and cannot include the @ character: this is reserved as the first character in predefined constants, 
discussed below.

Variables cannot start with, and cannot include the % character: this is reserved as the modulus operator.

Variables should not include [ and ] characters, as these are required for array variable support.

It is recommended that variables do not include the strings "Else" or "Endif", as these are keywords used with the structured If. 
Using these strings in variable names will usually result in a syntax error. 

To differentiate a string variable from an integer variable, you must place a dollar sign ($) at the end of the string variable’s 
name, and for real variables, place an ampersand (&) at the end of the varible name.    For example, PiXCL will treat Number as 
an integer variable, Number$ as a string variable, and Number& as a real variable.

In PiXCL 5, there is also the 64 bit integer Number# and double Number#&.

Here are some other valid variable names:
Mousex    _012     Foxtrot$     y1     NEXT_LINE0  Degrees&



When you create an integer or real variable, PiXCL automatically initializes it to zero or 0.0 respectively.    Likewise, a string 
variable is automatically initialized to an empty string (""). You can also initialize variables yourself in the following manner:

Counter = 6       
FileName$ = "CONFIG."
RealNumber& = 124.4558 or 
RealNumber& = 1.244558e002

Here Counter is set to 6 and FileName$ is set to the string "CONFIG.".
You can optionally use the Set command to initialize a variable, as in the following:
Set Counter = 6
In some situations, you won’t need to initialize a variable before using it. For example, some commands will set a variable for 
you, as in the following command, which lets you get mouse input:
SetMouse(1,1,10,10,Mouse_hit,x,y)

Here the x and y variables are set automatically by PiXCL when the command is executed; they indicate the point in the window 
where the mouse pointer was sitting when the user clicked the mouse button.

You can also perform simple mathematical calculations using integers and store the result in an integer variable. For example, 
the following command sets the integer variable Mouse_x2 to the value in Mouse_x1 multiplied by three:
Mouse_x2 = Mouse_x1 * 3

Integer variables are 32 bit positive or negative numbers i.e    -2,147,483,647    to    2,147,483,648. 

Floating point variables are 32 bit floating point numbers.

In PiXCL 5, 32 and 64 bit integer, string, floating point and double arrays are supported. Anywhere you use a variable name, and
array variable name of the same type can be used. E.g.

Number[0] is an integer array element
Number&[0] is a floating point array element
Number$[0] is a string array element.
Number#[0] is a 64 bit integer array element
Number#&[0] is a double array element

The math operators available in PiXCL are

- Subtraction

+ Addition

* Multiplication

/ Division

% Modulus (integer variables only)

PiXCL also supports the following short forms of post increment and decrement.

++ Increment by 1

-- Decrement by 1

+= Increment by number

-= Decrement by number

For example, 

Counter = Counter + 1 can be written as Counter ++    or Counter++ and



Counter = Counter - 1 can be written as Counter --    or    Counter--

There does not need to be a space after the variable name.    The short form is useful in processing loops, and will execute 
slightly faster than the longer format.

Examples of incrementing or decrementing by a number are

Counter = Counter + 6 can be written as Counter += 6 or Counter+=6 and
Counter = Counter - 4 can be written as Counter -= 4    or    Counter-=4

PiXCL also provides a positive integer random number generator command, Random(Range,Number).

In the case of string variables, you can perform concatenation. For example, the following command appends the string 
"Consultants" to end of "Digital " and places the result in the string variable CompanyName$:

CompanyName$ = "Digital " + "Consultants"

See the Set command in the next Section for more information on variables.

Note: PiXCL lets you re-use string variable memory by freeing variables that you no longer need; see the FreeVar and 
FreeVarAll commands in the next Section.

Tokens

Many PiXCL commands require that you use tokens as parameters. A token is a special identifier that has been predefined by 
PiXCL. For example, in the following command syntax, PIXEL and METRIC are tokens:

UseCoordinates(PIXEL/METRIC)

For this command, you must use either PIXEL or METRIC for the parameter, and you must spell the token correctly. No other 
parameter will be accepted, and will cause a Syntax Error.
When a command requires a token, the token appears in upper case in the command syntax, although the tokens are not case 
sensitive. You’ll find as you create your PiXCL programs that it’s a good idea to follow this same convention.

Labels

Labels follow the same naming conventions as variables in PiXCL. For example, they can be any length and can be upper or 
lower case. Labels have the additional restrictions that they must be placed at the start of a line (in the first column of the line), 
and they must end with a : (colon). For example, here are some valid and invalid labels:
Next:                 {A valid label}
       Wait_for_input:

{An invalid label because it isn’t located at the start of the line}

It is recommended that labels do not include the strings "Else" or "Endif", as these are keywords used with the structured If.

Constants
There is a small number of defined constants that can be used within a PiXCL script, and these are preceded by an ampersand 
@ character. 



PiXCL provides seven predefined integer constants for the Windows Registry access to permanently open keys.

@RDB_CLASSES_ROOT
@RDB _CURRENT_USER
@RDB _LOCAL_MACHINE
@RDB _USERS

@RDB_CURRENT_CONFIG

@RDB_PERFORMANCE_DATA

@RDB_DYN_DATA

A constant can be used in place of any integer argument where the substitution makes sense.
For example, to see the actual values of the above constants, the following commands can be used.

DrawText(10,10,"Constant Substitution")
DrawNumber(10,35,@RDB_CLASSES_ROOT)
DrawNumber(10,60,@RDB_CURRENT_USER)
DrawNumber(10,85,@RDB_LOCAL_MACHINE )
DrawNumber(10,110,@RDB_USERS)
DrawNumber(10,135,@RDB_PERFORMANCE_DATA)
DrawNumber(10,160,@RDB_CURRENT_CONFIG )
DrawNumber(10,185,@RDB_DYN_DATA )

PiXCL also provides these logical (integer) constants as well.

@TRUE set to    1
@FALSE set to    0
@YES set to    1
@NO set to    0

PiXCL also provides these real constants as well.

@AMC (Atomic Mass Constant) set to 1.66043E-27
@AVOGADRO (Avogadro’s Number) set to 6.02252E23
@BOLTZMANN (Boltzman’s Constant) set to 1.38054E-23
@DEG2RAD (Degree to Radians) set to 0.017453292519943
@E (Naperian log) set to 2.718281828459045
@ELECTRIC (Electric Field Constant) set to 8.8541853E-12
@EULERS (Euler’s Constant) set to 0.5772156649015388
@FARADAY (Faraday Constant) set to 9.64870E4
@GFTSEC (Gravitation Acceleration, ft/sec) set to 32.174
@GMTSEC (Gravitation Acceleration, m/sec) set to 9.80665
@GRAVITATION (Gravity Constant) set to 6.670E-11
@LIGHTVEL (Light speed in m/sec) set to 2.997925E8
@MAGFIELD (Magnetic Field Constant) set to 1.256637
@PI set to 3.141592653589793
@RAD2DEG (Radians to Degrees) set to 57.29577951308232

Comments
All characters between { and } are treated as comments by PiXCL. You can place comments anywhere in a PiXCL text file. You 
can also safely nest comments.



For example, the following program draws the cars bitmap (CARS.BMP) located in the Windows directory in a continuous line 
across the screen. The program is generously commented to make it easier to read. 
This program draws the cars bitmap across the screen a set number of pixels apart.

{---------CARS.PXL----------------------------------------}
{Initialize}
UseCoordinates(PIXEL)   {Use pixels, not millimeters}
                        {Starting x coordinate}
                       {Starting y coordinate}
Step = 32            {Step by 32 pixels at a time}

{Get the screen’s width in pixels}
GetScreenCaps(HORZRES,Pixels)
{Maximize the window}
SetWindow(MAXIMIZE)
{Get the Windows  directory and build the path to CARS.BMP}
DirGetWindows(WindowsDir$)
CarsPath$ = WindowsDir$ + "\CARS.BMP"
{Loop to draw the cars bitmap across the screen}
Next:  DrawBitmap(x,y,CarsPath$)
x = x + Step
If x < Pixels Then Goto Next

{Leave the finished window up until the user kills it}
WaitInput()

White Space

White space is a general term for the elements that PiXCL ignores in a script. PiXCL treats as white space all blanks, tab 
characters, carriage returns, line feed characters, split vertical bars (|), and comments. White space is ignored at any point in a 
script.



Starting a Program

To start a PiXCL program from the command prompt, you must provide the name of the PiXCL executable file (PiXCL50.EXE) 
followed by the name of the script file. For example, if PiXCL is located in the C:\PiXCLTools directory and your script file is 
located in C:\WORK and is named SCRIPT.PXL, you would use the following command line:

C:\PiXCLTools\PiXCL50 C:\WORK\SCRIPT.PXL

If you start PiXCL without providing a script file name, you’ll see a dialog box that prompts you for a script file.

Note: Because PiXCL’s command-line syntax is similar to Notepad’s (or any other application that lets you load a file on 
startup), there are several ways you can simplify it. For example, if you’ve created a file association linking .PXL files to 
PiXCL50.EXE, all you need to provide on the command line is the name of the PiXCL script file, as in SCRIPT.PXL.

In PiXCL 4.0 and later, the initial Window that is created is hidden. Your script should call either or both WinLocate(...) or 
WinShow(...)    (described further below) as the first commands to define the window starting location, styles and extended styles.

PiXCL also supports an arbitrary number of additional command line arguments which can be accessed from within the PiXCL 
application script.

See also Building RunTime EXE files.



Stopping a Program

To stop a PiXCL program at any point, press CTRL+BREAK. PiXCL will display the message box shown below. To end the 
program, select Yes. To have the program resume where it left off, select No. 



The Coordinate System

In PiXCL the upper-left corner of your desktop window is the origin, or point (0,0). The X coordinate increments to the right along 
the positive x axis, and the Y coordinate increments towards the bottom along the positive y axis. The actual window coordinate 
space is much larger, and extends into the negative X and Y coordinate space.    This larger space is often referred to as the 
virtual desktop. Graphically, you can see how this appears in the image below. 

For Windows 98 and 2000, multiple monitors are supported when additional video cards are installed in the system. The effect is 
that each monitor provides a window into the virtual desktop. Please see the Windows 98 / ME / 2000 help on setting up multiple 
monitors for more information.

See also the UseCoordinate(PIXEL | METRIC) command,
and the WinLocate and WinGetLocation commands that either accept or generate positive and negative position arguments.



Drawing Tools

PiXCL provides you with a wide variety of tools to draw within its window client area. It lets you set up pens to draw lines, 
rectangles, ellipses and polygonal shapes, brushes and user defined patterns to fill interiors and exteriors, and fonts to write text.
To create tools for drawing geometrical shapes, you use commands such as UsePen and UseBrush. To create fonts for writing 
text, you use the UseFont command. 

Note#1: If you do not establish any drawing tools before drawing in a window, PiXCL uses these default drawing tools: a black 
pen, a white brush, and the System font.

Note#2: It is not possible to draw in the menu bar or title bar, or in any other Window not created by PiXCL.

Setting and using Background Colors

The default PiXCL application client area color is light gray (R,G,B = 192,192,192). You can set the desired background color 
with the UseBackground command followed by a DrawBackground command at any time. If necessary, you can retrieve the 
current background colors with the GetBackground command.

Using Pens

The UsePen command lets you assign a pen for drawing lines and borders. Pens can be solid, dashed, dotted, and more. For 
example, the following example creates a solid black pen, two pixels wide:

Width=2
UsePen(SOLID,Width,0,0,0)
The Width argument controls the width of the pen in pixels or millimeters (depending on the co-ordinate system in use). The 
three arguments following the Width argument specify the color of the pen. They control the intensity of the colors red, green, 
and blue in that order. In the example above, all the colors have 0 intensity, so the pen will be black. Conversely, the following 
line would create a white pen:

UsePen(SOLID,Width,255,255,255)
The pen you specify with UsePen will be used in all subsequent drawing operations, or until you use UsePen again to change 
the pen. 

Note: The default pen is solid, black, and has a width of 1 pixel. If you use a command that draws a shape, but you haven’t yet 
set up a pen with the UsePen command, PiXCL uses the default pen.

Using Brushes

The UseBrush command lets you establish brushes for drawing and filling areas in rectangles, ellipses, pies, and the like. You 
can create brushes that are solid or hatched, have diagonal lines, horizontal lines, vertical lines, and more. For example, here’s 
the command to create a solid blue brush:

UseBrush(SOLID,0,255,0)
As you might have guessed, the last three arguments control the color of the brush.
Note: The default brush is solid white.

You can also create your own brush patterns (8x8 in Windows 95/98, up to 256x256 in Windows NT) and use these with the 
flood and fill commands. For example,

LoadBitmap(Pattern1$,FULL)
UseBrushPattern(Pattern1$)

loads a user defined bitmap pattern and sets the current brush.



Using Fonts

You establish a font in PiXCL by using the UseFont or UseFontExt command and giving it a series of font attributes, including the
font name, width, height, style (bold, italics, or underline), and the color. PiXCL uses the font you’ve established the next time 
you draw text or numbers on the screen.    Here is an example of the UseFont command.

Note#1: PiXCL supports all the fonts installed in your system, including TrueType fonts and fonts installed with third-party font 
packages, such as the Adobe Type Manager.
Note#2:    By default, PiXCL uses a black System font.
Note#3:    The Button, ComboBox and SetEditControl commands draw text in the current font.
Note#4: PiXCL has a default font escapement angle of 0, for horizontal text. This can be changed with the SetFontEscapement 
command. The current escapement value is obtained with the GetFontEscapement command.
Note#5: You can load and unload any font that exists on your disk, with the AddFont and    RemoveFont commands.



Drawing and Writing

PiXCL provides a variety of commands for drawing and writing output to the screen. The following sections give a brief overview 
of these commands. For more detailed descriptions of these commands, see the command reference later in this chapter..

Drawing Text

To draw text in a window, you use the DrawText, DrawShadowText, DrawTextExt or the DrawShadowTextExt command. For 
example, the following command displays the text "The ABC Company Shell" using the current font. The starting position of the 
text is at the point (20,10).

DrawText(20,10,"The ABC Company Shell")
You can also specify a rectangle in which text is drawn in the current font, with automatic word-wrap and definable justification, 
using the DrawTextExt command. This command draws the string centered in the rectangle specified.

DrawTextExt(20,10,120,45,"The ABC Company Shell",CENTER)
If you want to display a number in a window, you can use the DrawNumber command. For example, the following command 
displays the number 200 starting at the point (50,60):

DrawNumber(50,60,200)
DrawText, DrawTextExt, DrawShadowText, DrawShadowTextExt, and DrawNumber are also convenient for displaying the 
contents of variables in a window.

You can also set the draw angle and character spacing with the SetFontEscapement and SetTextSpacing commands, as well as 
add and remove any font from the Windows font table with the AddFont and RemoveFont commands.

Drawing Lines and Shapes

PiXCL provides a range of commands for drawing lines and shapes, as shown in a partial list Table 1. All of these commands use
the current pen to draw borders and the current brush to fill interiors.

Command Purpose

DrawArc Draws an arc.

DrawChord Draws a chord.

DrawEllipse Draws an ellipse (or circle).

DrawFlood Floods an area with color using the current brush.

DrawIcon Draws one of the PiXCL or system icons.

DrawLine Draws a line.

DrawPie Draws a pie wedge.

DrawPolygon Draws a polygon with up to 32 vertices.

DrawRectangle Draws a rectangle.

DrawTriangle Draws a triangle.

DrawEdgeRectangle Draws a rectangle edge in several styles.

DrawRoundRectangle Draws a rectangle with rounded edges.



DrawShadeRectangle Draws a color gradient rectangle.

Table 1: Commonly used commands for Drawing Lines and Shapes

The following example shows how to use the DrawLine command to draw a line from the point (10,80) to the point (100,20):

DrawLine(10,80,100,20)

To draw a rectangle, you use the DrawRectangle command. The following command draws a rectangle that has its upper-left 
and lower-right corners at the points (15,25) and (75,110):

DrawRectangle(15,25,75,110)
This function uses the current pen to draw the border of the rectangle and the current brush to fill the interior.

The DrawEllipse command lets you draw a circle or an ellipse. The following example draws an ellipse that is bounded by the 
rectangle specified by the points (100,30) and (250,90):

DrawEllipse(100,30,250,90)
As with the DrawRectangle command, the DrawEllipse command uses the current pen to draw the border of the rectangle and 
the current brush to fill the interior.

Drawing and Using Bitmaps

PiXCL has commands for placing the contents of Windows bitmap (BMP, JIF, JPEG, PCD, PCX, PPM, PNG, PSD, RAS, RLE, 
TGA, TIF) files on the screen: DrawBitmap, DrawSizedBitmap, DrawTrBitmap, DrawTrSizedBitmap and DrawZoomedBitmap The
Draw[Tr]Bitmap commands are the simpler of the these: It lets you locate a bitmap starting at a specified point in a window. For 
example, the following program places the Winlogo bitmap (WINLOGO.BMP) starting at the point (10,10):

Winlogo$ = "C:\WINDOWS\WINLOGO.BMP"
DrawBitmap(10,10,Winlogo$)
WaitInput()

The Draw[Tr]SizedBitmap commands lets you stretch or compress a bitmap to fit within a specified rectangle. You indicate the 
upper-left corner of the rectangle using the first two parameters and the lower-right corner using the second two. For example, 
the following program displays the Winlogo bitmap within the condensed rectangle specified by the points (10,10) and (100,120):

Winlogo$="C:\WINDOWS\WINLOGO.BMP"
DrawSizedBitmap(10,10,100,120,Winlogo$)
WaitInput()

You can also use the DrawSizedBitmap command to invert a bitmap as you place it on the screen (see the DrawSizedBitmap 
command in the command reference for more details).

DrawSizedBitmap can also be used to load a bitmap without displaying it, by setting all the coordinates to zero. There is also the 
equivalent LoadBitmap command.    These two commands are equivalent.

DrawSizedBitmap(0,0,0,0,ImageFile$)
LoadBitmap(ImageFile$,FULL)



There is also a potential system memory limit when drawing bitmaps, and especially sized bitmaps. If you want to display an 
especially large image (i.e. more than about 3 MB), Windows may be unable to assign enough memory for the operation, or may
bog down in swapping data to and from the disk.

PiXCL also has a command, GetBitMapDim that accesses the supported format bitmaps, and returns the number of lines, pixels 
and bits per pixel. This can be very useful in deciding whether to use DrawBitMap or DrawSizedBitmap, and where to draw the 
bitmap in your application client area.

Other bitmap processing commands include DrawZoomedBitmap for zoom and roam operations, and all the image processing 
commands. The DrawZoomedBitmap can also be used to animate images that are segmented into frames.

When you need to transparently overlay bitmaps, there are the DrawTrBitmap and OverlayImage commands that let you specify 
the transparency color.

PiXCL also supports a comprehensive set of point and geometric image processing commands, including image enhancement 
and resampling, filtering and and bitmap format conversion. All the writable supported bitmap formats can be saved back to disk. 



Flow Control Commands

PiXCL has seven classes of commands to control the flow of programs: unstructured If-Then and Goto, structured If-Else-Endif, 
structured For-Next, structured While-EndWhile, structured Switch-Case-Endswitch, plus Gosub and Return. 

The unstructured If command lets you make a decision when there are two alternative outcomes. It tests the value of a condition,
and if that condition is true, the program continues executing commands on the same line following the Then. If the condition is 
false, the program begins executing commands on the next line following the If. 

For example, the following If command tests the value of the variable Green to see if it is greater than 255. If it is, PiXCL 
executes the Goto command on the same line. Otherwise, it executes the WaitInput() command on the next line

If Green > 255 Then Goto Exit
WaitInput()
Exit:

The Goto command transfers control unconditionally to a label. In the previous example, the Goto command causes the program
to branch to the label Exit.
The Gosub command lets you execute a block of code as a subroutine. When the subroutine is completed, PiXCL executes the 
next command following the Gosub.

 Supplementing PiXCL’s flow of control commands

With a little creativity you can easily use If, Goto, and labels to supplement PiXCL’s structures for controlling program flow. Here 
are some examples:

IF / ELSE / ENDIF
If <condition> Then <do something> | <do something else> | Goto EndStr

<do something different>
EndStr:

FOR
StartLoop:
If <counter> = <value> Then Goto EndLoop
<a command>
<the next command>
<counter> = <counter> + 1
Goto StartLoop
EndLoop:

WHILE
BeginWhile:
If <counter> = <value> Then Goto EndWhile
<a command>
<the next command>
<counter> = <counter> + <some value>
Goto BeginWhile
EndWhile:



Structured If-Else-Endif in PiXCL

In PiXCL, the basic If <condition> Then <action#1 actions#2 action#n>    statement expects that at least one 
command or action exists on the current line. Each action must delimited by a suitable whitespace character ("|" is often 
suitable). The If construction is terminated by a newline character.

In PiXCL, the structured command If...Else...Endif is supported according to the following rules.

The If...Endif structure is 

If <condition>
action#t1
action#t2
...
action#tn

Endif

If the condition is false, script interpretation jumps to the next 
command following the Endif keyword. 

Any whitespace characters after the <condition> and before 
the newline character are ignored, as usual.

All additional commands are interpreted until the Endif 
keyword is located. 

and, extending the command with an Else structure ...

If <condition>
action#t1
action#t2
...
action#tn

Else
action#f1
action#f2
...
action#fn

Endif

If the condition is true, script interpretation jumps to the next 
command following the <condition>.    Once the Else keyword
has been located, execution jumps to the next instruction 
after the Endif keyword. 

Any whitespace characters after the <condition> and before 
the newline character are ignored, as usual.

If the condition is false, script interpretation jumps to the next 
command following the Else keyword. 

All additional commands are interpreted until the Endif 
keyword is located. 

Embedded If-Else-Endif and If-Then statements are supported in all versions, up to 16 levels.

Structured For-Next in PiXCL

PiXCL supports For loops with the following general syntax.

For variable=n|variable To m|variable [By p|variable]
    ... commands
   If <condition> Then Break  {optional}
    ... commands
Next

Structured While-EndWhile in PiXCL

PiXCL supports While loops with the following general syntax. The Test variable can be a number or a string, must be initialized 
beforehand. For example a While loop that tests a numeric variable ...

Count = 0
While Count <= 5
    ...commands
    Count++



EndWhile

and a While loop that tests a string variable ...

Count$ = "A"
While Count = "A"
    ...commands
    If <condition> Then Count$ = "B"
    ... commands
EndWhile

PiXCL 5: Structured Switch-Case-EndSwitch

PiXCL 5 supports the useful Switch structure, where you need to process more than two possible values of an integer variable. 
For example,

X = A * B {where A, B have varying values}
Switch (X)
Case (1)
    ...commands
    Break
Case (2)
    ...commands
    Break
Default
    ...commands
EndSwitch

The Break command moves execution of the script to the command following the EndSwitch keyword. The above can also be 
done with a series of If-Endif commands.



About Boxes
The Windows application style recommendations suggest that an AboutBox that describes the application is desirable. PiXCL 
provides several options depending on what information you want to provide to the user.    There is the AboutUser box that might 
appear like the image below. Title and two text regions are user definable.

 
There is also the ShellAbout command that displays a dialog that reports some system information, plus some user defined text. An 
example is shown below.



Message Boxes

The MessageBox command lets you create your own custom message boxes with one, two or three buttons. For example, the 
following command creates a message box with OK and Cancel buttons and a question-mark icon. (The second parameter, 1, 
causes the OK button to be highlighted.) In addition, the message box displays the text "Do you want to exit?" and uses the 
caption "Exit box."

MessageBox(OKCANCEL,1,QUESTION,
"Do you want to exit?","Exit box",Button)

The button you select is returned in 
the Button variable, starting from the 
left button numbered 1. The 
available MessageBox button style 
TOKENS which also define the 
button text are

The available Windows
MessageBox and built 
into PiXCL icon style 
TOKENS are

OK
YESNO
OKCANCEL
RETRYCANCEL
YESNOCANCEL
ABORTRETRYIGNORE

QUESTION
EXCLAMATION
INFORMATION
STOP
NOICON
ICON01-ICON19

The message text string can be multiple lines if you either 
a) add carriage returns in the message; or
b) type it all on one line.
Windows will sort out how the message text is displayed.

PiXCL also provides custom dialog boxes with up to sixty pushbuttons, radio buttons, checkboxes, edit controls, comboboxes, 
list boxes and static text with the DialogBox command.



Text Boxes

PiXCL’s TextBox and TextBoxExt commands lets you solicit input from the user. They display a dialog box with a single-line edit 
control. For example, the following commands produce the text box shown below.
.

Text$ = "Make a few changes to the highlighted text in the edit box. Click OK to continue; 
Click CANCEL to Ignore"
Caption$ = "Example of a TextBox"
Score$ = "Default text can be displayed, like this, and edited"
TextBox(Text$,Caption$,Score$,ButtonPushed)

The button you select is returned in the ButtonPushed variable. TextBoxExt is similar, and provides a third Help button that 
displays a MessageBox with the help string defined in the command.
PiXCL also provides custom dialog boxes with up to sixty pushbuttons, radio buttons, checkboxes, edit controls, comboboxes, 
list boxes and static text with the DialogBox command.



List Boxes

The ListBox and ListBoxExt commands display a dialog box with a list box inside, so that you can choose from an alphabetically 
sorted list of items. ListBoxExt supports multi-column lists and multi-item selections, plus user defined context Help.

For example, the following commands produce the list box shown below.

Caption$ = "Select and item from the list"
List$ = "Item#01;Item#02;Item#03;Item#04;Item#05;Item#06"
Delimiter$ = ";"
ListBox(Caption$,List$,Delimiter$,Result$)

Notice that the list box gets its contents from the List$ string variable, and that the items in List$ are separated from one another 
by semicolons. (PiXCL returns the chosen string in the Result$ string variable.)    Delimiters can be any character you choose. 
The most commonly useful are semi-colon (“;”) and pipe (“|”).

PiXCL also provides custom dialog boxes with up to sixty pushbuttons, radio buttons, checkboxes, edit controls, comboboxes, 
list boxes and static text with the DialogBox command.



Combo Boxes

The ComboBox command produces edit controls with drop down lists, as shown in the figure below. A combo box can include a 
variety of inputs, such as 3D buttons, radio buttons, and text or numeric input. The DrawFrameControl , SetEditControl and 
Button commands in PiXCL allow you to create all these styles of client area dialogs.

You would use a 
one of the 
ComboBox styles 
where you have 
multiple lists of 
items that require 
the user to select, 
and a list box dialog 
is not the best 
solution.

The set of frame controls. Not all styles are shown.

Frame controls are 
used to assist in the 
creation of dialogs 
that uses the 
various mouse 
commands to 
activate them.



Button styles and Edit controls.

One or more of the following mouse commands are used with a DrawFrameControl command.

SetMouse() Text or numeric entry edit windows, or radio buttons are 
activated by clicking in each window. 

SetShftMouse() Text or numeric entry edit windows, or radio buttons are 
activated by clicking in each window. 

SetCtrlMouse() Text or numeric entry edit windows, or radio buttons are 
activated by clicking in each window. 

SetDblMouse() Text or numeric entry edit windows, or radio buttons are 
activated by clicking in each window. 

SetRightMouse() Text or numeric entry edit windows, or radio buttons are 
activated by clicking in each window. 

SetShftRightMouse() Text or numeric entry edit windows, or radio buttons are 
activated by clicking in each window.

SetCtrlRightMouse() Text or numeric entry edit windows, or radio buttons are 
activated by clicking in each window.

SetDblRightMouse() Text or numeric entry edit windows, or radio buttons are 
activated by clicking in each window. 

SetMidMouse() Text or numeric entry edit windows, or radio buttons are 
activated by clicking in each window. 

SetShftMidMouse() Text or numeric entry edit windows, or radio buttons are 
activated by clicking in each window.

SetCtrlMidMouse() Text or numeric entry edit windows, or radio buttons are 
activated by clicking in each window.

SetDblMidMouse() Text or numeric entry edit windows, or radio buttons are 
activated by clicking in each window. 

DrawRectangle() Draw an edit window of a specified size.
DrawFlood() Fill inside a region (e.g. a background area) with a color
DrawFloodExt() Fill outside a region (e.g. a background area) with a color
DrawIcon() Draws one of the PiXCL or system icons at any size and 

coordinates.
DrawEllipse() Simulate a radio button. The button should be mouse 

active.
SetKeyBoard() Set up a series of alphabetic or numeric key entry handlers.
UseBrush() Sets an edit window fill color.

UsePen() Sets edit window border color. Black is commonly used.
Button() Draws pushbuttons, radio buttons, checkboxes and group 

boxes.
SetEditControl() Draws any number of edit controls for string or numeric 

input.

See also the PXL code sample program, KEYBOARD.PXL.    

ComboBoxes are drawn in the application client area. Note that buttons and edit controls are actually child windows of the PiXCL
application. Buttons have the highest display priority, or Z-order, so if the positions of a button and an edit control overlap, the 
button will appear to overlap the edit control.

PiXCL also provides custom dialog boxes with up to sixty pushbuttons, radio buttons, checkboxes, edit controls, comboboxes, 
list boxes and static text with the DialogBox command.



ImageBoxes and PasswordBoxes
PiXCL also supports two additional dialog box styles, the ImageBox and PasswordBox.

An image box provides a thumbnail image and eleven line text display dialog, with two user defined buttons, and is generally 
used to provide information about an image or images on your hard disk.

The Password box is similar in appearance to a TextBox, but provides a secure text entry. Any text entered appears as a string of
asterisk characters, as shown in the figure below. The title bar,    instruction text and the labels on the buttons are programmable.

PiXCL also provides custom dialog boxes with up to sixty pushbuttons, radio buttons, checkboxes, edit controls, comboboxes, 
list boxes and static text with the DialogBox command.



Windows Shell Dialogs

In PiXCL 4.40 and later, there is access to a number of dialogs that are built into the Windows Shell. The Windows Explorer uses
many of these for searching and reporting file information. Full Shell functionality is available with the system file SHELL32.DLL 
v4.72 or later. If you have Windows 98 or 2000, or Windows 95/NT with Internet Explorer 4.01 or later and with Active Desktop 
installed, you have the latest shell version already.

The Shell GetSpecialFolder command provides a way to get various types of file, system and network information, with a dialog 
as shown below.

 



Custom DialogBoxes

In PiXCL 4.20 and later, you can define your own custom popup modal dialog boxes, with combinations of push buttons, radio 
buttons, checkboxes, group boxes, edit controls, static text, List box, and combo boxes, with the DialogBox command.    These 
same input controls can be created in the PiXCL client area using other commands.

DialogBox provides you with the tool to make a exactly the user interface you want, in a separate window, rather than with the 
Button, SetEditControl and ComboBox commands in the PiXCL main client area.

You can include any combination of the dialog items shown above, and position the custom dialog anywhere relative to the 
PiXCL client area, or centralized in the screen. Up to sixty controls of any of the above types can be created in a custom dialog 
box.

There are code writing Helper applications with the PiXCL MDI editor that assist in the development of DialogBox code. The 
cre8tapp.pxl sample generates a working application and also includes a selection of ready-made dialog templates that can be 
pasted into your application. There is also a dialog editor application in which you create the dialog visually, then the template 
code is pasted into you application.



Windows 95 /98 / NT4 / 2000 Common Controls
Windows 95/98/NT4/2000 include a set of common controls, accessed in a file called COMCTL32.DLL that is found in the 
system directory. These common controls include multi-part status bars which generally appear at the bottom of the application 
client area, progress bars that get updated under program control as the application proceeds to completion, trackbars, and a 
selection of frame control button bitmaps.

    
The example window, above, shows both a status bar and a progress bar.

Both types of common control are child windows of the PiXCL application, and must be enabled or disabled under program 
control.

The commands available to use are

StatusWindow, DrawStatusWinText, ProgressBar and UpdateProgressBar, DrawFrameControl 



Getting a Filename
PiXCL’s FileGet and FileSaveAs commands lets you get a filename using the same FileOpen / FileSaveAs common dialog 
boxes that appears in many Windows    applications. An example is shown below. This uses the Windows library 
COMDLG32.DLL. PiXCL provides commands to access the ChooseFont, ChooseColor and printer common dialogs as well.

In PiXCL 4.10 and later, the FileGet command has been extended to support single and multiple file selection, as well as 
checking if the selected or entered file and path exists. A command option adds a Help button which displays a MessageBox with
user defined title and text.



Managing Windows
PiXCL offers the following commands for working with application windows:

EnumWindows Create a delimited list of all parent window title 
strings.

EnumChildWindows Create a list of child windows of a parent window.
SetWindow Lets you maximize, minimize, or restore the PiXCL 

window.
UseCaption Lets you set the text that appears in the title bar of 

the PiXCL window.
WinClose Closes any specified window by title string.
WinExist Determines whether a parent window is running.
WinGetActive Returns the name of the foreground window.
WinGetClientRect Returns the coordinates of the specified window 

client area.
WinGetLocation Gets the location a parent window and returns the 

specified coordinates.
WinHelp Starts the Windows Help utility and displays the 

requested Help file and topic.
WinAdjustRect: Returns the window coords for a specified client 

area.
WinLocate Locates a parent window at the specified 

coordinates.
WinSetActive Activates a running application.

WinShow Hides, unhides, minimizes, maximizes, or restores a
specified window. Can also set any window to 
topmost or not topmost.

WinTitle Sets the text that appears in the title bar of a 
window.



Pausing a Program
In PiXCL, you can pause a program a specified number of seconds, or you can pause it indefinitely. Both require the WaitInput 
command.

Pausing a Specified Number of Seconds

By using the WaitInput command with an argument, you can pause a PiXCL program a specified number of seconds. For 
example, the following program displays the message "Waiting...". Next, it pauses the program for three seconds and then 
erases the window’s contents. 

DrawText(10,10,"Waiting...")
WaitInput(3000)  {Pause the program for 3 seconds}
DrawBackground   {Erase the window’s contents}
WaitInput()

While the parameter for the WaitInput command is in milliseconds, PCs have a timer granularity effect, that is, the minimum tick 
of the system click is actually 64 milliseconds, so WaitInput(1) is in effect the same as WaitInput(64).

Pausing Indefinitely

By using the WaitInput command without an argument, you can pause a PiXCL program indefinitely. In general, you should use 
WaitInput() whenever you are not performing any work in your PiXCL window, because it makes more system resources 
available to other programs. 

If you fail to use WaitInput() at some point in your program, one of two things will happen: either the window will disappear 
immediately after executing your script or, if you are stuck in a continuous loop, the hour-glass icon will always be present. 

The WaitInput() command is also important for building your own custom menus and 3-D command buttons, and for getting 
keyboard or mouse input. The examples in the next few sections will give you more of a feel for how WaitInput() works.    It is 
often necessary to pause the program so that Windows can catch up and update other windows and background, by using the 
WaitInput(100) command.

Interprocess Communications

One PiXCL application can also contain a PXLResume command that sends a message to another PiXCL application that is 
paused indefinitely with a WaitInput() command, and it will resume operation. The PXLresumeAt command extends this 
capability and lets one PiXCL application (or any other application that has been programmed appropriately) tell another PiXCL 
application to start execution at a specific label.    This can be very useful if you want several PiXCL applications to run at the 
same time and respond to input received from each other.    

For example, you can have several applications running that are processing different aspects of and image data set. An 
additional PiXCL application could be the controller that selects processing or pen and brush functions. Once a new function has 
been selected, an INI file or registry setting could be made, and the secondary applications all instructed to read the updated 
control parameters, and commence processing. The controller application would then wait until each secondary application had 
sent a message (via a PXLresumeAt message) that processing was complete.

A useful additional interprocess command is GetCopyDataMsg    that is used when another application (PiXCL runtime or user 
program in C or C++) needs to send a data string such as a filename to be loaded.

PiXCL also acts a dropfile server and drop file client, such that you can drag and drop text and image files into a PiXCL window 
(client mode) or drag from a PiXCL window to another application client window (server mode). See the DropFileServer, 
DragAcceptFile and GetDragList commands for more information.



Building Menus
To build your own custom menus in PiXCL, you use the SetMenu command to define a menu template. Then, when the program 
is pausing for input (a WaitInput() command is in effect) and the user selects a menu item, the program branches to the label 
associated with that menu item, as defined in the template.

PiXCL also supports floating popup menus invoked with a right mouse click, via the SetPopupMenu command.

For example the following program creates a simple menu with two menu items: Write and Exit!. If you select the Write option, 
the program branches to the Run_write label where Windows    write is launched. If you select the Exit! option, the program ends.

{Define the menu template}
SetMenu("Write",Run_write,
ENDPOPUP,
"Exit!",Leave,
ENDPOPUP)

Wait_for_input:
WaitInput()

Run_write:
Run("WRITE.EXE")
Goto Wait_for_input

Leave:
End

Because the SetMenu command uses strings enclosed in quotes, you can also use string variables (e.g. Menu_Item$) in the 
command. This can be very useful when you need to dynamically change the text in a menu, without having to write a new 
SetMenu(...) command in your script.

If you use the SetMenu() command without any arguments, it removes the menu bar from the Window.    The first time that you
use the SetMenu() command, it must be immediately preceded with a WaitInput(100) command. This is to allow Windows 
to catch up and complete the redrawing of the new PiXCL application window. i.e.

WaitInput(100)  {let NT and 95 catch up}
SetMenu(...)

If you don’t do this, the screen will often flash when Windows attempts to redraw the client area.

Changing Menu Characteristics

PiXCL has two commands for changing the appearance of menu bar pop-up items: ChangeMenuItem and GetMenuStatus. The 
ChangeMenuItem command checks, unchecks, grays, or enables a main menu bar item: they have no effect on popup menu 
items created with the SetPopupMenu command. Building on the previous example, suppose you want to place a checkmark 
next to the Write option immediately after you launch Windows Write. Here’s the command you would use immediately after

Run("WRITE.EXE")
ChangeMenuItem("Write",CHECK,Result)

Because you may want to examine a menu item’s appearance before changing it, PiXCL offers the GetMenuStatus command. 
For example, this sequence checks to see whether the Write option is grayed. If so, the program enables the menu item 
(removes the gray) before placing a checkmark next to it.

GetMenuStatus("Write",GRAYED,Result)



If Result = 1 Then ChangeMenuItem("Write",ENABLE,Result)
ChangeMenuItem("Write",CHECK,Result)



Building ToolBars and ToolWindows
PiXCL supports a user definable and customizable toolbar with automatic tooltips that provides fast equivalents to menu item 
selections, or functions that you do not want to define as a menu item. There is a set of standard toolbar buttons that are built 
into the Windows Common controls. Additional button bitmaps are built into PiXCL itself, in the same way that there is a set of 
icon images. 

 

The ToolWindow command has a similar syntax and function to the Toolbar command, but creates an arbitrary number of floating
button windows, in POPUP mode that creates a toolwindow that floats anywhere in the screen.

A toolbar or toolwindow can be raised or flat style, and can each have up to 76 buttons, in a variety of initial states and styles. 
Once a toolbar is displayed, buttons can be moved around and deleted without recreating the toolbar by double clicking on the 
toolbar background. The image above shows the set of large size Standard toolbar with groups of buttons, plus floating 
toolwindows that show the large size View and PiXCL built-in buttons, plus the small size History buttons.

Toolbars and toolwindows are used to provide buttons that 
· equate to menu shortcuts for commonly used selections
· provide a set of paint and draw selections for which a menu item may not be appropriate.

Changing Toolbar and ToolWindow Button Characteristics

You can query and update the state of any button in a toolbar or toolwindow with the GetToolbarBtnStatus and 
ChangeToolbarBtn commands. Toolbars and toolwindows can be customized with the CustomizeToolBtn command, or by double
clicking on a toolbar or toolwindow background. If you need to change button bitmaps or tooltips, you must re-issue the ToolBar 
or ToolWindow command.



3-D Command Buttons
PiXCL’s Button command lets you create standard Windows 3-D pushbuttons, radio buttons, check boxes and group boxes, and
place them anywhere within the PiXCL window. When the program is pausing for input and the user clicks on a button, the 
program branches to the label associated with that button. The figure below shows a variation of the previous menu example 
with some buttons added to mimic the actions of the menu items. 

Buttons are active for the left mouse only.

Here’s the code used to produce the example:

{Define the menu template}
WaitInput(100)
SetMenu("Write",Run_write,

ENDPOPUP,"Exit!",Leave,
ENDPOPUP)

{Draw 3-D buttons}
Button(20,20,60,35,"Write",Run_write,
    20,45,60,60,"Exit",Leave)

Wait_for_input:
WaitInput()

Run_write:
Run("WRITE.EXE")
Goto Wait_for_input

Leave:
End

As the example shows, PiXCL automatically provides mouse support for 3-D command buttons. If you want to test for mouse 
clicks in other areas of the PiXCL window, you’ll need to use the SetMouse command, described next. If you want the user to be 
able to select a 3-D button using the keyboard, you’ll need to use the SetKeyboard command (see "Getting Keyboard Input" 
later).

During development testing on some early Windows 95 machines, we often had problems with programs hanging when a Button
command was reached. This was usually fixed by loading the latest video device driver. If you are having problems on a 
Windows 95/98 or NT4 PC, please check with your PC supplier or video card vendor for the latest driver.    If you still have 
problems, please contact VYSOR Technical Support at http://www.vysor.com.



3D Command Buttons with BitMaps

In PiXCL 5.0 and later, the Button command supports the specification of BMP or RLE images and ICO icon files on the button, 
instead of a text string. In addition, you can specify any of the PiXCL 20 or so built-in icons plus around another 70 icons from 
the Windows SHELL32.DLL. Buttons are active for the left mouse only.

Alternatively, if you want buttons that support middle and right mouse clicks, with a bit of ingenuity with the DrawBitmap 
command and one or more of the SetMouse commands, you can create 3-D command buttons with bitmaps and place them 
anywhere within the PiXCL window. When the program is pausing for input and the user clicks on a BitMap button (actually a 
mouse active region), the program branches to the label associated with that mouse hit. 

The bitmaps you use should ideally be 16 color, as this minimizes the amount of data to read off the disk (or from the system 
disk cache if it exists).    When making "pushed" bitmaps, the traditional style is to move the bitmap design right and down one 
pixel. You can also use the InvertRectangle. that negates the bitmap colors to indicate that a bitmap region had been selected 
with the mouse.

{Define the button Bitmaps}
ButtonPos$ = "btn_pos.bmp" {32x32 16-color}
ButtonNeg$ = "btn_neg.bmp" {32x32 16-color}
DrawBitMap(20,20,ButtonPos$)

{set up the mouse hit regions}
SetMouse(20,20,51,51,Run_write,X,Y)
SetMenu("Exit",Leave,ENDPOPUP)

Wait_for_input:
WaitInput()

Run_write:
   DrawBitMap(20,50,ButtonNeg$)

WaitInput(250) {click in the button and wait}
DrawBitMap(20,50,ButtonPos$)
Run("WRITE.EXE")
Goto Wait_for_input

Leave:
End

You can also use any of the icons built into PiXCL, as well as the system defined MessageBox icons as images in buttons. The 
method is essentially the same as shown above, except the DrawBitmap command is replaced by a DrawIcon command.    Other
related commands that are useful to create pushbuttons with images are DrawEdgeRectangle and InvertRectangle.

The icons built into PiXCL and hence a PiXCL runtime can also be changed to whatever you require, using an icon management 
tool.



Getting Mouse Input

To get mouse input in a PiXCL program outside of 3-D command buttons, you use one or more of the SetMouse, SetShftMouse, 
SetCtrlMouse, SetDblMouse, SetRightMouse, SetCtrlRightMouse SetShftRightMouse or SetDblRightMouse commands and 
define rectangular regions on the screen as mouse hit-testing regions. If you have a Microsoft Intellimouse™ or similar, 
SetMidMouse, SetShftMidMouse, SetCtrlMidMouse or SetDblMidMouse commands are also available. Then, when the program 
is pausing for input and you click the mouse within a mouse hit-testing region, the program branches to the label associated with 
that region, as defined by the SetMouse command.    The argument syntax is the same for all twelve mouse commands. Mouse 
active areas can be overlapped. Set[*]Mouse and SetDbl[*]Mouse should generally NOT be overlapped, as the Set[*]Mouse 
command will catch the area first. All the double mouse commands can be overlapped.

You can also define polygon shaped mouse active regions by creating a set of overlapped or adjacent rectangles that cover the 
desired polygonal region.

For example, suppose you want to modify the previous program to display a warning message when the user clicks within the 
window, but misses a 3-D button. Here’s the code to accomplish this:

{Define the menu template}
 SetMenu("Write",Run_write,

ENDPOPUP,
"Exit!",Leave,
ENDPOPUP)

{Draw 3-D buttons}
Button(20,20,60,35,"Write",Run_write,
20,45,60,60,"Exit",Leave)

{Use pixel coordinates for mouse hit testing; more accurate}
UseCoordinates(PIXEL)

{Set mouse hit-testing region to entire screen}
   GetScreenCaps(HORZRES,x)    {Get screen’s vert. resolution}
   GetScreenCaps(VERTRES,y)    {Get screen’s horiz. resolution}

SetMouse(0,0,x,y,Missed,Temp,Temp) {Branch to Missed on miss-hit}
Wait_for_input:

WaitInput()
Run_write:

Run("WRITE.EXE")
Goto Wait_for_input

Leave:
End

{Put up message box when user misses 3-D button with mouse}
Missed:

MessageBox(OK,1,EXCLAMATION,
"Click on a button or select a menu item!",
"You missed...",Temp)
Goto Wait_for_input

In this example, the entire screen is set up as a hit-testing region by the SetMouse command. By using the GetDeviceCaps 
command, the program determines the pixel resolution of the screen driver. For example, if you are using a SuperVGA driver, the
hit-testing region is defined as (0,0) to (1023,767). If you click the mouse within this region but miss a 3-D button, the program 



branches to the Missed label where a message box is displayed telling you to click on a button.



Getting Keyboard Input
PiXCL provides you with three ways to input data from the keyboard. Firstly, if there are multiple string or numeric data that 
potentially needs editing on entry, via the SetEditControl command, secondly, using a TextBox dialog for single lines of text or 
numeric data, and thirdly when there are a set of keystrokes (e.g. accelerator keys for user defined functions and buttons) that 
are required via the SetKeyboard command.

The SetEditControl command is similar to the Button command, and is generally used in conjunction with it to create client area 
dialogs. SetEditControl creates an arbitrary number of single line edit windows of arbitrary size, with text displayed in the 
currently selected font. Edit controls can be used to enter string variable characters, without having to resort to the SetKeyboard 
method described below.

Example of multiple edit controls using the SetEditControl and Button commands.

To read single keystrokes in a PiXCL program, you use the SetKeyboard command to define the keys that you’ll accept. Then, 
when the program is pausing for input and you press a specified key, the program branches to the label associated with that key.

Syntax:
SetKeyboard() This clears all previous SetKeyBoard commands.

or
SetKeyboard("a",Label,"^a",Label,vkey,Label)

Parameters:

"a" Any white key on the keyboard (except function keys and certain keys on 
the numeric keypad). For example, "a" represents lowercase a and "R" 
represents uppercase R.

"^a" Any white key on the keyboard (except function keys and certain keys on 
the numeric keypad) in combination with CTRL. For example, "^b" 
represents CTRL+b and "^V" represents CTRL+V.

vkey A virtual key number taken from the Table below. For example, the virtual 
key number for the F1 function key is 112. Using a virtual key number is the
only way to test for certain keys, including function keys and several keys 
on the numeric keypad.

Label A label you want PiXCL to branch to when the user presses the preceding 
key. For example, the command SetKeyboard("C",Run_calc) causes the 
program to branch to the label Run_calc when the user presses C.



Value Description         Value              Description                                Value             Description

8 BACKSPACE 9 TAB 12 5 on numeric keypad
                            with 
NUMLOCK off

13 ENTER 16 SHIFT 17 CTRL
18 ALT 19 PAUSE (or CTRL + 

                            NUMLOCK)
20 CAPS LOCK

27 ESCAPE 32 SPACEBAR 33 PGUP
34 PGDN 35 END 36 HOME
37 LEFTARROW 38 UPARROW 39 RIGHTARROW

40 DOWNARROW 44 PRINTSCREEN
45 INSERT 46 DELETE 48 0
49 1 50 2 51 3
52 4 53 5 54 6
55 7 56 8 57 9
65 A 66 B 67 C
68 D 69 E
70 F 71 G 72 H
73 I 74 J 75 K
76 L 77 M 78 N
79 O 80 P 81 Q
82 R 83 S 84 T
85 U 86 V 87 W

88 X 89 Y
90 Z 96 Numeric key pad 0

                      (NUMLOCK must 
be on)

97 Numeric key pad 1 
                  (NUMLOCK must 
be on)

98 Numeric key pad 2
            (NUMLOCK must be
on)

99 Numeric key pad 3
                      (NUMLOCK must 
be on)

100 Numeric key pad 4 
                  (NUMLOCK must 
be on)

101 Numeric key pad 5 
            (NUMLOCK must be
on)

102 Numeric key pad 6 
                      (NUMLOCK must 
be on)

103 Numeric key pad 7 
                  (NUMLOCK must 
be on)

104 Numeric key pad 8
            (NUMLOCK must be
on)

105 Numeric key pad 9 
                      (NUMLOCK must 
be on)

106 Numeric key pad *

107 Numeric key pad + 109 Numeric key pad - 110 Numeric key pad . 
                  (NUMLOCK must 
be on)

111 Numeric key pad / 112 Function Key F1 113 Function Key F2
114 Function Key F3 115 Function Key F4

116 Function Key F5 117 Function Key F6 118 Function Key F7
119 Function Key F8 120 Function Key F9 121 Function Key F10
122 Function Key F11 123 Function Key F12 124 Function Key F13
125 Function Key F14 126 Function Key F15 127 Function Key F16
144 NUM LOCK 145 SCROLL LOCK

The following key codes apply to US keyboards only:

186 Colon/semi-colon
187 Plus/equal



188 Less than/comma
189 Underscore/hyphen
190 Greater than/period
191 Question/slash
192 Tilde/backwards single quote
219 Left curly brace/left square brace
220 Pipe symbol/backslash
221 Right curly brace/right square bracket
222 Double quote/single quote

 Virtual Key Numbers Table

Suppose you want to add keyboard support to the previous example so that when you press w or W the program runs Write and 
when you press e or E, the program exits. Here’s how you would modify the program:

{Define the menu template}
SetMenu("Write",Run_write,ENDPOPUP,

"Exit!",Leave,
ENDPOPUP)

{Draw 3-D buttons}
Button(20,20,60,35,"&Write",Run_write,
20,45,60,60,"&Exit",Leave)

{Set up keyboard support for buttons}
SetKeyboard("W",Run_write,
"w",Run_write,
"E",Leave,
"e",Leave)

{Use pixel coordinates for mouse hit testing; more accurate}
UseCoordinates(PIXEL)
{Set mouse hit-testing region to entire screen}
     GetScreenCaps(HORZRES,x)    {Get screen’s vert. resolution}
     GetScreenCaps(VERTRES,y)    {Get screen’s horiz. resolution}

SetMouse(0,0,x,y,Missed,Temp,Temp) 
{Branch to Missed on miss-hit}

Wait_for_input:
WaitInput()

Run_write:
Run("WRITE.EXE")
Goto Wait_for_input

Leave:
End

{Put up message box when user misses 3-D button with mouse}
Missed:

MessageBox(OK,1,EXCLAMATION,
"Click on a button or select a menu item!",



"You missed...",Temp)
Goto Wait_for_input

Note#1: It is also possible to use a SetKeyBoard() command to catch a large number of key codes, and write directly into an edit
dialog region in the client area. See the sample program keyboard.pxl  for one way of doing this.



Sound Card Support

PiXCL provdes a set of commands to play WAV files on standard SoundBlaster™ compatible sound cards. WAV files can be 
played synchronously or asynchronously, and volume, pitch and playrate are adjustable. 

Using WAV files can add useful help or other audible prompting to your applications, and are commonly used in multimedia 
presentations.

One of the ways that sound can be used in to create a WAV file of say, introductory music and speech that runs for a set length 
of time, and play it asynchronously. The PiXCL application continues while the WAV is playing, and at set times, you can update 
the screen with new text and images. Careful use of the WaitInput command ensures that your application plays more or less the
same on systems with a variety of cpus and cpu clock speeds.

PiXCL 5.0 and later also support the set of Multimedia Control Interface (MCI) commands that many devices support. MCI 
commands can be used to play overlapping audio files at the same time.



Serial Communications with PiXCL

PiXCL provides programmed read/write access to your PC serial ports, COM1, COM2, COM3 and COM4, for purposes such as 
reading data streams from input devices like digitising tables, and commanding or reading devices that are controlled from an 
RS-232 port. These can be as diverse as smart home appliances to model trains. 

Most PCs have two serial ports only, COM1 and COM2, with COM2 often assigned to a modem for Internet access. Some PCs 
use COM1 for the mouse input, while most newer PCs have a PS2 style mouse port, which leaves COM1 available for other 
devices.

The PC design supports four standard serial ports that share only two interrrupt lines. Hence, COM1 and COM3 share one, and 
COM2 and COM4 share the other. This means that if you want install two serial cards and use two serial    devices on COM1 and
COM3, your software will have to be able to support shared interrupts.

COM port support in PiXCL is not a device driver, and does not support shared interrupts.

Communications Commands:
ClearCommPort    GetCommPort    ReadCommPort    SetCommPort    WaitCommEvent    WriteCommPort 



Importing images from TWAIN-compliant devices

PiXCL provides command support for TWAIN compliant data source devices. These are typically scanners, digital still and video 
cameras, and some photocopiers with a scanner output function.

Both 16 and 32 bit data sources are supported in TWAIN v1.6. Please note that in TWAIN v1.7 (released September’97), support
for 16 bit devices has been dropped.    See the TWAIN Working Group site at http://www.twain.org for details.

There are hundreds of TWAIN devices on the market, some with only 16 bit drivers, some with both16 and 32 bit drivers. We 
have found that some of the older 16 bit devices do not have very well behaved drivers, and can cause a 32 bit program trying to
acquire an image to crash. We very strongly suggest that
a) you locate the latest TWAIN driver from the device supplier, if 16 bit;
b) you locate a TWAIN 32 bit driver for the device in preference to a 16 bit driver; and
c) if the device is more than five years old, or out of production, that purchase of a new device is justifyable.

Support for TWAIN devices requires the following four files to be present in your Windows directory: TWAIN.DLL and 
TWAIN_32.DLL, and TWUNK_16.EXE and TWUNK_32.EXE. The last two provide the necessary conversion between 16 bit 
TWAIN data sources and 32 bit applications such as PiXCL.    These four DLLs are provided with PiXCL, and are installed if 
necessary. In addition, PiXCL 4.14 and later also provide PXLtwain.DLL, which is the command interface between PiXCL and 
TWAIN_32.DLL. PXLtwain.DLL is also stored in the windows directory.

If you have a file TWAIN32.DLL (note no “_”) in your windows or windows\system directory, it should be deleted, as it is a beta
release library, and is no longer valid for Windows 95/98 or NT 4.0.

In addition, your TWAIN device will come with one or more .DS files. These are the binary drivers (actually DLLs with a DS file 
extension)    that TWAIN_32.DLL needs to work. 16 bit .DS files are stored in your windows\twain directory, and 32 bit .DS files 
in the windows\twain_32 directory.

PiXCL provides twenty-five commands to control the TWAIN device. You can acquire images and write them to the PiXCL image 
list, copy the image to the Clipboard directly, or write the image to a file.

See the sample program twaindev.pxl for examples of using the TWAIN commands.



Running Other Programs

By using the Run(...) and RunExt(...) commands you can execute other applications from within a PiXCL program. For 
example, the following program starts Notepad and then launches a copy of a command interpreter, CMD.EXE: 

Run("NOTEPAD.EXE")
Run("C:\APPS\CMD.EXE")
WaitInput()

Each program you start takes on a life of its own independently of the PiXCL script that invoked it. This means that PiXCL does 
not pause after executing a Run command, but continues with the next command in the script. For example, in the previous 
program, PiXCL starts Notepad then immediately starts CMD.EXE. 

If PiXCL could not run the specified program, four error conditions are trapped, as follows:
 
· the PATH specified is invalid or does not exist.
· the EXE file cannot be found.
· the EXE file is corrupted or unreadable.
· Windows does not enough memory or resources available.

The last error is unlikely to occur with commercial release version programs. If the specified file cannot be run, a MessageBox 
appears informing you of the name of the EXE file, and the apparent reason that the file could not be run. The script will continue
processing in all cases, so it is up to you to decide what to do if the program does not run. The most useful check is to verify that 
the new window created by the EXE actually exists, using the WinExist command.



Using the Windows Shell functions with PiXCL

PiXCL has two commands, ShellAbout and FindExecutable , that use Windows shell functions directly, but there are more 
functions available with a bit of simple programming.

The files c:\windows\Rundll32.exe (Windows 95/98) and    c:\winnt\system32\Rundll32.exe (Windows NT) are used 
extensively by Windows 95 and NT4 to launch a wide range of actions defined in DLLs. For example, many of the Control Panel 
applets are defined in a series of .cpl files, and can be run as part of a PiXCL program, using a command line passed to the Run
or RunExt command. These applets all produce a dialog that can be used as necessary in your PiXCL applications.

If you do a search in c:\windows\system you will find 16 or so .cpl files. These are binary files (actually DLLs with specific entry 
functions), but there are ways to investigate the contents. An easy way is to use the Start:Run window on the Taskbar, with the 
command line syntax shown below.

The general PiXCL Run command syntax of the shell command line is

Run(“path\rundll32.exe shell32.dll,Control_RunDLL filename.cpl,@number[,page_number]”)
or alternatively
Run(“path\control.exe filename.cpl,@number[,page_number]”)

where 
@number the 0-based ordinal for a multi-function applet. 
page_number the optional sometimes 1 and sometimes 0-based property sheet number on a multi-page applet

dialog. Its SUPPOSED to be 1-based according to Microsoft. You’ll need to experiment.

For example, if you right click the Windows 98 screen background and select Properties, you get the Display Properties
dialog, typically with tabs named Background, ScreenSaver, Appearance, Effects, Web and Settings, which are 
numbered left to right 0,1,2,unknown, unknown,3. Hence, to display the Settings tab, the command would be

Run(“path\control.exe desk.cpl,@0,3”)

Note that there are no spaces in    shell32.dll,Control_RunDLL    and filename.cpl,@number[,page_number]. Note also that 
Control_RunDLL is case sensitive, as it’s the entrance point into the shell dll.

Here is a list of some of the Control Panel Applets you will find on your system.    The list is not exhaustive, and your system may 
well be different.

AppWiz.cpl
0 Remove/Install applications
Desk.cpl
0 Display Properties (multi-page)
FindFast.cpl
0 FindFast dialog
Inetcpl.cpl
0 Internet Properties (multi-page)
Intl.cpl
0 Regional Settings Properties (multi-page)
Joy.cpl
0 Joystick Properties
Main.cpl
0 Mouse Properties (multi-page, but sheet indices don't work)
1 Keyboard Properties (multi-page)
2 Printer Icons window
3 Fonts Icons window
ML32cfg.cpl
0 MS Exchange Settings Properties (multi-page)
Mmsys.cpl
0 MultiMedia Properties (multi-page)
1 Sounds Properties (multi-page)



Modem.cpl
0 Modems Properties (multi-page)
Sysdm.cpl
0 System Properties (device manager) (multi-page)
1 Add New Hardware Wizard
Timedate.cpl
0 Date / Time Properties

Another shell command allows you to bring up the format floppy disk dialog. The PiXCL command is
Run(“path\rundll32.exe shell32.dll,SHFormatDrive”)

You can display the “Open With” dialog with the PiXCL command. The dialog displayed is slightly different if the <filename.ext> 
is included in the command line.
Run(“path\rundll32.exe shell32.dll,OpenAs_RunDLL <filename.ext>”)



Invoking on-line Help Files

You can invoke any Windows Help file    (*.HLP) with the either the PiXCL Run (...) command or WinHelp (...) command. The 
standard Help file viewer engine is c:\windows\winhlp32.exe, in Windows 95/98 and c:\windows\system32\winhlp32.exe in 
Windows NT i.e. an standard executable file.    PiXCL 4.22 and later also support the new compiled HTML (.CHM) format that 
comes with Windows 98 and later, with the WinHTMLHelp command.

For example, the following code fragments start WINHLP32 with the argument to display a Help file.

Run("WINHLP32 newapp.hlp")
WaitInput()

and 
WinHelp("newapp.hlp","Contents","")
WaitInput()

are functionally equivalent

The .EXE extension is not necessary as Windows assumes this is correct.    It is also not necessary to include a PATH with 
WINHLP32, as Windows already knows where it is.

See the complete details in the sections on the Run command and the WinHelp and WinHTMLHelp commands.



Printing documents and images with PiXCL

There are several ways to print a document in Windows. The way you are likely most familiar with is starting a document editor 
like NotePad, Write or WordPad, or an image editor like Paintbrush, opening the desired file then selecting the Print menu 
option.    Most Windows utilities and many third party applications also provide a command line print argument.    

For example, if you invoke NotePad with a /p argument, it will open the selected document, start the Print Manager, print the file, 
then close NotePad. 

In a PiXCL program, you can use the Run or RunExt commands to print a document or image. The command syntax could be

Run("NotePad /p textfile.txt")
or

PrintJob$ = "NotePad /p textfile.txt"
RunExt(PrintJob$,NORMAL,"",WinDir$, 0,0,0,0, NOWAIT,0)

You can also locate the executable file associated with a particular file type with the FindExecutable command. For example, if 
your PiXCL application works with a TIF file, on one PC the associated EXE file may be Paint Shop Pro ™, and on another 
ThumbsPlus™. The FindExecutable returns the correct application to print the file, and this is plugged into the Run or RunExt 
command as the first argument.

If you want to print a large file, you could set the NotePad windows to run minimized, using the EnumWindows and WinShow 
commands.    You can also set the printing application window (defaults of 0,0,0,0 above) to negative numbers i.e. outside of the 
viewable area.

The following Windows utilities support command line printing:

NotePad, Write, Paintbrush, CardFile

For printing documents with other applications, check in the application documentation or the manufacturer.    Most new 32 bit 
applications also write information into the Windows Registry that lists the arguments needed for printing documents.    You can 
access the registry with the RegEdit program which is purposely hidden by Microsoft in the Windows directory. Search in the 
CLASSES tree for the relevent program name, then look in the shell branch for the references to print commands.

PiXCL also provides full read and write access into the Windows Registry. See Access to the Windows Registry for more 
information.

The second method is to use the PrintFile command that is built into PiXCL. This is similar to the above method, but does it all in 
one command. Windows supports a so called shell processor that provides document printing support. The shell looks at the 
document type (e.g. INI, TXT, DOC, BMP and so forth), looks up the Registry for the necessary application that is indicated as 
being able to print the document, starts the application in the background and prints it. Finally, the printing application is closed 
automatically. PrintFile is a very handy command, as it enabled you to print any document if the application is installed on your 
PC.

Please note that PrintFile is not meant to provide comprehensive document and imaging print services. If you need to print, for 
example, a Microsoft Word™ document, or a large CORELdraw™ vector file, then the Run(…) method or PrintFile(…) method 
described above is the appropriate choice.    PrintFile is designed for text and other document type files.

You can also print any of the supported bitmap formats with the PrintBitmap command. With this command, you have the option 
of displaying the PageSetup and Print common dialog boxes.



Managing Files and Directories

PiXCL has a wide range of commands that let you manage files and directories, as shown in the table below. For example, here 
is how you use the FileCopy command to copy all the files in the C:\LETTERS directory with a .TXT extension to the root 
directory of drive A:

FileCopy("C:\LETTERS\*.TXT","A:\",Copied_Files)
Here the Copied_Files variable reports the number of files successfully copied.

Command Purpose 

DirChange Makes a specific directory the current directory.
DirExplore Created as Explorer window that lists the current directory 

contents.
DirGet Gets the current directory.
DirGetSystem Gets the Windows    system directory.
DirGetWindows Gets the Windows    directory.
DirMake Creates a new directory.
DirRemove Deletes an existing directory.
DiskChange Makes another disk drive current.
FileCopy Copies one or more files from one directory to another.
FileDelete Deletes one or more files from disk.
FileExist Tests whether a file exists.
FileExtension Extracts the file extension from a filename string.
FileGetDate Reads the date stamp in a file’s directory entry.
FileGetSize Reads the size in bytes of the specified file.
FileGetTime Reads the time stamp in a file’s directory entry.
FileMove Moves one or more files from one directory to another.
FileName Extracts the rootname from a filename string.
FilePath Extracts the path from a filename string.
FileRead_INI Read section and key strings from any INI file
FileRename Changes the name of one or more files.
FileWrite_INI Write section and key strings to any INI file.
GetDiskSpace Returns the disk type, total space and free space.

As another example, here’s how you can use the DirGet commands to place the source and current directory in the 
SourceDir$ and CurrentDir$ string variables:

DirGet(SourceDir$)
... some FileGet commands or similar ...
DirGet(CurrentDir$)
This command is useful to locate the starting directory of a program and store it in a string variable, then change to another 
directory.    This is analogous to the Program Manager: File Properties "Command Line" and "Working Directory" entries.

PiXCL 4.0 and later also support the use of initialization    or INI files to store application parameters. INI files should always be 
created and edited with NotePad. PiXCL commands FileRead_INI and FileWrite_INI provide access to any INI file in your 
computer, including SYSTEM.INI and WIN.INI. 

An INI file for a PiXCL application could include such information as 
· program startup display coordinates
· default background color
· last time a certain file was accessed
· a bitmap to be displayed



More than one INI file can be accessed by your PiXCL application. For example, if you have a PiXCL program that works in 
conjunction with another application called BMPDSPLA.EXE that, say, keeps track of a working directory, and both applications 
need to work from that same directory, using the FileWrite_INI command to change BMPDSPLA.INI allows either application to 
set the working directory.

Any information that can be stored in an INI file can be written into the Windows Registry, also known as the Registration 
Database. Microsoft suggests that all new 32-bit applications make use of the Registry rather than using INI files. PiXCL 
provides a set of commands starting with RDB (i.e. Registration DataBase) to read and write the Registry.    

See also Access to the Windows Registry for more information.



Clipboard Operations

PiXCL has three commands for reading text from and writing ASCII text to the Windows Clipboard, plus a command to empty the
Clipboard.

ClipboardAppend  — Adds text to the end of the Clipboard’s existing text.
ClipboardGet         — Reads text from the Clipboard.
ClipboardPut                  — Copies text to the Clipboard, replacing Clipboard’s current contents.
ClipBoardEmpty  — Clears the Clipboard of text and images and other binaries.

The Clipboard functions are extremely useful for passing text information between programs. For example, a control program 
can pass a set of directories or filenames to subsidiary programs.

PiXCL supporta some binary image data access to the Clipboard too. For example, the TWAIN_AcquireToClipboard command 
will copy a bitmap from a scanner type device, to the clipboard.

Images can be copied to and from the clipboard with the 

ClipboardGetBitmap – Gets a bitmap into the PiXCL image list in memory.
ClipboadPutBitmap -- Copies a bitmap from the image list.
CopyWindowToClipboard    -- Copies a selected window to the clipboard i.e. window capture.



Creating and using INI files

PiXCL provides two commands, FileRead_INI and FileWrite_INI to access any system or application initialization file.    For 
example, you may need to invoke a paint and draw program with a standard set of startup parameters like working image and 
saving image directories, default position or file type.    A PiXCL program with perhaps 20 to 50 lines of code can be created to 
access these desired parameters in your own INI file, and update the application INI file before running the application. If the 
DropFileServer command is used, you can even select a group of files of various formats and have the application load them 
sequentially.

PiXCL also provides access to the Windows Registration Database that is used to store information in the same way as INI files.

See also Access to the Windows Registry for more information.



Access to the Windows Registry or Registration Database

You are probably aware of and used to using Windows application initialization files, or INI files as they are more commonly 
known. These are described in moderate detail in the section of this manual that references the FileRead_INI and FileWrite_INI 
commands.

INI files are very useful for storing a wide variety of application and system parameters, but with the advent of 32 bit Windows 
and more particularly Microsoft Object Linking and Embedding 2, or OLE2, the basic INI file format is too limiting for the types of 
reference data that needs to be stored, so most new Windows applications make use of the Registration Database or Registry to
store a wide variety of information about applications.    The Registry has been a part of Windows since v3.0, and it can be 
accessed by anyone who can locate the Windows Registry edit utility in the Windows directory. 

This utility is made less obvious on purpose because it is very possible to corrupt the Registry if the common "trial and error" 
approach is used by inexperienced users (and by some experienced users too !). If the Registry becomes corrupted, you may 
not be able to reboot Windows, and a full re-install will often be necessary. 

If you make a mistake and corrupt the Registry, providing you have previously saved the registry, you can restore the registry as 
follows.

1 Click the Start button, and then click Shut Down.

2 Click Restart The Computer In MS-DOS Mode, and then click Yes.

3 Change to your Windows directory. For example, if your Windows directory is C:\Windows, 
you would type the following:
cd c:\windows

4 Type the following commands, pressing ENTER after each one. (Note that System.da0 and
User.da0 contain the number zero.)
attrib -h -r -s system.dat
attrib -h -r -s system.da0
copy system.da0 system.dat
attrib -h -r -s user.dat
attrib -h -r -s user.da0

copy user.da0 user.dat
5 Restart your computer.

Following this procedure will restore your registry to its state when you last successfully started your computer.
 

The Registry contains information that is critical to the correct operation of your computer, so before accessing and modifying 
the contents of the Registry, you should make a back up copy of the Registry. You can do this using the RegEdt32 (Win NT) or 
RegEdit (Win 95, also found in NT)) utility, as detailed in the REGEDIT on-line help.    

On-line Help information on the Registry is very limited in Windows 95, so we will discuss it in moderate detail here. A full 
discussion of the Registry data formats and structures is beyond the scope of this User Manual, so if you need more detailed 
information, may we suggest a visit to your nearest computer bookstore to look in the Windows programming section.

The Registry is a hierarchical database made up of keys that are linked together to form hierarchies or tree structures similar in
general format to the file system you are likely familiar with by now.    These keys are the fundamental entities in the database. 

The Registry has six keys, also called root keys, that serve as entrypoints to the database for any application. Links provide a 
mechanism to traverse the database from a root key to other subkeys. The link between two keys also serves to establish the 
relationship of a subkey, so the subkey is further from the root of the hierarchy than the other key in the link.

Each key has a name and a default value. A key can also have other named values associated with it. A value can be named 
or unnamed and has its own storage area for a data value. The data value can store binary, numerical, string, delimited strings,



or other types of data.

PiXCL provides six predefined constants for Registry access to permanently open keys.

@RDB_CLASSES_ROOT
This tree stores information about file type associations and most applications parameters. Newly installed applications will 
generally store information in new keys created in this tree. A PiXCL application is most likely to access registry data in this 
tree.

@RDB _CURRENT_USER
Application events, configuration, system and software information.

@RDB _LOCAL_MACHINE
Application events, configuration, system and software information.

@RDB _USERS
Information about user accounts and individual software and setup options.

@RDB_CURRENT_CONFIG
Display and system parameters.    

@RDB_DYN_DATA
Configuration Manager and Performance statistics.

Handles are usually negative integers. You can access a permanently open handle (i.e. one of the predefined constants), or by 
specifying a handle returned by the RDBOpenKey command.

Using the Registry access commands in PiXCL

To use the Registry access commands in PiXCL, you will need to become familiar with using the RegEdit    Registry Editor, 
because in most cases what you will be wanting to do is extract and possibly update registry entries from within a PiXCL 
application program. For example, many programs keep a list of the 'n' previously accessed files, or perhaps the current file 
types, working and storage directories.

If you start up RegEdit, and look in the 
CLASSES_ROOT tree, and find the entry 
for Pbrush, you will see the subtree shown 
left with some common subkey names.

Clsid Class Identifier, used with OLE 2. This is obtained by developers from Microsoft and is supposed to 
be unique for any applications.

protocol Also used with OLE 2
shell The command used with the command shell 

Other commonly used subkey names.

DefaultIcon The icon that is used in the Start bar e.g.    app.exe,1
RecentFileList A delimited list of ‘n’ files previously edited.

Subkey names are arbitrary, and can contain spaces if required. For example, RecentFileList and Recent File List (with 
spaces) are different subkeys.



PiXCL Commands to access the Registry

There are eight commands in PiXCL 4.4 to read and write the Registry. Briefly, these are

RDBCloseKey(InHandle, Result)
The RDBCloseKey function releases the handle of the specified key. Permanently open keys cannot be closed, and if 
used, Result returns 0.

RDBCreateKey(InHandle, SubKey$, ObjectType$, OutHandle, Result) 
The RDBCreateKey function creates the specified key. If the key already exists in the registry, the function opens it. 

RDBDeleteKey(InHandle, SubKey$,Result)
Windows 95: The RDBDeleteKey function deletes a key and all its descendants.
Windows NT: The RDBDeleteKey function deletes the specified key. This function cannot delete a key that has 
subkeys, so it is necessary to delete the last key in each branch at a time.

RDBEnumKey(InHandle,Index,SubKeyName$,ClassName$,Result)
RDBEnumKey enumerates subkeys of the specified open registry key InHandle. The function retrieves information 
about one subkey each time it is called. 

RDBOpenKey(InHandle,SubKey$,OutHandle)
RDBOpenKey returns a handle of the specified subkey. 

RDBQueryKey(InHandle,ClassName$,NumberOfSubKeys,NumberOfValues,Result)
RDBQueryKey returns an assortment of information about a specified key or predefined constant, useful in defining 
other registry commands.

RDBQueryValue(InHandle,SubKey$,SubKeyRtn$,Result)
RDBQueryValue returns the value associated with the specified subkey.

RDBSetValue(InHandle,SubKey$,Value$,TOKEN, Result)
The RDBSetValue function stores data in the value field of an open registry key. It can also set additional value and type 
information for the specified key. 

For more detailed information, see

RDBCloseKey, RDBCreateKey, RDBDeleteKey, RDBEnumKey, RDBOpenKey, RDBQueryKey, RDBQueryValue, RDBSetValue



Building Runtime .EXE Files
Both FreePiXCL 4.48 and PiXCL Registered versions come with a free unlimited runtime .EXE builder that you can use to share 
your programs with as many people as you want—even if they don’t own PiXCL. Here are the main features of the runtime:

· Your PiXCL program is transformed into a standalone executable (.EXE) file.
· You can start the resulting .EXE file just like any other Windows program. Command line 

arguments are supported.
· No PiXCL interpreter is needed as it is built into the EXE.
· You can distribute your FreePiXCL and PiXCL programs royalty free.

Runtime Builder Directions

To turn a PiXCL program into a standalone executable (.EXE) file, you use PXL_make50.EXE, which is part of the PiXCL MDI 
Editor, and is invoked by clicking the appropriate button.    It prompts you for the following items:

· The name of your PiXCL script file (for example, DEMO.PXL).
· The name you want to give the final executable file (for example, DEMO.EXE).
· Optionally, you can specify several Window style variations to the Runtime window style.

PXL_make will then create the final executable file on disk. For more information, see the PiXCL MDI Editor Help and PXL_make
Help.

Notes: 
The PiXCL Runtime does not let you combine multiple PiXCL scripts into a single .EXE file. Instead, you must make a 
separate .EXE file for each script.    You will most likely find that this is never an issue, since a PiXCL script can be up to 1GB in 
length.



Creating your own CD-ROMs
Windows 95 / 98 / NT / 2000 support a feature called AutoPlay that enables a CD-ROM title to automatically start when the CD-
ROM is inserted into the drive. The AutoPlay feature can also be turned on and off by setting a value in the Control Panel, and 
rebooting Windows so that the change takes effect.

AutoPlay automates the procedures for installing and configuring products designed for Windows-based platforms that are 
distributed on compact discs. When you insert a disc containing AutoPlay into a CD-ROM drive on a computer running Windows,
AutoPlay automatically starts an application on the disc that installs, configures, and runs the selected product. 

Enabling AutoPlay on a CD-ROM

If you are building an AutoPlay CD-ROM title, you must create an Autorun.inf file in the root directory of your CD application.

Suppressing AutoPlay

You can manually prevent the Autorun.inf file on a compact disc from being parsed and carried out by holding down the SHIFT 
key when you insert the CD-ROM disc. 

The Autorun.inf File

The Autorun.inf file is a text file located in the root directory of the CD-ROM disc. This file contains the name of the startup 
application on the disc (the application that runs automatically when the disc is inserted in the CD-ROM drive), and the icon that 
you want to represent the AutoPlay-enabled compact disc in the Windows user interface. The Autorun.inf file also can contain 
optional menu commands that you want added to the shortcut menu, which is displayed when the user right-clicks the CD-ROM 
icon. 

At a minimum, an Autorun.inf file contains three lines of text and identifies the startup application and the icon, as shown in the 
following example: 

[autorun]
open=filename.exe
icon=filename.ico

An application's setup program is often called Setup.exe, but it can be any name you choose. 

The [autorun] section identifies the lines that follow it as AutoPlay commands. An [autorun] section is required in every 
Autorun.inf file. The open command specifies the path and file name of the startup application, and the icon command specifies 
the file that contains the icon information. 

The open command also supports arguments and path statements. For example, you may want a program in a sub-directory to 
be started by AutoPlay, because the root directory has other information in it. The open command might be in this case …

open=.\subdir\filename.exe  arg#1

The icon command also has several forms. You can specify an icon file as in the example above, and write the icon file into the 
root directory of your CD, or alternatively, specify an icon resource in an executable file. For example, you could use

open=setup.exe
icon=setup.exe,1

The “,1” indicates that the first icon in the Setup.exe should be used as the default icon that appears in the Windows TaskBar 
when the application specified by the open command is running.

You will want to test that the AutoPlay function on your new CD title is working correctly, without wasting a blank CD. The solution
is to enable AutoPlay on any disk. This is done by changing the NoDriveTypeAutoRun Value

Setting the NoDriveTypeAutoRun Value



The NoDriveTypeAutoRun value in the registry is a 4-byte binary data value of the type REG_BINARY. The first byte of this 
value represents different kinds of drives that can be excluded from working with AutoPlay. The initial setting for this byte is 0x95,
which excludes the unrecognized type drive, DRIVE_UNKNOWN, DRIVE_REMOVEABLE, and DRIVE_FIXED media types from
being used with AutoPlay. 
You can enable a floppy disk drive or other removable disk drive (e.g. read-write optical drives, Iomega ZIP™ and JAZZ™ 
drives) for AutoPlay by resetting bit 2 to zero, or by specifying the value 0x91 to maintain the rest of the initial settings. A table 
identifying the bits, bitmask constants, and a brief description of the drives follows: 

Bit number Bitmask constant Description
0 (low-order bit) DRIVE_UNKNOWN Drive type not identified.
1 DRIVE_NO_ROOT_DIR Root directory does not 

exist.
2 DRIVE_REMOVEABLE Disk can be removed from 

drive.
3 DRIVE_FIXED Disk cannot be removed 

from drive (a hard disk).
4 DRIVE_REMOTE Network drive.
5 DRIVE_CDROM CD-ROM drive.
6 DRIVE_RAMDISK RAM disk.
7 (high-order 
bit)

Reserved for future use.

Note For Windows 95 and NT, you must restart Windows Explorer before any changes take effect.

Using the Registry to Change AutoPlay Settings

The registry is a feature of Windows that supersedes the initialization (.INI) and application configuration files. For information 
about manipulating the registry within a PiXCL application, see Using the Registry .

If your product records and uses initialization information, you can use the registry to store and retrieve this information. Your 
startup application can use the information in the registry to determine whether the product needs to be installed. If there are no 
registry entries for your product—which means your product is being used for the first time—you could display a dialog box that 
lists the setup options. If your product is listed in the registry—which means it has already been installed—you could skip the 
setup options. 

By changing the system registry, you can enable a computer to read the Autorun.inf file from a floppy or other removable disk. 
This feature of implementing AutoPlay on a floppy disk is provided only to help you debug your Autorun.inf files before you burn 
the compact disc. AutoPlay is intended for public distribution on compact disc only. To implement AutoPlay on a floppy disk, carry
out the following procedure: 

· In the Registry Editor (Regedit.exe), click Edit, and then click Find. 
· In the Find What box, type the following, and then click Find Next: 

NoDriveTypeAutoRun 
· Click Edit, and then click Modify. 
· Change the data of the NoDriveTypeAutoRun value from 0000 95 00 00 00 to 0000 91 00 00 00, and then click OK. 

This enables AutoPlay on any drive. You must, however, start AutoPlay manually when it is installed on a removable disk. To do 
this, double-click the floppy disk icon, or right-click the floppy disk icon, and then click AutoPlay. 

· After you complete your tests of Autorun.inf, reset the value of NoDriveTypeAutoRun to 0000 95 00 00 00. 

Note #1: Because implementing AutoPlay on a floppy disk provides an easy way to spread computer viruses, it is appropriate to 
suspect that any publicly distributed floppy disk that contains Autorun.inf files is contaminated.

Note #2: It is considered polite practice for a CD-ROM title to be able to run directly from the CD-ROM, without installed any files
to the user’s hard disk. A PiXCL application is self-contained, and so long as PXL_msg.DLL, PXLimage.DLL and PXLbtmps.DLL 
are present in the same directory as the EXE file, your application will run from the CD-ROM.
GeoPiXCL: add PXLgeofn.DLL, PXLgeofmt.DLL, PXLshape.DLL and any user DLLs into the same directory as the 
PXLimage.DLL.







DrawArc(x1 ,y1, x2, y2 ,x3, y3, x4, y4)

Draws an elliptical arc. The border is drawn according to the default pen, or the pen last set with the UsePen command. 



DrawBackGround

Draw the background in either the default color or the color last set in the UseBackGround command. Backgrounds can also be 
drawn as a bitmap with the DrawBitMap and DrawSizedBitMap commands.



DrawBitMap(x, y, FileName$)

Draw the bitmap specified, starting at the top left corner. Bitmaps must have either a .BMP, .RLE, .RAS, .TIF, .JPG, .JIF, .PCD, 
PNG, .PCX or .TGA extension.    Bitmaps will be drawn according to the available number of colors in the Windows palette. 

The DrawPreviewBitmap command has the same syntax.



DrawZoomedBitmap(x1,y1,x2,y2,FileName$,px,py,ZoomFactor)

Zoom the specified bitmap into the target rectangle, on pixel px,py, at ZoomFactor 1 to 16.



DrawChord(x1, y1, x2, y2, x3, y3, x4, y4)

Draw a chord with the default pen or pen last defined in the UsePen command.



DrawEllipse(x1, y1, x2, y2)

Draw an ellipse or circle with the default or current pen defined by the UsePen command.



DrawFlood(x, y, r, g, b)

Fills an enclosed shape or area bounded with the specified color. The shape can be square or a random polygon. The fill color is 
either the default color or the color specified by the last UseBrush command.



DrawFloodExt(x,y,r,g,b,BORDER/SURFACE)

Fills out from a    bounded enclosed shape or area    while the specified color is found.The shape can be square or a random 
polygon. The fill color is either the default color or the color specified by the last UseBrush command.



DrawLine(x1, y1, x2, y2)

Draw a line between the two coordinate points with the pen defined in the last UsePen command.



DrawIcon(x, y, width, height, TOKEN)

Draws one of the sixteen embedded PiXCL icons or one of four system icons at the specified coordinates. If either width or 
height are zero, the icon is drawn at the default size.

DrawIconFile(x, y, width, height, File$,TOKEN1,TOKEN2)
Draws an external icon or cursor file at the specified location and size. TOKEN1 defines CURSOR or ICON, TOKEN2 defines 
OPAQUE or TRANSPARENT.



DrawNumber(x, y, n)

Draw the number at the specified coordinates, in the default font or the font specified in the last UseFont command.



DrawPie(x1, y1, x2, y2, x3, y3, x4, y4)

Draws a pie wedge.



SetColorPalette(BITMAP/GENERATE)

Controls whether PiXCL uses a BitMap’s own color palette or generates its own evenly distributed color palette.



UseBrush(token, r, g, b)

Fill an enclosed region with the color and TOKEN pattern. Tokens are
SOLID 
DIAGONALUP
DIAGONALDOWN
DIAGONALCROSS
HORIZONTAL
VERTICAL
CROSS
NULL



UseFont(FontName$,Width,Height,tokens,r,g,b)

Draw text in the specified font, size and color. Three Tokens are required, one each from each pair listed below.

BOLD / NOBOLD
ITALIC / NOITALIC
UNDERLINE / NOUNDERLINE



UsePen(token,Width,r,g,b)

Use the specified width and color pen in DrawLine commands. Token is 

SOLID draw a solid line _________
NULL                                no line is visible
DASH draw a dashed line - - - - - - -
DOT draw a dotted line . . . . . . . .
DASHDOTDOT draw a line __ . . __ . . __ . .



DrawEdgeRectangle(x1,y1,x2,y2,TOKEN1,TOKEN2,TOKEN3)

Draw a rectangle at the coordinates above in the current background color, with the selected 3D border styles.



DrawRectangle(x1, y1, x2, y2)

Draw a rectangle at the coordinates above. The border is in the current UsePen command, and the rectangle is filled with the 
current UseBrush color, if its TOKEN is not to NULL.



DrawShadeRectangle(x1,y1,x2,y2,r1,g1,b1,r2,g2,b2,TOKEN)

Draw a color gradient rectangle at the coordinates above. either TOPBOTTOM or BOTTOMTOP, from RGB color 1 to RGB color 
2.



DrawRoundRectangle(x1, y1, x2, y2, x3, y3)

Draws a rectangle with rounded corners, radius x3, y3. The border is in the current UsePen command, and the rectangle is filled 
with the current UseBrush color, if its TOKEN is not to NULL.



DrawSizedBitMap(x1, y1, x2, y2, FileName$)

Draw the named Bitmap file (.BMP or .RLE only) into the rectangle specified. RLE bitmaps should be created with multiples of 
four pixels, or else the fill pixels will appear as a black vertical line on the side of the image. BMP files of the same size do not 
have this problem. Bitmaps can be 1, 4, 8 or 24 bits per pixel. The image will be displayed in the available colors in the Windows 
video driver static palette.    In a 256 color driver the static map is 20 colors, and in 64K color driver, the static map is usually    
4096 colors.



DrawStatusText(x1,y1,x2,y2,Text$,NOBORDER | POPOUT

Draws a single line of text in a status bar with a medium gray background (192,192,192) and either a 3D border (the default), or 
no border, according to the TOKEN.



DrawStatusWinText(Part,Text$)

Draws the relevent text into the specified part of the status bar, if it has been enabled.



DrawText(x,y,Text$)

Draws the specified single line text string in the current font at the coordinates.



DrawTextExt(x1, y1, x2, y2,Text$,LEFT | CENTER | RIGHT)

Draws a single or multi-line text string in the current font, in the rectangle specified, and justified according to the TOKEN 
argument.



GetBitMapDim(Filename$,Lines,Pixels,BitsPerPixel)

Access the specified bitmap file and report the number of lines, pixels per line and the number of bits per pixel (1, 4, 8 or 24).



GetScreenCaps(TOKEN, Result)

Available TOKENS are

HORZSIZE / VERTSIZE                get the horizontal or vertical size in millimeters (METRIC mode)
HORZRES / VERTRES                  get the horizontal or vertical size in pixels (PIXEL mode)
NUMCOLORS                                              get the number of colors in the static color map. 

For 8 bit displays, this returns a number (typically 20), and for displays with more than 256 colors, returns the value -1.      For 24 
bit displays, the static color map has 4096 entries.

DESKTOPHORZRES                 For NT only.
DESKTOPVERTRES                        get the virtual horizontal or vertical size in pixels (PIXEL mode)

NUMBRUSHES
NUMPENS
NUMFONTS
SIZEPALETTE
COLORRES
NUMRESERVED



UseBackGround(OPAQUE/TRANSPARENT,r,g,b)

Controls the background mode and color. 

OPAQUE fills the background of character cells, and is faster.
TRANSPARENT does not fill the background of character cells, and is the slower mode.



UseCoordinates(PIXEL / METRIC)

Use the appropriate screen coordinate system. PIXEL mode uses a 1000x1000 grid and is the most accurate for drawing 
graphics and text. METRIC mode uses increments of 1mm, and is far less precise. 

For applications that support many resolutions, it often looks better    to use PIXEL mode for all displays.



DirChange(DirectoryName$,Result)

Sets the current directory to the specified drive and path.    It is often useful to check if the target directory actually exists.



DirGet(DirectoryName$)

Gets the current directory, including the full disk and path. It is often used for tracking the directory of source files, libraries, or 
getting the new directory selected in a FileGet operation. The current directory can be changed by using the CHANGEDIR token 
in the FileGet command.
We suggest that DirGet() be used in the initialization of all PiXCL programs, so the start up directory (the initial current directory) 
can be saved in a string variable for later use.



DirGetSystem(DirectoryName$)

Gets the Windows system directory and path. This will usually be "c:\windows \system".



DirGetWindows(DirectoryName$)

Gets the Windows directory. This will usually be "c:\windows".



DirMake(DirectoryName$, Result)

Creates a new directory. If successful, Result is set to 1, otherwise    it is set to 0.



DirRemove(DirectoryName$, Result)

Removes an existing directory.



DiskChange(DriveLetter$, Result)

Sets the active disk drive.



DropFileServer(ENABLE | DISABLE,FileList$)

Enables or disables the dropfile server function. FileList$ should be a null string with the DISABLE call.



FileCopy(SourceName$,DestinationName$,Result)

Copies a file from one directory to another. See also the FileMove command.



FileExtension(FileName$,Extension$,Result)

Extracts the extension of a disk-path-filename string.



FileName(FileName$,RootName$,Result)

Extracts the rootname of a disk-path-filename string.



FilePath(FileName$,Path$,Result)

Extracts the Path of a disk-path-filename string.



FileGet(Filter$,InitFile$,InitDir$,Caption$,token,ChosenFile$)

Lets you get a file using the Windows common dialog box library COMMDLG.DLL. The available TOKENS are

CHANGEDIR 

CHANGEDIRMULTI

CHANGEDIR_EXIST

CHANGEDIRMULTI_EXIST

On exit of the command, change the current disk\directory to the selected 
directory from the initial directory specified. This will affect the result of a 
DirGet() command.
Enables file multi-select operations.

Checks if the file and path exists. An error dialog appears if the file cannot 
be located.

Combination of the above.

NOCHANGEDIR

NOCHANGEDIRMULTI

NOCHANGEDIR_EXIST

NOCHANGEDIRMULTI_EXIST

If a new disk\directory was selected, do not change the current directory 
setting.
Enables file multi-select operations.

Checks if the file and path exists. An error dialog appears if the file cannot 
be located.

Combination of the above.



FileDelete(FileName$, Result)

Deletes the specified file or files. Wildcards "*" and "?" are allowed.



FileExist(Filename$, Result)

Lets you determine if a file exists.



FileGetDate(Filename$, Year, Month, Day, Result)

Reads in a file's directory entry.



FileGetDateExt(Filename$, TOKEN, Year, Month, DayOfWeek, Day, Result)

Gets the extended information in Windows 95 and NT 3.51.



FileGetSize(Filename$,Size)

Gets the size of a specified file in bytes. 



FileGetTime(Filename$,Hours, Minutes,Seconds,Result)

Reads in the file's time-stamp.



FileMove(SourceName$,DestinationName$,Result)

Moves the file from one directory to another.



FileRead_ASCII(FileName$,Offset,Length,Field$,Res)

Read a field from a text file.



FileRead_INI(INI_file$,Section$,Key$,Return$)

Reads the specified Windows or private initialization file section or key string.



FileRename(SourceName$,DestinationName$,Result)

Changes the name of one or more files.



FileWrite_ASCII(FileName$,Offset,Length,Field$,Result)

Writes a field to a text file.



FileWrite_INI(INI_file$,Section$,Key$,String$,(NO)WARN,Result)

Writes the specified Windows or private initialization file section or key string.



GetDiskSpace(Disk$,Type$,TotalSpace,FreeSpace)

Returns the disk type (FIXED, REMOVABLE, REMOTE, CD-ROM, RAMDISK, UNKNOWN), plus the total space and available 
free space in Kbytes.



GetVolumeType(RootDir$,FileSysType$,Result)

Gets the filesystem of the named root directory (FAT, NTFS, HPFS)



ClipBoardAppend(String$, Result)

Adds text to the end of the Windows Clipboard.



ClipBoardEmpty

Empties the Windows Clipboard



ClipBoardGet(String$, Result)

Reads text from the Windows Clipboard.



ClipBoardPut(String$, Result)

Copies String$ to the Windows Clipboard, replacing the current contents.



Help Topics for PiXCL v4.0

Click on the green text to navigate around the hypertext links in the help document. Additional help is available by pressing the 
F1 key.



The Windows GDI

The Graphics Display Interface is the set of high level commands that programs like PiXCL can call to draw pixels on the screen,
in any format ot style. The complexities of the specific hardware is insulated from the application by the Windows video driver 
itself.



Ansi(String$, Code)

Returns the ANSI code for the first character in the string.



Chr(Code, String$)

Returns a one-character string based on the specified ANSI code.



Instr(String1$, String2$, Location)

Finds the starting location of one string within another.



LCase(String$)

Converts a string to lowercase.



Left(String$, Place, Result$)

Returns a specified number of characters from the left of the string.



LeftOf(String$, Location, Result$)

Returns all characters to the left of a location in a string.



Len(String$, Length)

Returns the length of a string.



Pad(String$, Length)

Pads a string with spaces to a specified length.



Right(String$, Places, Result)

Returns a specified number of characters from the right of the string.



RightOf(String$, Location, Result)

Returns all characters to the right of a location in a string.



Space(String$, Length)

Initializes a string to a specified number of spaces.



Str(Number, String$)

Converts a number to a string.



StrCmp(String1$, String2$, Result)

Compares two strings (case sensitive).



StrCmpI(String1$, String2$, Result)

Compares two strings (case insensitive).



StrRepl(String1$, OldSubString$, NewSubString$, Result)

Replaces the first instance of a substring in a string.



Substr(String$, Places, Location, Result$)

Returns a specified number of characters from a string starting at a specified location.



Trim(String$)

Trims trailing spaces from a string.



TrimExt(String$,L|R|A)

Trims leading and/or trailing spaces from a string.



UCase(String$)

Converts a string to upper case.



Val(String$, Number, Result)

Converts a string to a number. If successful the numbe is in the range 0 - 65535.



ChangeMenuItem(Item$, CHECK/UNCHECK/GRAY/ENABLE, Result)

Checks, unchecks, grays, or enables a pop-up menu item.



GetMenuStatus(Item$, CHECKED/GRAYED, Result)

Checks whether a menu item is grayed or checked.



InfoMenu(REMOVE/ADD)

Lets you remove or replace the PiXCL Info menu item that when enabled, appears on the right hand side of the menu bar.



SetMenu(Top1$, IGNORE/Label, ..., ENDPOPUP)

Builds a custom menu. The command SetMenu() clears any existing menus, and will
leave the menu bar blank.



Gosub <Label>

Executes a subroutine. A "Return" statement is required.



Goto <Label>

Branches to <Label>.



If <condition> then <commands>

Executes commands conditionally. If true, any additional commands
on the SAME line will be executed.



If-Else-Endif

Executes commands conditionally, using the structured If.
If <condition>

commands
Else

commands
Endif



Return

Returns from a subroutine.    



Button(Btn1_x1, btn1_y1, Btn1_x2, Btn1_y2, STYLE,Btn1Text$, Label, . . .)

Creates custom 3-D command pushbuttons, radio buttons, checkboxes or group boxes in any comnination. STYLE token can be
PUSH|RADIO|AUTORADIO|CHECK|AUTOCHECK|GROUP. These are the current system color, usually gray. The command 
Button() clears any existing buttons assignments.

Full details.



ListBox(Caption$, List$, Delimiter$, Result$)

Displays a dialog box with a list box inside.



ListBoxExt(Label$,List$,Delim$,Help$,Res$)

Displays a dialog box with an extended multi-line list box inside, as well as optional Help messagebox



MessageBox(OK/..., DefaultButton, STOP/..., Text$, Caption$, ButtonPushed)

Creates a custom message box. The available button TOKENS are

OK        OKCANCEL      YESNO      RETRYCANCEL        YESNOCANCEL 
ABORTRETRYIGNORE

The available icon TOKENS are

STOP    INFORMATION      EXCLAMATION      QUESTION      NOICON



SetKeyboard("a", label, "^a", label, vkey, label)

Sets up where the program branches to when the user presses a key.
The command SetKeyBoard() clears any existing key assignments.



SetMenu(Item1$, IGNORE/Label, ..., ENDPOPUP)

Creates a custom menu. There is a SEPARATOR token as well.
The command SetMenu() clears any existing menus, and will
leave the menu bar blank.



SetWaitMode(NULL/FOCUS)

Controls how PiXCL behaves after a Run command starts another application and PiXCL encounters a WaitInput command in 
your script.



TextBox(Text$, Caption$, Input$, ButtonPushed)

Displays a dialog box with a single-line edit control.



TextBoxExt(Text$,Label$,Help$,Input$,Btn)

Displays a dialog box with a single-line edit control and optional Help messagebox.



UseCursor(TOKEN)

Controls the appearance of the mouse cursor. The available TOKENS are
APPSTARTING        ARROW        CROSS        IBEAM
ICON        NO        SIZE        SIZEALL        SIZENESW
SIZENS        SIZENWSE        SIZEWE        UPARROW
WAIT



EnumWindows(WindowList$,VISIBLE/ALL,Delimiter$)

Creates a delimited list of all parent windows.



SendKeys(WindowName$,KeyStrokes$,PauseRespond,PauseKeyStroke,Respond)

Sends virtual keystrokes to the Windows 95, NT 3.51 or Windows 3.1 application. Some restrictions apply. See details in text.



SetPriority(CommandLine$,IDLE/NORMAL/HIGH,Result)

Sets the priority of the PiXCL process, or a process launched by PiXCL.



SetSendKeysPriority(TOKEN)

Available TOKENS are
LOWEST
BELOW_NORMAL
NORMAL
ABOVE_NORMAL
HIGHEST



SetWindow(MAXIMIZE/MINIMIZE/RESTORE)

Maximizes, minimizes, restores the PiXCL window.



StatusWindow(TOKEN_1,TOKEN_2,Parts,End1,End2,End3,End4)

ENABLE|DISABLE the status bar window at TOP|BOTTOM. See also the DrawStatusWinText command.



ProgressBar(ENABLE|DISABLE,x1,y1,x2,y2)

Enable or disable a progress bar at the specified co-ordinates, or if all co-ordinates are zero, at the bottom of the client area. Use
the UpdateProgressBar command to modify the display.



UpdateProgressBar(Value,RELATIVE|ABSOLUTE|INCREMENT)

Update the the progress bar display according to the mode token. Use with the ProgressBar command.



UseCaption(Text$)

Sets the text that appears in the title bar of the current or selected window.



WinClose(WindowName$,Res)

Closes the specified window, if it exists. Use this command with the EnumWindows(...) command.



WinExist(Windowname$, Result)

Determines whether an application is running. The exact name must be checked.



WinGetActive(Windowname$)

Returns the name of the active application window.    This is not usable with child windows.



WinGetLocation(WindowName$,X1,Y1,X2,Y2,Res)

Get the screen position of the specified window. The exact name must be known or acquired with the EnumWindows(...) 
command.    The returned co-ordinates can be negative.



WinLocate(Windowname$, x1, y1, x2, y2, Result)

Locates a window at the specified co-ordinates.    The co-ordinate is specified in the current mode, either METRIC or PIXEL.    
Negative co-ordinates are supported.

In PiXCL 4.0 and later, WinLocate or WinShow should be used in the program initialization stages to locate the PiXCL program 
window at the desired co-ordinates.



WinSetActive(Windowname$, Result)

Activates the window whose title bar is specified by 'Windowname$'.



WinShow(Windowname$, TOKEN, Result)

Available TOKENs are
HIDE / UNHIDE / MINIMIZE / MAXIMIZE / RESTORE / TOPMOST / NOTOPMOST / TOP / BOTTOM / SHOMINNOACTIVE / 
SHOWNOACTIVATE
Hides, unhides, maximizes, minimizes. or restores the specified window. In PiXCL 4.0 and later, WinLocate or WinShow should 
be used in the program initialization stages to locate the PiXCL program window at the desired co-ordinates.



AbortShutDown

Cancels the Windows NT shutdown process initiated by the Shutdown command.
Not supported under Windows 95.



WinTitle(Windowname$, Title$)

Sets the text that appears in the title bar of a window.    This can be the current Window or any other primary Window that is 
open. It is not possible to change the title of child windows.



AboutPiXCL

Displays the standard PiXCL About dialog box. This is the same box that the InfoMenu command enables or removes.



AboutUser(Title$, Box1String$, Box2String$)

Displays a customisable About box that can be used to describe user Runtime programs.



Beep

Sounds the bell. Putting a WaitInput(150) between Beep commands will make a suitable interval.



End

Terminates an PiXCL program.    Windows will pass control to the next available Active Window. This will often but not 
necessarily be the Program Manager.



ExitWindows

Works with Windows NT only. Ends the Windows session.    Windows will shut down.



FreeBitMap(FileName$)

Frees the memory taken by the image the DrawBitmap command processes.



FreeBitMapAll

Removes all bitmaps from memory and recovers the memory space.



FreeVar(String$)

Removes a string variable from the string variable list and recovers the memory it occupied.



FreeVarAll

Removes all string variables from the string variable list and reclaims the memory they occupied.



GetPixel(X,Y,r,g,b,Result)

Returns the red / green / blue pixel value at the designated co-ordinate in the PiXCL window client area.



GetCmdLine(CommandLine$)

Returns the complete command line and any arguments used to start the current application. You can use the string commands 
to extract the necessary arguments.



GetScreenCaps(HORSIZE/VERTSIZE/HORZREZ/VERTREZ/NUMCOLORS, Result)

Returns information about the screen driver's capabilities - for example, the number of supported colors and resolution.



Logoff

Logs off Windows NT or Windows 95    by closing running programs including Program    Manager or Explorer.



MessageBeep(TOKEN)

Plays the waveform sound associated with an entry in the [sounds] section of WIN.INI. The available TOKENS are

BEEP        ASTERISK        EXCLAMATION      HAND        QUESTION        OK



WAVPlaySound(Sound$, TOKEN,    ALIAS/FILENAME,Result)

Plays a specified waveform audio sound or an entry in the [sounds] section of the registry. The available TOKENS are

SYNC      ASYNC    LOOP NOSTOP 



Random(Range,RandomNumber)

Returns a random positive integer within the range specified.



Negate(Number)

Returns the arithmetic negation (two’s complement) of the input number.



Set Variable = ...,    Set Variable$ = ...

Assigns an integer or string variable.    The Set keyword is provided for compatibility with earlier versions of PiXCL. 



WinVersion(Major, Minor, Build, Pack$)

Provides the current Windows version and build numbers. In Windows NT these are reported as    3      51, and in Windows 95 as 
4    0.    The build number will vary for Windows NT depending on the processor type and release date. For Windows 95, the build
number is reported as 950. Pack$ is the Service Pack string in NT, or an arbitrary or null string in Win95/98.



Run("Transfer <ascii_filename>    W/R")

Using the Clipboard, either Write or Read an ASCII file. The string passed to the Clipboard must be decoded for Read 
operations, and for Write operations overwrites the existing file. In PiXCL v4.0, the ascii transfer buffer size is 5 KB.



Run("RpBMPDim <bmp_filename>")

OBSOLETE v2.5 Extension Function: See the GetBitMapDim command.
This function reports the number of bits per pixel, and the number of pixels and lines in the specified BMP file, by passing and 
ASCII string to the Clipboard. The PiXCL script must get the string from the Clipboard and decode the desired information.



Shutdown(CpuName$,Msg$,Timeout,RESTART/NORESTART)

Shuts down Windows NT as though you had selected File Shutdown from the Program Manager.
Not supported under Windows 95.



WaitInput(), WaitInput(milliseconds)

Pauses a program a specified number of milliseconds, or indefinitely waits for user input.



WinHelp(HelpFile$,COMMAND_TOKEN,KeyWord$)

Activate the Windows Help sub-system.



DrawFrameControl(x1,y1,x2,y2,TYPE,STATE1,STATE2,Result)

FrameControls are the little bitmaps that are used to create controls in a window frame such as title bar buttons, scrollbar 
buttons, grips, as well as radio buttons and push buttons. The DrawFrameControl function draws a frame control of the specified 
type and style.



DrawCaption(Window$,x1,y1,x2,y2,(NO)ICON,COLOR|SMALLCAP,(NO)INBUTTON,Result)

Any window caption and its icon can be drawn in the client area,even if the window is not visible. The background of the 
rectangle is the same as the current title bar background system color. The DrawCaption command is used to draw application 
buttons similar to those in the Windows task bar.



DrawAnimatedRects(WindowName$,fx1,fy1,fx2,fy2, tx1,ty1,tx2,ty2,OPEN|CLOSE|CAPTION,Result)

The DrawAnimatedRects function draws a wire-frame rectangle and animates it to indicate the opening of an icon or the 
minimizing or maximizing of a window.



SetDrawMouse(FOREGND|BACKGND|BOTH|DISABLE)

Enables or disables drawing withthe mousem using the current pen.



DrawTriangle(x1,y1,x2,y2,x3,y3)

Draws a triangle with the current pen and brush.



DrawPolygon(x1,y1,x2,y2,...,xn,yn)

Draws a convex or concave polygon with the current pen and brush.



DrawFocusRectangle(x1,y1,x2,y2)

Draws a rectangle with a dotted outline.



WAVSetPitch(Device,Pitch)

Sets the current pitch. Not supported on all cards.



WAVSetPlayRate(Device,PlayRate)

Sets the current playback rate. Not supported on all cards.



WAVSetVolume(Device, LVol, RVol,Result)

Sets the playback volume.



WAVGetDevCaps(Device,TOKEN,Return$,Result)

Get a set of device parameters.



WAVGetNumDevs(Number) 

Returns the number of sound deviced loaded.



WAVGetPitch(Device,Pitch) 

Gets the current pitch. Not supported on all cards.



WAVGetPlayRate(Device,PlayRate)

Gets the current playback rate. Not supported on all cards.



WAVGetVolume

Gets the current volume setting.



SetROPcode(TOKEN)

Sets the Raster Operation code. This is an advanced user command. See SetROPcode.



For-Next Loops

For variable = n|variable To m|variable [By p|variable]
        commands
      If <condition> Then Break {optional}
Next



While Loops

loopvariable = value
While loopvariable=number|string
        commands
      If <condition> Then Break {optional}
EndWhile



StrRev(String$)

Reverses the character order of a string.



InvertRectangle(x1,y1,x2,y2)

Inverts the colors of the specified rectangle. Windows will do its best to display the new color.



PXLResume(WindowsName$,Res)

Sends a ‘resume’ message to the target PiXCL application. Has no effect on other programs.



RDBCloseKey(InHandle, Result)

The RDBCloseKey function releases the handle of the specified key. Permanently open keys cannot be closed, and if used, 
Result returns 0.



RDBCreateKey(InHandle, SubKey$, ObjectType$, OutHandle, Result) 

The RDBCreateKey function creates the specified key. If the key already exists in the registry, the function opens it. 



RDBDeleteKey(InHandle, SubKey$,Result)

Windows 95: The RDBDeleteKey function deletes a key and all its descendents.
Windows NT: The RDBDeleteKey function deletes the specified key. This function cannot delete a key that has subkeys, so it
is necessary to delete the last key in each branch at a time.



RDBEnumKey(InHandle,Index,SubKeyName$,ClassName$,Result)

RDBEnumKey enumerates subkeys of the specified open registry key InHandle. The function retrieves information about one 
subkey each time it is called. 



RDBOpenKey(InHandle,SubKey$,OutHandle)

RDBOpenKey returns a handle of the specified subkey. 



RDBQueryKey(InHandle,ClassName$,NumberOfSubKeys,NumberOfValues,Result)

RDBQueryKey returns an assortment of information about a specified key or predefined constant, useful in defining other 
registry commands.



RDBQueryValue(InHandle,SubKey$,SubKeyRtn$,Result)

RDBQueryValue returns the value associated with the specified subkey.



RDBSetValue(InHandle,SubKey$,Value$,TOKEN, Result)

The RDBSetValue function stores data in the value field of an open registry key. It can also set additional value and type 
information for the specified key. 



ChooseFont(Font$,Width,Height,r,g,b,Bold,Italic,Underline,Strikeout)

Use a common dialog to select the current font and style.



ChooseColor(TOKEN,Red,Green,Blue)

Also ChooseColor(TOKEN,Red,Green,Blue,X,Y,Title$,Basic$,Custom$) 
Use a common dialog to choose a color for painting and drawing. Tokens are STD|SMALL|SMALLRGB|FULL.



CustomColor(r1,g1,b1,...r16,g16,b16)

Define the set of 16 custom colors available within the ChooseColor common dialog.



RotateRectangle(x1,y1,x2,y2,TOKEN,Rate,Repeat)

Rotates vertically or horizontally the defined rectangle in the client area. 



FileSaveAs(Filter$,InitFile$,InitDir$,Label$,CHANGEDIR,Name$)

Use a common dilaog to select or create a save filename. This does not actually save the file.
Essentially the same as the FileGet command. Tokens are the same as FileGet.



SetEditControl(x1,y1,x2,y2,TOKEN,Max,Min,Input$,...)

Create any number of edit windows in the client area for text or numeric input. Tokens are STRING|NUMBER|NUMBERUD|
PASSWORD. Generally used with a Button command to terminate input. Can have and UpDown control on numeric input with 
max and min values.
Edit strings are displayed in the current font.



SetPopupMenu(Item$,Label,[SEPARATOR],Item$ ... ENDPOPUP)

Create a floating menu invoked with the right mouse click in the client area.



PasswordBox(Title$,Text$,Btn1$,Btn2$,Btn,Password1$)

Create a dialog with secure text entry. 



ImageBox(Title$,Image$, Text$,Btn1$,Btn2$,Btn)

Create a dialog with text and thumbnail image (all supported formats) display.



LoadDLL(DLLname$,Result)

Loads a third party Dynamic Link Library.



FreeDLL(DLLname$,Result)

Frees (i.e. unloads) a third party Dynamic Link Library.



SaveBitmap(ImageName$,Result)

Saves the current bitmap in one of the supported bitmap formats.



SaveRectangle(x1,y1,x2,y2,ImageName$,Result)

Saves the specified client area rectangle to an image file.



RotateRectangle(x1,y1,x2,y2,TOKEN,Rate,Count)

Rotates the specified client area rectangle at Rate, Count times.



GetSystemTime(Year,Month,DayofWeek,Day,Hour,Minute)

Gets the current system time (GMT).



SetSystemTime(Year,Month,DayofWeek,Day,Hour,Minute)

Sets the current system time (GMT).



GetLocalTime(Year,Month,DayofWeek,Day,Hour,Minute)

Gets the current local time (GMT +/- bias time).



SetLocalTime(Year,Month,DayofWeek,Day,Hour,Minute)

Sets the current local time (GMT +/- bias time).



GetTimeZone(Zone$)

Gets the current timezone string.



TimeToASCII(SYSTEM|LOCAL,mode_TOKEN,Time$)

Returns the time string in one of five format variations.



LoadBitmap(ImageFile$,PREVIEW|FULL)

Loads an image into memory without displaying it. This is equivalent to DrawSizedBitmap(0,0,0,0,ImageFile$).



NumToHex(Number,Hex$)

Converts a 32 bit number to the equivalent hexadecimal string.



HexToNum(Hex$,Number,Result)

Converts an 8 character hexadecimal string into the equivalent number. 
If the conversion fails, both Number and Result return 0.



GetSystemMetrics(TOKEN,Value)

Returns a value that defines a metric for a system window object, such as menubar size. Can also return bootmode and number 
of mouse buttons.



GetSysPowerStatus(AC,BFlag,BLifePc,BLife,LifeTime)

Returns a set of values for a DC power management system. Only relevent to laptop systems, or systems with built-in DC power 
supplies.



ComboBox(x1,y1,x2,y2,STYLE,List$,Delim$,Input$)

Creates one or more ComboBox controls in SIMPLE, DROPDOWN, and DROPDOWNLIST styles.



FindExecutable(File$,Path$,EXE_File$,Result)

Locate the executable file that is associated with the selected specific file. If no EXE is associated, EXE_File$ returns NULL.



ReportMouse(x1,y1,x2,y2,xOff,yOff,xZ,yZ,TOKEN)

Report client area mouse coordinates and optionally RGB values in the status bar. Tokens are DISABLE, NORGB, RGB.



PXLresumeAt(ToWindow$,LABEL,FromWindow$,Res)

Send a message to another PiXCL application in a WaitInput() loop to start processing at a specific label.



Toolbar(MODE,SIZE,Index,State,Style,Tip$,Label,...)

Create a standard windows toolbar with up to 48 buttons.



ToolWindow(x1,y1,x2,y2,TYPE,MODE,SIZE,Index,State,Style,Tip$,Label,...)

Create a series of CHILD or POPUP toolwindows.



GetToolbarBtnStatus(Toolbar$,Index,STATE,Result)

Check that Toolbar$ button of Index is STATE. 



ChangeToolbarBtn(Toolbar$,Index,STATE,Result)

Change Toolbar$ button of Index to STATE.



EnumChildWindows(Parent$,Child$,VISIBLE|ALL,Delimiter$)

List all the child windows of the specified parent.



CustomizeToolBtn(ToolWindow$)

Start the system customize toolbar or toolwindow button dialog. Set ToolWindow$ to a NULL string 
to customize the toolbar.



ListLoadedBitmaps(List$,Delimiter$,Count)

Returns a delimited list of the images currently in the PiXCL Bitmap List. If none present, returns a 
null string and 0 count.



CountBitmapColors(Image$,Count)

Returns the number of unique colors in any of the supported bitmap formats. Count returns 0 if the 
image is not found in memory or on disk, otherwise returns a number in the range 1 to a number <= 
maximum number of colors defined by the image format, and not greater than the number of pixels 
in the image.



GetBackground(Red,Green,Blue)

Returns the current RGB background color.



DrawTrBitmap(x1,y1,Image$,Tr,Tg,Tb)

Draws the bitmap with transparent color Tr,Tg,Tb.



DrawTrSizedBitmap(x1,y1,x2,y2,Image$,Tr,Tg,Tb)

Draws the sized bitmap with transparent color Tr,Tg,Tb.



SetDrawMode(FOREGND|BACKGND|BOTH)

Sets the mode for the DrawBitmap commands. Often used in simple animation.



DrawBackgoundRegion(x1,x2,y1,y2)

Copies the region from the background memory to the client area bitmap. Often used in simple 
animation.



PrintBitmap(Image$,SETUP|PRINT,Result)

Prints the selected bitmap to the current printer identified by the SETUP token pass.



PrintFile(Filename$,Result)

Prints a document file with the application associated with the file type. The application must be 
installed and available.



WinAdjustRect(x1,y1,x2,y2,(NO)MENU,wx1,wy1,wx2,wy2)

Returns the necessary window coordinates for the desired client area.



DrawPolyLine(x1,y1,...,xn,yn)

Draw a connected series of line segments, usign the current pen.



DrawPolyCurve(x1,y1,...,xn,yn)

Draw a cubic Bezier curve using the specified points, usign the current pen.



ClearCommPort(COMx)

Clears the buffers and resets error status on the specified port.



GetCommPort(COMx,baud,data,parity,stop,X)

Gets the selected port current settings.



ReadCommPort(COMx,Data$)

Reads the selected port data into a string variable.



SetCommPort(COMx,Settings$,XON|XOFF,Res)

Sets the selected port parameters eg "9600,8,N,1"



WaitCommEvent(R|W,COMx,<label>,Timeout)

Waits for a comm port read or write event. Follow with a WaitInput().



WriteCommPort(COMx,Data$)

Write the string variable to the selected port.



EscCommFunction(COMx,token)

Send one of CLRDTR, CLRRTS, SETDTR, SETRTS, SETXOFF, SETXON, SETBREAK, CLRBREAK to the specified comm 
port.



UseBrushPattern(ImageName$)

Set the current brush to a user defined 8x8 bitmap. If the pattern bitmap is not in the PiXCL image list, it is 
loaded.



DrawGrid(x1,y1,x2,y2,Hcell,Vcell,R,G,B,border_style)

Draw a grid of cell size in the rectangle, using a 1 pixel wide color pen. Border styles are NONE, STYLE_1, 
STYLE_2, STYLE_3.



DragAcceptFile(ENABLE|DISABLE,<label>)

Enables or disables drag-and-drop operations to <label>,



GetDragList(List$)

Get the file list that was dropped into the PiXCL application window.



TWAIN_AcquireNative(Image$,TOKEN,Handle)

Acquire an image and load it into the PiXCL image list.



TWAIN_AcquireToClipboard(Result)

Acquire an image and write it to the clipboard,



TWAIN_AcquireToFilename(Filename$,Result)

Acquire the image and write it direct to the file on disk.



TWAIN_CloseSource(Result)

Close the current data source.



TWAIN_CloseSourceManager(Result)

Close the Source Manager i.e. TWAIN_32.DLL



TWAIN_DisableSource(Result)

Disable the current data source.



TWAIN_EnableSource(Result)

Enable the current data source.



TWAIN_GetBitDepth(Bits)

Return the bit depth (bits/color/channel) of the current source.



TWAIN_GetBitmapParams(Handle,Lines,Pixels,Bits,Colors)

Return the parameters of the image loaded into the PiXCL list from the TWAIN data source.



TWAIN_GetCurrentRes(Resolution)

Return the current scanner resolution.



TWAIN_GetCurrentUnits(Units)

Return the current source device unit setting.



TWAIN_GetPixelType(Pixel_Type)

Return the current type setting.



TWAIN_Getstate(Result)

Return the current data source state.



TWAIN_IsAvailable(Result)

Result = 0 if no TWAIN devices are known, otherwise = 1.



TWAIN_LoadSourceManager(Result)

Loads TWAIN_32.DLL data source manager.



TWAIN_OpenDefaultSource(Result)

Opens the current data source and displays its dialog, if present.



TWAIN_OpenSourceManager(Result)

Opens the source manager, TWAIN_32.DLL.



TWAIN_PxlVersion(Result)

Returns the version of PXLtwain32.DLL. Used for debug purposes. Result will be 106 or greater.    i.e. v1.06 or later.



TWAIN_SelectSource(Result)

Displays the Select Source dialog from TWAIN_32.DLL.



TWAIN_SetBitDepth(Depth)

Tries to set the source device bit depth.



TWAIN_SetCurrentRes(Resolution)

Try to set the current resolution.



TWAIN_SetCurrentUnits(Units)

Set the current unit parameter.



    TWAIN_SetPixelType(Type)

Try to set the current pixel type.



TWAIN_UnloadSourceManager(Result)

Unload TWAIN_32.DLL.



GetCopyDataMsg(Message$)

Retrieves the ASCII string message that has been sent to the PiXCL application.



SendCopyDataMsg(Window$,Message$)

Send a label and message string to the named window.



FlashBMWindow(WinID,TOGGLE|RESET)

Change the state (active or inactive) of a bitmap window title bar.



SetBMW[Right]Mouse(WinID,Label,x,y,...)

Enables left or right mouse actions in bitmap windows. 



DrawBMWPoint(WinID,x,y,STYLE)

Draws a point into the a bitmap and bitmap window at the coordinates, using the current pen color.



AutoProgressBar(ENABLE|DISABLE)

Enables (the default) or disables the progress bar display during image load and image processing operations.



GetScreenWorkArea(wx1,wy1,wx2,wy2)

Returns the coordinates of the screen area, less the area used by the Windows Taskbar/System tray, and any other tray-type 
windows.



DirExplore(DirName$,Result)

Displays the contents of a directory in an Explorer window.



ShellAbout(Title$,Text$,ICON)

Displays the Windows Shell About dialog with user defined information.



DrawShadowText(x,y,Text$,R,G,B,Offset)

Draw a text string with a defined shadow color, offset in the x, y directions.



DrawShadowTextExt(x1,y1,x2,y2,Text$,LEFT|CENTER|RIGHT,R,G,B,Offset)

Draws a single or multi-line text string in the current font, in the rectangle specified, justified according to the TOKEN argument, 
and with a shadow color and x, y offset.



SetFontEscapement(AngleX10)

Set the escapement angle in 0.1 dgrees    that text is drawn using the DrawText family of commands. Default value is 0.



GetListBitMapDim(Filename$,Lines,Pixels,BitsPerPixel)

Access the specified bitmap file in the PiXCL image list and report the number of lines, pixels per line and the number of bits per 
pixel.



DrawShadowNumber(x,y,Number,R,G,B,Offset)

Draw a number with a defined shadow color, offset in the x, y directions.



FileRead_Binary(File$,Offset,Value,FWD|REV,Result)

Read an integer value from the file at the specified byte offset.



FileWrite_Binary(File$,Offset,Value,FWD|REV,Result)

Write a 32-bit binary value at the specified offset in the file.



AppWindowHandle(Handle,Handle$)

Return the binary and string version of the application window handle. This command will be used by programmers of extension 
functions.



FileGetTempName(Dir$,Prefix$,Number,File$)

Generate a temporary filename.



GetTempPath(Path$)

Return the current temporary file path from the process environment.



GetFontFace(Face$)

Get the current font face for text writing.



GetEnvString(Delimiter$,EnvStr$)

Returns the current process environment string variables.



GetEnvVariable(Var$,Value$)

Returns an environment variable.



SetEnvVariable(Var$,Value$)

Sets a new value, or modifies an existing environment variable value.



StrReplAll(String1$, OldSubString$, NewSubString$, Result)

Replaces all instances of a substring in a string.



ReadBitmapRect(Image$,x1,y1,x2,y2,Result)

Read a rectangle of interest from a BMP or TIF file.



WriteBitmapRect(Image$,x1,y1,x2,y2,Result)

Write a rectangle in a BMP or TIF file.



RemapImage(RGB_Array$,Result)

Using a palette string array read from an ascii file, remap colors in the current image.



DrawFpNumber(x,y,Number&,Digits)

Draw a floating point number at the coordinates,with a defined number of significant digits.



DrawShadowFpNumber(x,y,Number&,Digits,R,G,B,Offset)

Draw a floating point number at the coordinates,with a defined number of 
significant digits, using the specified shadow color.



FpStr(Number&,Number$)

Convert a floating point number into a string.



FpVal(Number$,Number&,Result)

Convert a string into a floating point number.



ItemCount(List$,Delimiter$,Count)

Count the number of items in a string list.



ItemExtract(List$,Delimiter$,Index,Item$,Result)

Extract a specific item from a string list.



ItemLocate(List$,Delimiter$,Item$,Index)

Locate the index of an item, if it exists, in a string list.



ItemInsert(List$,Delimiter$,Index,Item$,Result)

Insert, if possible, an item into a string list.



ItemRemove(List$,Delimiter$,Item,Result)

Remove, if possible, a specific item from a string list.



ItemSort(List$,Delimiter$,NewList$)

Alphabetically sort a string list.



ReadRawBitmap(Image$,Xsize,Ysize,Samples,Bits,Offset,Flags)

Read raw bitmap data into a bitmap in the PiXCL image list.



RawDataParamBox(RawImage$,Help$,Xsize,Ysize,Samples,Bits,Offset,Flags)

Display a dialog to enter the parameters for the ReadRawBitmap command.



Acos(Angle&,Value&)

Calculate the arc cosine of an angle in radians.



Asin(Angle&,Value&)

Calculate the arc sine of an angle in radians.



Atan(Angle&,Value&)

Calculate the arc tangent of an angle in radians.



Cos(Angle&,Value&)

Calculate the cosine of an angle in radians.



Cosh(Angle&,Value&)

Calculate the hyperbolic cosine of an angle in radians.



Sin(Angle&,Value&)

Calculate the sine of an angle in radians.



Sinh(Angle&,Value&)

Calculate the hyperbolic sine of an angle in radians.



Tan(Angle&,Value&)

Calculate the tangent of an angle in radians.



Tanh(Angle&,Value&)

Calculate the hyperbolic tangent of an angle in radians.



Average(Number&,...,...,Value&)

Calulate the average of a list of numbers.



Exp(X&,Value&)

Calculate e**x



Float(Number,FpNumber&)

Convert an integer into a floating point variable.



FpStr(FpNumber&,Number$)

Convert a floating point number into a string.



FpVal(FpNumber$,FpNumber&,Result)

Convert a string into a floating point variable.



Int(FpNumber&, Number)

Return the integer part of a floating point number.



Log10(FpNumber&,Value&)

Return the base 10 log of FpNumber&.



LogE(FpNumber&,Value&)

Return the Naperian log of FpNumber&.



Pow(Y&,X&,Value&)

Calculate the power    function Y**X



Sqrt(FpNumber&,Root&)

Calulate the square root of FpNumber&.



IDR_CloseIdrisi(Result)

Close the IDRISI application window.



IDR_GetDataDir(IdrisiDataDir$)

Get the current IDRISI data directory.



IDR_GetDir(IdrisiDir$)

Get the IDRISI installation directory.



IDR_GetExtensions(Img$,ImgDoc$,Vec$,VecDoc$,Value$,ValueDoc$)

Get the current default IDRISI file extensions.



IDR_GetLanguage(Lang$)

Get the current default laguage for IDRISI application and help.



IDR_IsPresent(Result) 

Find out if there is an IDRISI application instance running.



IDR_Launch(TOKEN,Result)

Start IDRISI from a PiXCL application.



IDR_LaunchModule(ClientId,ClientOptions,ModName$,Cmdln$,OutputTitle$,OutputUnits$,PtHinst,ProcessID)

Start an IDRISI module and run it in the IDRISI client area.



IDR_RegisterClient(Client_ID)

Register an IDRISI client application. Values will be in the range 1-16.



IDR_SetDataDirectory(IdrisiDataDir$,Result)

Set a new IDRISI data directory.



IDR_SetDebugMode(ON|OFF)

Enable or disable the IDRISI debug mode.



IDR_SetExtensions(Img$,ImgDoc$,Vec$,VecDoc$,Value$,ValueDoc$,Result)

Set the default IDRISI file extensions. Limited to three characters.



IDR_UnRegisterClient(Client_ID)

Unregister an IDRISI client application, and free the client number.



AddFont(Font$,Result)

Add a new or custom font to the Windows font table.



RemoveFont(Font$,Result)

Remove a font from the Windows font table.



GetTextSpacing(Spacing)

Get the current text spacing value. Used with the DrawText and DrawNumber commands.



SetTextSpacing(Spacing)

Set the current text spacing value. Used with the DrawText and DrawNumber commands.



Hypot(X&,Y&,Value&)

Calculate the hypotenuse of a right triangle fo sides X and Y.



SetMouse(Region1_x1, Region1_y1, Region1_x2, Region1_y2, Label, x, y, . . . )

Sets up where the program branches to when the user clicks the left mouse within a specified area.



SetCtrlMouse(Region1_x1, Region1_y1, Region1_x2, Region1_y2, Label, x, y, . . . )

Sets up where the program branches to when the user clicks the left mouse within a specified area, while holding down the Ctrl 
key.



SetShftMouse(Region1_x1, Region1_y1, Region1_x2, Region1_y2, Label, x, y, . . . )

Sets up where the program branches to when the user clicks the left mouse within a specified area, while holding down the Shift 
key.



SetDblMouse(Region1_x1, Region1_y1, Region1_x2, Region1_y2, Label, x, y, . . . )

Sets up where the program branches to when the user double clicks the left mouse within a specified area. 



SetRightMouse(Region1_x1, Region1_y1, Region1_x2, Region1_y2, Label, x, y, . . . )

Sets up where the program branches to when the user clicks the right mouse within a specified area. Right and Left mouse 
regions can overlap or overlay each other.



SetShftRightMouse(Region1_x1, Region1_y1, Region1_x2, Region1_y2, Label, x, y, . . . )

Sets up where the program branches to when the user clicks the right mouse within a specified area while holding down the Shift
key. Right and Left mouse regions can overlap or overlay each other.



SetCtrlRightMouse(Region1_x1, Region1_y1, Region1_x2, Region1_y2, Label, x, y, . . . )

Sets up where the program branches to when the user clicks the right mouse within a specified area while holding down the 
Control key. Right and Left mouse regions can overlap or overlay each other.



SetDblRightMouse(Region1_x1, Region1_y1, Region1_x2, Region1_y2, Label, x, y, . . . )

Sets up where the program branches to when the user double clicks the right mouse within a specified area. 



SetMidMouse(Region1_x1, Region1_y1, Region1_x2, Region1_y2, Label, x, y, . . . )

Sets up where the program branches to when the user clicks the middle mouse within a specified area. 



SetShftMidMouse(Region1_x1, Region1_y1, Region1_x2, Region1_y2, Label, x, y, . . . )

Sets up where the program branches to when the user clicks the middle mouse within a specified area while holding down the 
Shift key. Right, Left and Middle mouse regions can overlap or overlay each other.



SetCtrlMidMouse(Region1_x1, Region1_y1, Region1_x2, Region1_y2, Label, x, y, . . . )

Sets up where the program branches to when the user clicks the middle mouse within a specified area while holding down the 
Control key. Right, Left and Middle mouse regions can overlap or overlay each other.



SetDblMidMouse(Region1_x1, Region1_y1, Region1_x2, Region1_y2, Label, x, y, . . . )

Sets up where the program branches to when the user double clicks the middle mouse within a specified area. 



IDR_GetProgress(...)

(ClientID,ProcessID,Status,ReportType, ErrorFile$, ErrorNumber,ErrorMessage$,SubstString1$,SubstString2$,
Result_1, Result_2)

Gets the current progress details of an Idrisi client.



IDR_SetProgress(...)

(ClientID, ProcessID, Status, ReportType,ErrorFile$, ErrorCode, ErrorMsg$,Subst1$,Subst2$,Result_1, Result_2)
Sets the current progress details of an Idrisi client.



IDR_InitProgressTracking(ClientId,ProcName$,ProcessID)

Starts the progress tracking of a registered Idrisi client.



FpAbs(Number&,Value&)

Calculate the absolute value of a floating point number.



WinHTMLHelp(File$,MODE,TOKEN,Key$,x1,y1,x2,y2)

Display HTML help (*.chm) in a window.



GetCPUInfo(CPUtype,NumCPU)

Returns the type and number of CPUs in the system.



ExportHistogram(ImageName$,Result)

Read an image from the disk or from memory, and create 
channel histogram files, extension .HST.



DirListFiles(Path$,Delimiter$,Number,List$)

Makes a delimited list of the contents of a directory.



ClipboardGetBitmap(ListImageName$,Result)

Passes a PiXCL image list bitmap to the clipboard.



ClipboardPutBitmap(ListImageName$,Result)

Passes an image in the clipboard to the PiXCL image list.



CopyWindowToClipboard(AppWin$,ChildWin$,Result)

Makes a copy of the window bitmap in the clipboard.



Switch-Case-Break-Default-EndSwitch

Switch (Integer_variable)
        Case <value>:
              . . . 
        Break
        . . .
EndSwitch



PiXCL Command WinHelp() and    Help Macro Commands.

The command WinHelp(Helpfile$,COMMAND, Macro$) can be used to pass any of the set of Help maco commands to the target
help file.    Not all macros will be useful with all help files.

Since it is necessary to include the quote character (“) in many of the macro strings, you must first create some strings variables 
Chr(34,Quote$)   
QcomaQ$ = Quote$ + ","  
QcomaQ$ = QcomaQ$ + Quote$

These strings can then be used to create the necessary macros. For example

GetHelpMacro:
Macro$ = "CreateButton(" + Quote$
Macro$ = Macro$ + "IDM_NEW"
Macro$ = Macro$ + QcomaQ$
Macro$ = Macro$ + "Quit"
Macro$ = Macro$ + QcomaQ$
Macro$ = Macro$ + "Exit()"
Macro$ = Macro$ + Quote$
Macro$ = Macro$ + ")"

{this produces a help macro string
 CreateButton("IDM_NEW","Quit","EXit()")  } 

HelpFile$ = "h:\p40tools\pdk\pixclhlp.hlp"
WinHelp(HelpFile$,COMMAND,Macro$)
Goto Wait_for_Input

will create an additional button on the target Help file, in this case a Quit button.

Some of the most commonly used Help Macros are:

About() Display a standard Help about box

CreateButton("button-id", "name",
"button-macro")

Add a button to the Help file window 
menubar

DestroyButton("button-id") Remove a button by ID. Useful when you 
defined the ID. See CreateButton.

DisableButton("button-id") Disable a button by ID

EnableButton("button-id") Enable a button by ID

ExecProgram("command-line",
display-state)

Run a program from the help file. Display 
state 0 is visible, state 1 is minimized.

HelpOn() Displays the Help file for the Windows Help
application i.e. How to use Help...

HelpOnTop() Toggle the Help window state between 
TOPMOST and NOTOPMOST.

History() List the previous sequence of help file 
search commands.

InsertMenu("menu-id", "menu-name", Insert a menu item into a help file



menu-position)

JumpId("filename", "context-string") Jump to a topic by context ID within the 
named help file.

PopupId("filename", "context-string") Display the specified topic in a popup 
window

Print() Print the current help topic. You could also 
add a “Print” button to the existing Help file
to achieve the same result.

PrinterSetup() Set up the current printer.

Search() Display the search dialog box.



PiXCL Image Processing Extensions

PiXCL provides a comprehensive set of image processing commands for bitmaps displayed in the client area with the 
DrawBitMap, DrawSizedBitmap, DrawTrBitmap, DrawZoomedBitmap and DrawBitmapWindow commands. We will refer to these
generically as the DrawBitmap command set.

PiXCL creates a double linked list of all bitmaps loaded with the DrawBitMap command set, and this list references memory 
regions that contain the bitmap data. This means that if you are working with large or multiple bitmaps, Windows will use up 
copious amounts of memory. If there is inadequate space in memory, Windows will swap memory to the virtual memory region 
somewhere on your hard disk. The contents of the double linked list can be accessed with the ListLoadedBitmaps and 
RenameListImage commands.

PiXCL also in effect caches bitmap data, that is, if a specific filename has a bitmap table entry in PiXCL, and the file on the disk 
changes, these changes WILL NOT be reflected in the bitmap loaded into PiXCL, even if you issue another DrawBitmap 
command. What you have to do is first issue a FreeBitmap(“name”) command, then reload the bitmap from disk with the 
DrawBitmap command. This is because PiXCL looks first at the list to see if a bitmap is already loaded, and if so, displays it 
direct from memory.

When you use these imaging commands, please note that they work on the current bitmap being referenced by the most recent 
DrawBitmap or image processing command. This bitmap will usually have been drawn somewhere into the visible client area 
space. Using one of the imaging commands will process the bitmap, but will not draw the bitmap into the client area. This 
requires an additional DrawBitmap command. The imaging processing commands have no effect on the PiXCL client area.

All image processing commands display a progress bar along the bottom of the client area as the function works. To disable this 
progress bar, use the AutoProgressBar command.

Descriptions for commands found in the more extensive geoPiXCL product only start with geoPiXCL command. All PiXCL 
commands are included in geoPiXCL.

Image Size Limitation when running under Windows 9x / ME:
The way that these operating systems assign global memory is flawed. If the request for a single block of memory exceeds 
256MB, Windows 9x/ME denies the request, even if more than 256 MB of physical ram is installed in the PC. This means that 
the biggest image you can load (regardless of the amount of ram) is about 256 MB. If you need to work with larger images, we 
suggest that you move to NT4 or Windows 2000, which do not have the size limitation.    In both cases you must have a suitable 
amount of virtual memory disk space assigned.

Related DrawBitmap Command Set:
DrawBitmap    DrawSizedBitmap DuplicateImage     EnlargeImage       EnlargeImageBox     FreeBitmap    FreeBitmapAll    
GetBitmapDim    GetListBitmapDim      ListLoadedBitmaps    LoadBitmap 

Related image statistics and utility commands:
CreatePALfile    ConvertPALfile    ExtractListImageRect      InsertListImageRect LoadImageColormap    SaveImageColormap    
Histogram  UpdateHistogram  ReportHistogramStats  ShowHistogram ListLoadedBitmaps      RenameListImage

Blob Measurement commands:
In geoPiXCL 5.10 there is a new set of Blob commands which are used to identify and measure objects in an image.
CreateBlobEnv    DrawBlobObjLabels      ExportBlobObjectData FreeBlobEnv        FreeBlobEnvAll FilterBlobObjects        
GetBlobCount      ScanBlobObjects        SetBlobFilterParams 

geoPiXCL Specific commands:
BroveyEnhanceImage      CombineThemes DecorrelStretchImage      EditLANfileHeaderBox      ExtractTrgAreaFiles      
GetThemeStatsMakeNDVIimage      MakeScattergram      MakeSpectralSignatureFiles       MatrinTaylorMapping      MLHClassify    
ModeFilterImage    PCEnhanceImage      PPDClassify    ReadLANfileHeader      ReadSPOTData      ReadSPOTfileHeader      
RemapTheme      WriteLANfileHeader 

geoPiXCL SHP/SHX “Shape” file commands:
SHPAddAttribute      SHPCreateSimpleObject      SHPFileCreate      SHPFileGetInfo      SHPFileGetType    SHPGetAttributeCount    
SHPGetFieldInfo      SHPReadAttribute    SHPReadObject      SHPReadObjectVertices      SHPWriteAttribute      

Alphabetical listing of the general image processing commands:
AddNoiseToImage    AverageImage    AverageImageSet  BlurImage    CalibrateImage    CombineChannels ComputeImage    



ComputeImageBox     ConvertColorSpace    CropImage    DespeckleImage    EdgeDetectImage    EmbossImage    EqualizeImage 
Filter5x5    Filter15x15    FlipImage    GammaCorrectImage    GaussianBlurImage    GeoCorrectImage    GeoTranslateImage    
GetChannel InvertImage    LinearEnhanceImage  NLENhanceImage     NormalizeImage    NormalizeImageRange    OverlayImage 
RemapImage    ReplaceChannel    ResampleImage    ResizeImage    RotateImage RotateImageExt    ScaleCropImage    
ScatterPixels    SharpenImage    SkewImage    TuneImage 



AddNoiseToImage

AddNoiseToImage use a random number generator to add noise pixels to the current bitmap. Noise is often added to an image, 
followed by a smoothing filter process to sharpen detail. 

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32,

Syntax: AddNoiseToImage(Amount,type_TOKEN,Result)

Parameters:
Amount A number between 1 and 99. Larger and negative numbers are automatically converted to 

the absolute modulus 99 number.
type_TOKEN NORMAL adds noise generated by a normal function.

DISTRIBUTED adds noise generated by a distributed function.
Result Non-zero if the process was successful, otherwise 0.

Example:

NoisyImage:
AddNoiseToImage(60, NORMAL, Res)
If Res <> 0 Then DrawBitMap(10,10, ImageFile$)

 Goto Wait_for_Input

Related Commands
DespeckleImage 



AverageImage

AverageImage uses a matrix to average a neighborhood of 25 pixels, resulting in a blurry, out of focus image.

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32,

Syntax: AverageImage(Amount,Result)

Parameters:
Amount A number between 1 and 99. Larger and negative numbers are automatically converted to 

the absolute modulus 99 number.

Result Non-zero if the process was successful, otherwise 0.

Example:

Averaging:
AverageImage(60,Res)
If Res <> 0 Then DrawBitMap(10,10,ImageFile$)

 Goto Wait_for_Input



AverageImageSet

geoPiXCL command. A set of up to 16 images can be averaged to create a new image in the geoPiXCL image list.

Syntax: AverageImageSet(Handle1,Handle2,Handle3,Handle4, …,    Handle16,
 AVRGImage$, Result)

Parameters:
Handle1 .. Handle16 Up to 16 valid image handles. Set unused handles to 0.
AVRGImage$ The name of the average image created in the geoPiXCL image list.
Result 1 if the operation suceeded, otherwise 0.

Related Commands:
AverageImage    



BlurImage

BlurImage uses a matrix to reduce the amount of contrast between pixels giving a smoothing or blurring effect.

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: BlurImage(Amount,Result)

Parameters:
Amount A number between 1 and 99. Larger and negative numbers are automatically 

converted to the absolute modulus 99 number.

Result Non-zero if the process was successful, otherwise 0.

Example:

Blurring:
BlurImage(80,Res)
If Res <> 0 Then DrawBitMap(10,10,ImageFile$)

 Goto Wait_for_Input

Related Command:
GaussianBlurImage , AverageImage 



BroveyEnhanceImage

geoPiXCL command. The Brovey transform is one of the family of image enhancement algorithms designed to combine a high 
spatial information image (for example SPOT Panchromatic) with a multispectral lower spatial information image (for example 
Landsat TM).

The technique is commonly used to enhance Landat TM using SPOT Panchromatic, but is actually very good for other 
enhancements - sharpening SPOT XS with SPOT Pan, sharping SPOT XS with orthoimages, combining geophysical data (for 
example Radiometrics) with SPOT Panchromatic, and so on. The algorithm is named after Bob Brovey, from Exxon.

The technique is as follows:

Assume two images, called TM and SPOT, the TM being a normal 7 band image, and the SPOT image being a SPOT 
Panchromatic image of the same area.    The formula, for the common TM/SPOT Brovey Transform enhancement, is as follows:

RED      = (B5:1.65_um / (B2:0.56_um + B4:0.83_um + B5:1.65_um) ) * B8:0.65_um_SPOT 
GREEN = (B4:0.83_um / (B2:0.56_um + B4:0.83_um + B5:1.65_um) ) * B8:0.65_um_SPOT 
BLUE    = (B2:0.56_um / (B1:0.49_um + B4:0.83_um + B5:1.65_um) ) * B8:0.65_um_SPOT

or better expressed ...
RED      = (Band5_TM / (Band2_TM + Band4_TM + Band5_TM)) * Band8_SPOT
GREEN = (Band4_TM / (Band2_TM + Band4_TM + Band5_TM)) * Band8_SPOT
BLUE    = (Band2_TM / (Band1_TM + Band4_TM + Band5_TM)) * Band8_SPOT

The BroveyEnhanceImage command in geoPiXCL provides the ability to specify a set of five images that are combined in the 
above manner.

Syntax: BroveEnhanceImage(Handle1,Handle2, Handle4,Handle5, Handle8,
 NewImage$,Result)

Parameters:
Handle1 … Handle8 The set of five loade image handles. Handles are returned by a variaty of commands such as 

TuneImage, SetCurrentBitmap and GetChannel.
NewImage$ The resulting 24-bit image that is created in the geoPiXCL image list. It can be displayed with 

DrawBitmap, and saved to disk with the SaveBitmap commands.
Result 1 if the operation succeeds, otherwise 0. A common reason for failure is passing an invalid 

handle to the function.

Example:
BroveyEnhance:

LoadBitmap(Image1$,FULL) 
LoadBitmap(Image2$,FULL) 
LoadBitmap(Image4$,FULL) 
LoadBitmap(Image5$,FULL) 
LoadBitmap(Image8$,FULL) 
SetCurrentBitmap(Image1$,FULL,Hndl_1)
SetCurrentBitmap(Image2$,FULL,Hndl_2)
SetCurrentBitmap(Image4$,FULL,Hndl_4)
SetCurrentBitmap(Image5$,FULL,Hndl_5)
SetCurrentBitmap(Image8$,FULL,Hndl_8)
UseCursor(WAIT)
DrawText(20,50,"Brovey Transform ... please wait!")
BroveyEnhanceImage(Hndl_1,Hndl_2,Hndl_4,Hndl_5,Hndl_8,

BroveyImage$,Res) 
DrawBitmap(10,40,BroveyImage$)
UseCursor(ARROW)
Goto Wait_for_Input



Related Commands:
CalibrateImage      ComputeImage      SaveBitmap      SetCurrentBitmap    TuneImage 



CalibrateImage
A calibration function can be applied to images in the image list. The calibration is applied to the source image, or optionally, a 
new image can be created in the image list.

Syntax: CalibrateImage(Handle,NewImage$,FnA&, FnB&, FnC&,Result)

Parameters:
Handle The source image handle returned from a TuneImage command.
NewImage$ The name of a new image to create in the image list. Set this to a null string to overwrwite the 

source image.

FnA&, FnB&, FnC& Floating point arguments for Pout = A*Pin2 + B* Pin + C
Result 1 if the operation was successful, otherwise 0.

Remarks:
If NewImage$ is specified, the image is created in memory. This image will generally need to be saved with the SaveBitmap 
command. You may find the RenameListImage or DuplicateImage commands useful as well.

Related Commands:
ComputeImage    TuneImage      DuplicateImage    RenameListImage 



CombineChannels

This command provides a way to create color composites from a set of grayscale component images. Components must all have
the same dimensions.

Syntax: CombineChannels(RedHandle,GreenHandle,BlueHandle,
RGBHandle,Result)

Parameters:
RedHandle
GreenHandle
BlueHandle

These are the handles of the component images, and are the stored as integer 
variables.    You can get the variable by using one of the commands such as 
TuneImage, or SetCurrentBitmap, or GetChannel.

RGBHandle The handle of the target color composite image. This must already exist, by 
displaying a color composite image, and using TuneImage to get the handle. 
See the sample code below.

Result 0 if the command fails, otherwise it is the handle of the returned 24 bit color 
composite.

Remarks:
The usual way that this command is used is to load the set of composite images into memory, using DrawBitmap or 
DrawSizedBitmap. Remember that this loads the full bitmaps into memory, and a copy is written to the defined rectangle in the 
PiXCL client area. 

Example:
In this code fragment example, the images are loaded into memory, handles acquired, then the new components are selected 
and combined, then displayed. The TuneImage commands have no effect, and provide a simple way to get the image handles. 
Note that output image handles will change when any geometric, color space or channel change command is issued. If in doubt, 
display the image and issue a TuneImage command.

Combiner: {draw all the test images}
DrawBackGround
DrawEdgeRectangle(sx1,sy1,sx2,sy2,SUNKENEDGE,ADJUST,RECT)
DrawBitMap(23,23,Image1$) 
TuneImage(0,0,0,0,0,0,Band1Handle)
DrawBitMap(23,23,Image2$) 
TuneImage(0,0,0,0,0,0,Band2Handle) 
DrawBitMap(23,23,Image3$) 
TuneImage(0,0,0,0,0,0,Band3Handle) 
DrawBitMap(23,23,Image4$) 
TuneImage(0,0,0,0,0,0,Band4Handle)
DrawBitMap(23,23,Image5$) 
TuneImage(0,0,0,0,0,0,Band5Handle) 
DrawBitMap(23,23,Image7$) 
TuneImage(0,0,0,0,0,0,Band7Handle) 
DrawBitMap(23,23,Image8$) 
TuneImage(0,0,0,0,0,0,Band8Handle) 

CombineChannels(Band7Handle,Band3Handle,Band1Handle,
    Band8Handle,Res)

DrawBitMap(23,23,Image8$)

Goto Wait_for_Input

Related Commands:



ReplaceChannel, SaveBitmap 



CombineThemes

geoPiXCL command.    Thematic images (8 bits / pixel) can contain various classes which sometimes need to be merged. With 
the CombineThemes command, you specify a set of input themes that are to be combined into a target theme. Within the theme 
image, the pixel values are changed, not the image colour map.

Syntax: CombineThemes(ThemeImage$, InputThemes[Index], TargetTheme, Result)

Parameters:
ThemeImage$ A theme image loaded into the geoPiXCL image list.
InputThemes An integer array of appropriate size, as follows

[Index] = number of input themes
[Index+1] = theme #1
[Index+n] = theme #n

TargetTheme The theme number (i.e. colour) to which the InputThemes will be converted.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
ModeFilterImage      RemapTheme    



ComputeImage 

Perform a computation on the pixels of a pair of images in the PiXCL image list. These images must be of the same lines and 
pixels dimensions, and have the same number of bits per pixel, or the operation will not occur.

Color Support: Grayscale, Indexed, RGB24, RGB32 

Syntax: ComputeImage(HandleA, HandleB, HandleC, opR,opG,opB, 
Divisor&,Bias&, clip_TOKEN, mode_TOKEN, bkg_TOKEN,NewImage$,Result)

Parameters: 
HandleA Handle of the first image, also the destination for new pixel values if NewImage$ is a null string. 

HandleA is returned by a TuneImage call.
HandleB Handle of second image of the pair. HandleB is returned by a TuneImage call.
HandleC Mask image handle. This must be 8 bits per pixel only, or Result returns 0. If a mask is not being 

used, set this value to 0. HandleC is returned by a TuneImage call.
opR, opG, opB R,G,B opacity values in the range 0-255, where 0 = 0% and 255 = 100%.    Opacity defines the 

amount of the HandleB image that is merged with the complementary amount of the HandleA 
image. Hence, for opacity =255 (i.e. 100%), all of image B is used. If opacity = 64, then 25% of 
image B is combined with 75% of image A. opR, opG, opB do not have to have the same values.

Divisor&,Bias& Floating point scaling values: where    P1 = P0/Divisor& + Bias&. Default values are 1.0, 0.0. 
These numbers can be negative. The scaling operation is performed after the compute image 
function (see mode_TOKEN), and before any CLIP/NOCLIP operation. Divisor& and Bias& have
no meaning fo composite and blend operations, and the values are ignored.

CLIP | NOCLIP Token that indicates whether resulting pixel values are clipped between 0 and 255. If 
you select the NOCLIP option, 8 bit colour values wrap around. While this can lead to 
interesting looking images, you must decide if the operation is valid for your project 
and data.

mode_TOKEN Defines the type of image arithmetic operation, as follows:
    ADD                                Add the pixel values of HandleA and HandleB images.
    SUBTRACT Subtract pixel values of HandleB from HandleA images.
    DIFFERENCE Difference of the pixel values between HandleA and HandleB
    COMPOSITE Composite of HandleA and supplied mask HandleC.
    BLEND Blend the pixels values of HandleA and HandleB using mask HandleC.
    MULTIPLY Multiply pixels and divide the result by 256.
    LIGHTER Destination pixel is the lighter of HandleA and HandleB.
    DARKER Destination pixel is the darker of HandleA and HandleB.
Additional mode_TOKENs for geographic data sets.
 RATIO Destination pixel is the ratio of HandleA / HandleB.
 MINRATIO Destination pixel is the minimum ratio of (HandleA -min(HandleA) ) / (HandleB -min(HandleB) )
 DIFFOVERSUM Difference Over Sum. (HandleA - HandleB) / (HandleA + HandleB)
 ROOTSUMOFSQR Root Sum Of Squares.
 BIOMASS Biomass calculation.
 NDVI Normalized Difference Vegetation Index calculation.

bkg_TOKEN Set the background color for all operations. This is primarily used for operations where
the opacity values are less than 100%.

      BKGNDBLACK Sets the target image background to black (0,0,0) before the image computation.
      BKGNDGRAY Sets the target image background to gray (128,128,128) before the image computation.
      BKGNDWHITE Sets the target image background to white (255,255,255) before the image computation.
      BKGNDOVERLAY Sets the target image background to the HandleA image before the image computation.
      BKGNDMASK Use the mask image HandleC.
      BKGNDMASKINV Invert the mask image operation.

NewImage$ Name of the new image to be created. Set this to a path\name value, or specify an image 
already loaded in the PiXCL image list.    If NewImage$ is null, the image specified by HandleA is
the destination image. NewImage$ can be saved to disk with the SaveBitmap command. You 
can check the contents of the PiXCL image list with the ListLoadedBitmaps command.



Result 1 if the function completed successfully, otherwise 0.

Related Commands:
ComputeImageBox  ListLoadedBitmaps  SaveBitmap  TuneImage  



ComputeImageBox

Displays a dialog box for the manual entry of image arithmetic operations. All parameters MUST be string,    integer or floating 
point variables, or the command will fail with a syntax error. The variables returned are usually passed to a ComputeImage 
command.

Syntax: ComputeImageBox(Image1$,Image2$,Mask3$,Help$,Function,
RedOpacity, GreenOpacity, BlueOpacity,Divisor&,Bias&,ClipMode,Result)

Parameters:
Image1$,Image2$ Input images. The combobox dropdown list displays all the images loaded in the PiXCL image 

list. This means that you must first load the images with LoadBitmap or DrawBitmap.
Mask3$ Mask image, if required. If not selected, returns a null string.
Help$ Help string displayed in a MessageBox when the Help button is pressed.
Function Returned value that can be passed to the ComputeImage function.
RedOpacity 0-255 value for red opacity. 0 = 0%, and 255 = 100%.
GreenOpacity 0-255 value for red opacity. 0 = 0%, and 255 = 100%.
BlueOpacity 0-255 value for red opacity. 0 = 0%, and 255 = 100%.
Divisor&, Bias& Defaults are 1.0 and 0.0.
ClipMode 0 = No clip, 1 = clip result pixel values between 0 and 255.
Result 1 if the operation succeeded, otherwise 0.

Related Commands:
ComputeImage 



ConvertColorSpace

Bitmaps loaded and displayed by PiXCL commands are in one of several possible colorspaces, a term that is related to the 
number of bits per pixel per composite color. You are most likely to be familiar with the standard additive Red-Green-Blue 
method used by your color monitor, and the subtractive Cyan-Magenta-Yellow method used in color negative film and color 
printing.

PiXCL provides the means to convert the colorspace of the current bitmap image into other formats for more suitable processing.
For example, you can load and display an 8 bit color image, turn it into a    16, 24 or 32 bit image in memory, replace or modify a 
channel, then convert back to 8 bit colorspace. All images in memory can be saved to disk using the SaveBitmap or 
SaveBitmapHandle command.

Syntax: ConvertColorSpace(COLORSPACE_token,DITHER_token,Result)

Parameters:
COLORSPACE_token Defines the target colorspace. The available options are 

RGB32 32 bit with the high 8 bits ignored.
CMYK 32 bit Cyan, Magenta, Yellow and blacK separations.
RGB24 Standard 24 bit color composite.
CIELAB CieLab 24 bit color mode.
RGB555 A 16 bit composite. The 16th bit is ignored. 
RGB565 A 16 bit composite. 
GRAY16 16-bit linear grayscale black=0, white=65536.
INDEXED Standard 8-bit colormapped image mode. 
GRAYSCALE Standard linear grayscale black=0, white=255.
MONO 1 bit per pixel monochrome.

DITHER_token Defines the target colorspace dither method, if applicable.
NONE no dithering.
ORDERED dither using Floyd-Steinberg method
DIFFUSE dither using error diffusion.

Result 0 if the operation failed, otherwise is the new handle of the image. You will need to 
redraw the image to see the result.

Remarks:
You cannot convert between RGB555 and RGB565 without converting to RGB24 first. If the existing color mode is the same as 
the new mode, no operation is performed, but Result returns a valid handle.

To convert to CMYK separations, you must first convert to RGB32. If you don’t first convert to RGB32, Result returns 0.
The Cyan, Magenta and Yellow channels in a CMYK are not the same as inverted RGB. The black channel is the minimum gray 
level that is common to all channels. This is the efficient method that the printing industry uses to minimize the use of expensive 
colour inks, and maximize the use of inexpensive black inks.

The CMYK algorithm first inverts the colours of each pixel to get standard CMY . . .
pRed = 255 - pRed;
pGreen = 255 - pGreen;
pBlue = 255 - pBlue;

then calculates and removes the gray component into the black channel . . .
pK = min(pRed,pGreen,pBlue);
pC = pRed - pK;
pM = pGreen - pK;
pY = pBlue - pK;

Using DrawBitmap on a CMYK separation will result is a dark image, because firstly the colours have been inverted and then the 
common gray value subtracted.



Related Commands:
SaveBitmap ListLoadedBitmaps DrawBitmap 



CreateBlobEnv

geoPiXCL command.  A blob environment is required to identify, count and measure Binary Large Objects (Blobs) in an image. 
These blobs will typically have been identified by using PPDClassify or MLHClassify, both of which produce a 256 colour theme 
file in the geoPiXCL image list. 

Syntax: CreateBlobEnv(ThemeFile$,SQMM|SQINCH|PIXEL,PixelArea&,BlobEnvID)

Parameters:
ThemeFile$ The name of a 256 colour image loaded into the list.
SQMM Blob measurements are in square millimeters per pixel.
SQINCH Blob measurements are in square inches per pixel.
PIXEL Blob measurements are in pixels.
PixelArea& The area of a single pixel according to the above token. This value is related to the resolution of 

the scanner, if this is the source of the image to be measured. For example, at 72dpi (i.e. 72 
pixels per inch), one pixel is 0.0138 inches or 0.353mm per side, hence the pixel area (assumed 
square pixels) is 0.0002 sq.inches or 0.1245 sq.mm
For PIXEL metric, set this to 1.0. This value is used to report blob size and length.

BlobEnvID The unique 0 indexed number that identifies the new Blob environment for ThemeFile$. An 
image can have one blob environment at a time, but any image loaded into the list can have a 
unique BlobEnvID. BlobEnvID gets reset to 0 if a FreeBlobEnvAll command is issued.

Remarks:
A typical sequence of operations that makes use of the blob command set might be
1. Load an image with LoadBitmap or DrawBitmap
2. Decide on class boundaries and create a theme file with PPDClassify
3. Overlay the them on to the original image with OverlayImage
4. Create a blob environment with CreateBlobEnv
5. Identify the blobs with ScanBlobObjects
6. Set the filter parameters with SetBlobFilterParams and apply with FilterBlobObjects.
7.

Related Commands:
FreeBlobEnv        FreeBlobEnvAll DrawBlobObjLabels ExportBlobObjectData        FilterBlobObjects        GetBlobCount    
GetBlobObjectData ScanBlobObjects        SetBlobFilterParams 
        



CreateScattergram

geoPiXCL command. You can create a scattergram bitmap from two 8-bit images of the same dimensions, if the images are 
loaded into the geoPiXCL image list. The result is a 256x256x8-bit image stored in the PiXCL image list, called "SourceDir$\
temp.bmp". You can optionally specify a mask image to produce a scattergram only certain regions of the X and Y-axis images.

Syntax: CreateScattergram(X-axisImage$,Y-axisImage$, MaskImage$, MaskString$, Result)

Parameters:
XaxisImage$ The 8-bit image that is to be used for the X-axis.
YaxisImage$ The 8-bit image that is to be used for the Y-axis.
MaskImage$ The 8-bit image that is to be used for mask. Set to "" (NULL)    if no mask is required.
MaskString$ The string that defines the entries used for the mask. Ignored if MaskImage$ is NULL.
Result 1 if the scattergram bitmap is created, otherwise 0.

Remarks:
The scattergram bitmap can be saved to disk with the SaveBitmap command. 

MaskString$ is in the form "1,2,4-7,9,11-17", with no spaces. These are the index values of the mask image which is expected to 
be the result of a classification or a manually generated mask image.

Example:
See the scatrgrm.pxl sample code.

Related Commands:



CropImage

CropImage extracts a rectangular section of the current bitmap, discards the original bitmap and sets the smaller section as the 
current bitmap.

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: CropImage(x1,y1,x2,y2,Result)

Parameters:
x1,y1,x2,y2 The coordinates in the image that define the corners of the desired region.

Result Non-zero if the process was successful, otherwise 0.

Example:

Cropper:
CropImage(20,20,180,220,Res)
If Res <> 0 
    DrawBackGround
    DrawBitMap(23,23,ImageFile$)
Endif
Goto Wait_for_Input

Related Commands:
ResampleImage    ScaleCropImage    



DecorrelStretchImage

geoPiXCL command. The decorellation stretch enhancement is related to the Principal Component enhancement, and can be 
considered to be a sort of inverse. The visual result is that the original RGB colour space utilisation is maximised. Note the SIG 
files input must be the same set tbat was used to create the PCA files originally.

Syntax: DecorrelStretchImage(SigFile$, BaseFile$, Components, MODE_token, Result)

Parameters:
SigList$ A list of the SIG files that were previously created from a corresponding set of TRG files.
BaseFile$ The name that is used to create the output channel names. The last four characters of the name 

are replaced with PCAn, where ‘n’ is the component number starting from 1. For example, if the 
input is “brsfbnd1.bmp”, the first PC file will be “brsfpca1.bmp”. Note that only BMP and 
TIF/geoTIF formats are supported at present.

Components The number of principal components channels to be created. This is <= to the number of input 
bands specified in the SIG file.

MODE_Token Sets the processing mode.
LISTADD creates the output files in the image list.
DISKONLY creates the output files on disk.

Result 1 if the operation was succesful, otherwise 0.

Related Commands:
PCEnhanceImage    



DespeckleImage

DespeckleImage uses a matrix to try to remove high frequency noise pixels in the image. For example, an image may include 
substantially brighter and darker single pixels, visually often referred to as a “salt-and-pepper” effect. In color images this may 
appear as seemingly random color pixels.    You can simulate this effect by adding random noise to an image with the 
AddNoiseToImage command, then use the DespeckleImage command to clean up most of the added effect.

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: DespeckleImage(Amount, Result)

Parameters:
Amount The amount of despeckle effect to use, range 0 - 50.
Result Non-zero if the process was successful, otherwise 0.

Example:

EdgeDetect:
DespeckleImage(17,Res)
If Res <> 0 Then DrawBitMap(10,10,ImageFile$)

 Goto Wait_for_Input
Related Commands:
AddNoiseToImage 



DrawBlobObjects

geoPiXCL command. Once blob objects have been identified in an image, each blob has a unique ID number starting at 1, and 
can be filtered for size and length. These blobs can be rendered into a blob overlay image (8 bits per pixel) in the colour of 
choice, according to the image colour map. If the overlay is already displayed, for example in a bitmap window, it needs to be 
redrawn.

Syntax: DrawBlobObjects(BlobEnvID, DRAW_Token, ThemeColour,ThemeImage$,Result)

Parameters:
BlobEnvID A number that identifies the blob, returned from CreateBlobEnv.
ALL_OBJ Render all blob objects.
FILTERED_OBJ Render a subset of blob objects
ALL_OBJ_RTN Render all blob objects, retaining the original image data.
FILTERED_OBJ_RTN Render a subset of blob objects, retaining the original image data.
ThemeColour The theme colour index in the range 0-255 that is used to render the blobs. The actual colour is 

defined in the ThemeImage$ colour map.
ThemeImage$ The theme image loaded into the geoPiXCL image list.
Result 1 if the operation ws successful, otherwise 0.

Related Commands:
DrawBlobObjLabelsFreeBlobEnv        FreeBlobEnvAll      ExportBlobObjectData        FilterBlobObjects        GetBlobCount    
GetBlobObjectData ScanBlobObjects        SetBlobFilterParams 



DrawBlobObjLabels

geoPiXCL command. Once blob objects have been identified in an image, each blob has a unique ID number starting at 1. 
These numbers can be rendered into a blob overlay image (8 bits per pixel) in the colour of choice, according to the image colour
map. If the overlay is already displayed, for example in a bitmap window, it needs to be redrawn. See the OverlayImage 
command to do a transparent overlays on to a target image.

Syntax: DrawBlobObjLabels(BlobEnvID, ALL_OBJ|FILTERED_OBJ, LabelColour,ThemeImage$,Result)

Parameters:
BlobEnvID A number that identifies the blob environment, returned from CreateBlobEnv.
ALL_OBJ Render all blob object ID labels.
FILTERED_OBJ Render a subset of blob object ID labels according to filter parameters.
LabelColour The label colour index in the range 0-255. The actual colour is defined in the ThemeImage$ 

colour map.
ThemeImage$ The theme image loaded into the geoPiXCL image list.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
DrawBlobObjects    FreeBlobEnv        FreeBlobEnvAll      ExportBlobObjectData        FilterBlobObjects        GetBlobCount    
GetBlobObjectData ScanBlobObjects        SetBlobFilterParams 



EditLANfileHeaderBox

geoPiXCL command. This command displays a dialog that reads an Erdas ™ LAN/GIS file header, and enables the header 
details to be editted and saved.

Syntax: EditLANfileHeaderBox(x1,y1,LANImage$,Result)

Parameters:
x1,y1 The top left corner client area coordinate used to position the dialog box.
LANImage$ The LAN/GIS file to read.
Result 1 if the header information is saved (Save button) or 0 if the Cancel button is pressed.

Related Commands:
ReadLANfileHeader    



EdgeDetectImage

EdgeDetectImage uses a matrix to find high areas of contrast in an image and enhance them, leaving only the ‘edges’.

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: EdgeDetectImage(Result)

Parameters:
Result Non-zero if the process was successful, otherwise 0.

Example:

EdgeDetect:
EdgeDetectImage(Res)
If Res <> 0 Then DrawBitMap(10,10,ImageFile$)

 Goto Wait_for_Input



EmbossImage

EmbossImage uses a matrix to give the effect of an embossing.

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: EmbossImage(Amount,Result)

Parameters:
Amount A number between 1 and 7. Larger and negative numbers are automatically converted to 

the absolute modulus 7 number.

Result Non-zero if the process was successful, otherwise 0.

Example:

Embossing:
EmbossImage(4,Res)
If Res <> 0 Then DrawBitmap(10,10,ImageFile$)

 Goto Wait_for_Input



EqualizeImage

EqualizeImage creates a histogram from the pixel values in the current bitmap and equalizes the range of values in the 
histogram. The histogram is then remapped to the current bitmap. The histogram creation is not reported in the progress 
reporting since it does not take long to create.

Syntax: EqualizeImage(Result)

Parameters:
Result Non-zero if the process was successful, otherwise 0.

Equalizer:
EqualizeImage(Res)
If Res <> 0 Then DrawBitMap(10,10,ImageFile$)

 Goto Wait_for_Input



ExportBlobObjectData

geoPiXCL command.  A blob environment contains a set if BlobObjects, whose details can be exported to a text file. Size and 
length are reported in the current metric used in CreateBlobEnv.

Syntax: ExportBlobObjectData(BlobEnvID, ALL_OBJ|FILTERED_OBJ,ExportFile$,Result)

Parameters:
BlobEnvID A number that identifies the blob, returned from CreateBlobEnv.
ALL_OBJ Report on all blob objects.
FILTERED_OBJ Report on a filtered subset of the blob objects only.
ExportFile$ The name of the export file. If the file already exists, it is overwritten.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
CreateBlobEnv DrawBlobObjLabels    FreeBlobEnvAll      ExportBlobObjectData        FilterBlobObjects        GetBlobCount      
ScanBlobObjects        SetBlobFilterParams 



ExtractTrgAreaFiles
geoPiXCL Command. An 8-bit image containing training areas has been loaded into memory, and its handle is passed into the 
function, along with the training area base filename, and the number of desired training areas.

Each pixel in the image is checked to see if it is non-zero, which means it is part of training area. The number of training areas 
defines the range of pixel values to be checked. These MUST be contiguous in the range 1 to #training_areas.

The ASCII TRG file line format is defined as 
line# pixel# run_length#\r\n

Syntax: ExtractTrgAreaFiles(Handle,TRGBaseName$,Classes,MLH|PCA,SkipRes)

Parameters:
Handle The handle of the bitmap that contains the training area.
TRGBaseName$ The name that is used to create area files. This is generally the same one of the source images 

to be used later for classification or enhancement.
Classes The number of class training areas to be extracted from the source bitmap.
MLH | PCA Maximum likelyhood or Principal component mode.
SkipRes Numeric variable that has no input relevence to the MLH mode, and defines the line skip factor 

for creating PCA ‘n’th line training area files. On return, SkipRes holds either the number of ascii
TRG files created, or 0 if the operation fails.

Remarks:
You can define training areas for the a PCA mode, to set specific regions of interest for later enhancement. If the mask file 
specified is not 8 bit, SkipRes returns 0.

Related Commands:
MakeSpectralSignatureFiles      



FilterBlobObjects

geoPiXCL command.  A blob environment containing blob objects can be filtered for size, length and edge-rejection. Edge-
rejection identifies blobs with pixels on the edges of the image that may be larger, and so should not be counted. Use the 
DrawBlobObjects and DrawBlobObjLabels commands to render a new overlay.

Syntax: FilterBlobObjects(BlobEnvID,LENGTH|SIZE| EDGEREJECT,Result)

Parameters:
BlobEnvID A number that identifies the blob, returned from CreateBlobEnv.
LENGTH Filter Countable blobs according the min and max length parameters, retaining only those within 

the range, and setting all others to NonCountable.
SIZE Filter according the min and max size parameters, retaining only those within the range, and 

setting all others to NonCountable.
EDGEREJECT Set all blobs with pixels on the edge of the image to NonCountable.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
CreateBlobEnv DrawBlobObjLabels    FreeBlobEnv        FreeBlobEnvAll      ExportBlobObjectData    GetBlobCount      
ScanBlobObjects        SetBlobFilterParams 



Filter5x5, Filter15x15

PiXCL 4.12 and later provides user defined filter operations with either 5x5 or 15x15 matrices, which are imported from text files 
in a standard format described below. A matrix can be used to sharpen, emboss, blur and detect the edges of an image. 

Filter files have the following format: two lines describing the BIAS and DIVISOR, follow by either a 5x5 or 15x15 matrix of 
positive or negative integer values, delimited within each line by at least ONE space character (0x20) or TAB character (0x09), 
and with a carriage-return    / line-feed delimiting the end of each line, with the exception of the last line, which MUST terminate 
with an End-Of-File character.    This means that filter files can be created and editted with Notepad or the PiXCL MDI editor. The 
default file extension for PiXCL filter files is .mtx.    For example …

BIAS 30
DIVISOR 15
2  0 -1  0  2
0  1  0  1  0
0  0  3  1  0
0  1  0  1  0
2  0  0  0  2

this filter could be saved as test5x.mtx.    

The general format of a 15x15 filter is the same as the 5x5. 
“+” signs are not required.    For edge pixels, the 
neighbourhood outside the bitmap coordinates are 
considered to be zero. Hence for a 5x5 filter, a 2 pixel wide 
border will have slightly different results than pixels within the
body of the bitmap. For a 15x15, this border will be seven 
pixels wide.

The steps taken to perform a matrix convolution are:
1. Neighbourhood pixel values and corresponding matrix values are multiplied together. 
2. The resulting values are added together for each pixel. 
3. The sum is then divided by the factor (which must not be zero). 
4. The bias is added to the final pixel values. 

Prior to step #1, pixel values are multiplied by 16384,    and after step #4, the result is divided by 16384. This integer method is 
just as accurate and is faster than doing the calculations in floating point.

The related    Create5x5Filter command displays a dialog in which a 5x5 filter can be created or editted. 15x15 filters can be 
created with a text editor, such as the PiXCL MDI editor or Notepad.

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: Filter5x(FilterName$, Result)
Filter15x(FilterName$, Result)

Parameters:
FilterName$ The name of the import filter.

Result The filtered image handle, otherwise zero. A zero result can occur if the filter file is invalid in 
someway, such as a trailing carriage-return character

Remarks:
When any filter is processing an image, a progress bar is displayed along the bottom of the PiXCL application window, which will 
ovewrite a status bar if one is present.    Please be aware that even on small images, a 15x15 matrix will be quite slow, as the 
operation is computationally complex, unless there are many matrix elements that are zero.

This will often occur when you want to pass a smaller matrix kernel smaller than 15x15 but larger than 5x5. The desired kernel of
values are set, with the surrounding values all set to zero.

Examples:
The following code fragments cause the current image to be processed with an imported custom filter matrix.

Do5xFilter:
WaitInput(1)  {allow Toolbar button to process}
If ImageFile$ <> ""



    Filter5x$ = SourceDir$ + "\test5x.mtx"
    UseCursor(WAIT)
    FilterImage5x(Filter5x$,Res)
    UseCursor(ARROW)
    If Res <> 0 Then DrawBitmap(30,38,ImageFile$)
Endif
Goto Wait_for_Input

Do15xFilter:
WaitInput(1)
If ImageFile$ <> ""
    Filter15x$ = SourceDir$ + "\average.mtx"
    UseCursor(WAIT)
    FilterImage15x(Filter15x$,Res)
    UseCursor(ARROW)
    If Res <> 0 Then DrawBitmap(30,38,ImageFile$)
Endif
Goto Wait_for_Input

Related Commands:
Create5x5Filter    



FlipImage

Flip a target bitmap vertically or mirror horizontally .

Color Support: Paletted, Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: FlipImage(VERT|HORZ,Result)

Parameters:
VERT|HORZ Vertical or horizontal token.

Result Non-zero if the process was successful, otherwise 0.

Example:

FlipVertical:
FlipImage(VERT,Res)
If Res <> 0 Then DrawBitMap(10,10,ImageFile$)

 Goto Wait_for_Input
FlipHorizontal:

FlipImage(HORZ,Res)
If Res <> 0 Then DrawBitMap(10,10,ImageFile$)

 Goto Wait_for_Input



FreeBlobEnv

geoPiXCL command.  A blob environment can be removed from memory once it is no longer required.

Syntax: FreeBlobEnv(BlobEnvID)

Parameters:
BlobEnvID A number that identifies the blob, returned from CreateBlobEnv.

Related Commands:
CreateBlobEnv DrawBlobObjLabels    FreeBlobEnvAll      ExportBlobObjectData        FilterBlobObjects        GetBlobCount 
GetBlobObjectData ScanBlobObjects        SetBlobFilterParams 
    



FreeBlobEnvAll

geoPiXCL command. All blob environments can be removed from memory once they are no longer required. geoPiXCL 
removes all blob environments automatically when it terminates.

Syntax: FreeBlobEnvAll

Parameters:
None.

Related Commands:
CreateBlobEnv DrawBlobObjLabels    FreeBlobEnv    ExportBlobObjectData        FilterBlobObjects        GetBlobCount 
GetBlobObjectData ScanBlobObjects        SetBlobFilterParams 



FreeChannel

If you use the GetChannel command, you MUST eventually use the FreeChannel command.

Syntax: FreeChannel(Handle,Result)

Parameters:
Handle A non-zero number returned from the GetChannel command.
Result 1 if the channel image memory has been freed, otherwise 0.

Related Commands:
GetChannel 



GammaCorrectImage
All image formats have at least one thing in common: a higher pixel number means a brighter color value. This rule has two 
corollaries. Firstly, the highest combination of values possible for a pixel produces pure white; and secondly the lowest combination
of values possible for a pixel produces pure black. 

It would follow logically that a value half-way up any scale would have a luminance exactly between black and white. This assumes
that our hypothetical scale would allow an integer value exactly in the middle, which in reality it does not, since image formats are 
based on powers of two, and integer midpoints are not possible. 

Consider an approximate midpoint in a 256 color grey scale format.. This approximate midpoint - say 120 - should produce an 
identical luminance on the monitor when the original image and the viewed image are compared.

A computer monitor displays colors by exciting the screen phosphors which unfortunately do not excite linearly. For example, if a 
computer reads a luminance value from a photographic image and sends it directly to the monitor, the displayed color will be 
dimmer than in the original photograph. 

This is where gamma correction is used: a gamma correction value adjusts for the non-linearity of phosphor excitation. By 
selecting an appropriate gamma value, our approximate midpoint of 120 produces a monitor value of 168.

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: GammaCorrectImage(GammaR, GammaG, GammaB, Result)

Parameters:
GammaR|G|B A positive number between 100 and 999, which is the gamma value x100. E.g. a gamma of 2.45 

is written as 245.

Result Non-zero if the process was successful, otherwise 0.

Example:

GammaCorrection:
UseCursor(WAIT)
GammaCorrectImage(220,210,233,Res)
If Res <> 0 Then DrawBitMap(23,23,ImageFile$)
UseCursor(ARROW)

 Goto Wait_for_Input



GaussianBlurImage

GaussianBlurImage applies a Gaussian function on an image that can blur an image greater than AverageImage or BlurImage. 
The effect is also quite visually different. The blurring in the GaussianBlurImage function is also exponential and 99 is considered
the most usable maximum, although the limit is much higher. A blur value of 0 has no effect on the image.

Processing time for Gaussian blur can be quite long, so the cursor changes to an hourglass, and a progress bar appears along 
the bottom of the PiXCL application window. 

Gaussian blur is used as the first step to sharpen an image. For example, a blur factor of about 10 will smooth out pixel values, 
esspecially adjacent pixels that are marked different in value such as noise. Scanned photos often exhibit this effect. Next, apply 
a sharpen function. This will often result in a visually more appealing image that the orginal with just the sharpen function 
applied.

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: GaussianBlurImage(Amount,Result)

Parameters:
Amount A number between 1 and 99. Larger and negative numbers are automatically converted to the absolute 

modulus 99 number.

Result Non-zero if the process was successful, otherwise 0.

Example:

GBlurring:
UseCursor(WAIT)
GaussianBlurImage(90,Res)
If Res <> 0 Then DrawBitMap(23,23,ImageFile$)
UseCursor(ARROW)

 Goto Wait_for_Input



GeoCorrectImage

PiXCL 4.2 and later provide a simple geometric correction capability, which is also somtimes refered to as image warping. The 
geometric operation uses an affine transform to distort the image according to four control points, generally chosen or computed 
to the corner points of the image. This correction provides a means to register one image onto another under program or user 
control.

The size of the image before and after the transformation is unchanged, which means that the resulting image may have black 
areas that do not have valid pixel data as a result of the geometric transformation. Portions of the original image data may not be
retained.

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: GeoCorrectImage(x1,y1,x2,y2,x3,y3,x4,y4,Mode_TOKEN,Result)

Parameters:
x1,y1,x2,y2,x3,y3,x4,y4 The four new corner points that define the image transformation.

Mode_TOKEN NEAREST: nearest neighbour resampling
BILINEAR: bilinear interpolation resampling
BICUBIC: bicubic interpolation resampling

Result 1 if the operation was successful, otherwise 0.

Example:
See the geocorrect.pxl sample application.

Related Commands:
GeoTranslateImage  ResampleImage  RotateImage  RotateImageExt  



GeoTranslateImage

PiXCL 4.2 and later provide a geometric translation capability, using an affine transform to translate the image according to the 
control point that defines a new corner point. This correction provides a means to move the origin of one image to another under 
program or user control.

The size of the image before and after the transformation is unchanged, and translated regions outside of the image dimensions 
are not retained. The resulting bitmap is still in memory, and can be saved with the SaveBitmap command.

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: GeoTranslateImage(zx1,zy1, Mode_TOKEN,Result)

Parameters:
zx1,zy1 The new corner point that defines the image transformation. The image origin (0,0) is assumed 

to be the top-left corner. Hence, to translate the top-left corner pixel 100 pixels in the X and Y 
axes, Zx1, Zy1 = 100,100.

Mode_TOKEN NEAREST: nearest neighbour resampling.
BILINEAR: bilinear interpolation resampling
BICUBIC: bicubic interpolation resampling

Result 1 if the operation was successful, otherwise 0.

Example:
See the geocorrect.pxl sample application.

Related Commands:
GeoCorrectImage  ResampleImage  RotateImage  RotateImageExt 



GetBlobCount

geoPiXCL command.  A blob environment contains blob objects that are by default set to Countable state. In the process of 
Filtering blobs for Length or Size, some may be set to Non-Countable state.

Syntax: GetBlobCount(BlobEnvID, TotalBlobs, FilteredBlobs)

Parameters:
BlobEnvID A number that identifies the blob, returned from CreateBlobEnv.
TotalBlobs The total number of blob objects in the environment.
FilteredBlobs The number of Countable blob objects in the environment.

Related Commands:
CreateBlobEnv    DrawBlobObjLabels    FreeBlobEnv        FreeBlobEnvAll      ExportBlobObjectData        FilterBlobObjects    
GetBlobObjectData        ScanBlobObjects        SetBlobFilterParams 



GetBlobObjectData

geoPiXCL command.  A blob environment contains blob objects that contain measurement data. Use the GetBlobObjectData 
command to retrieve blob information.

Syntax: GetBlobObjectData(BlobEnvID, BlobObjectID, LENGTH|SIZE,Measurement)

Parameters:
BlobEnvID A number that identifies the blob, returned from CreateBlobEnv.
BlobObjectID The blob object identifier that contains the desired measurement. If the BlobObjectID is negative 

or greater than the number of blob objects, Measurement returns –1.
LENGTH Returns the length of the blob in pixels.
SIZE Returns the size of the blob in pixels.
Measurement The returned measurement value.

Related Commands:
CreateBlobEnv    DrawBlobObjLabels    FreeBlobEnv        FreeBlobEnvAll      ExportBlobObjectData        FilterBlobObjects               
ScanBlobObjects        SetBlobFilterParams 



GetChannel

This command provides the means to get the handle of the current bitmap, or a color channel of the current bitmap.

Syntax: GetChannel(RED|GREEN|BLUE, Handle)

Parameters:
RED|GREEN|BLUE The color channel to be accessed

Handle The returned handle of the current bitmap. This will be 0 if the function fails or the image 
does not exist, and the handle of the specified color channel otherwise.

Remarks:

Channels are only relevent to images with separate colour channels (RGB or CMY, RGBA or CMYK). If you use GetChannel on 
a single channel image, the return value is the handle to the bitmap. I.e. equivalent to the TuneImage(0,0,0,0,0,0,Handle) or 
SetCurrentBitmap(Image$,FULL,Handle) commands. GetChannel makes a new bitmap in memory: its up to you to free this once
you are done with the FreeChannel command.

Example:

GetRGBchannels: 
{shows the HANDLE of each channel in the current image.}
GetChannel(RED,RedHandle)
GetChannel(GREEN,GreenHandle)
GetChannel(BLUE,BlueHandle)
DrawText(10,30,"RedHandle") 
DrawNumber(120,30,RedHandle)
DrawText(10,50,"GreenHandle") 
DrawNumber(120,50,GreenHandle)
DrawText(10,70,"BlueHandle") 
DrawNumber(120,70,BlueHandle)

Goto Wait_for_Input

Related Commands:
CombineChannels    FreeChannel    ReplaceChannel



GetThemeStats

geoPiXCL command. Once a theme image has been created by the PPDClassify or MLHClassify command, you can export a 
report of the theme pixels on a per theme basis. The theme image has to be loaded into the geoPiXCL image list. 

Syntax: GetThemeStats(Handle,THMfile$, Result)

Parameters:
Handle The handle of the image. Use SetCurrentBitmap to get this value.
THMFile$ The name of the disk file to be created. It should ideally have the file extension THM, thought 

this is not mandatory.
Result 1 if the operation was successful, otherwise 0.

Remarks:
A THM file has the format shown below.
Input theme file = C:\PiXCLTools\SurimiTest\specks.thm
Number of Lines  = 1200
Number of Pixels = 1200
Total Pixels     = 1440000
Percentage Total may not reach exactly 100.00 due to rounding.
Zero counts are not included in the report.
Theme Number       #Pixels          Percentage Area

Unclassified 1433183 99.5266
# 1 6817 0.473403

Percentage Total = 100.0

Related Commands:
PPDClassify    MLHClassify 



InvertImage

Invert the colors of the target bitmap in the PiXCL image list.

Color Support: Paletted, Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: InvertImage(Result)

Parameters:
Result Non-zero if the process was successful, otherwise 0.

Example:

Inversion:
InvertImage(Res)
If Res <> 0 Then DrawBitMap(10,10,ImageFile$)

 Goto Wait_for_Input

Related Command:
InvertRectangle 



LinearEnhanceImage

One of the most useful enhancement commands for a target bitmap in the PiXCL image list is the automatic linear enhance. This
reads the initial bitmap of the current bitmap data to calculate the mean and standard deviation, for each channel, then applies a 
linear stretch plus/minus two standard deviations from the mean (subject to clipping at 0 and 255). 

Color Support: Paletted, Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: LinearEnhanceImage(Mean&,StdDeviation&,Result)

Parameters:
Mean&, StdDeviation& The desired mean and standard deviation for the resulting image. The default values are 128.0 and 35.0.

If you set either value to 0.0, the default value is used.
Result Non-zero if the process was successful, otherwise 0.

Remarks:
You can obtain the mean and standard deviations for a PiXCL image list bitmap with the ReportHistogramStats command, and 
calculate the y = Bx + C enhancement coefficients (A is set to 0.0) for input into the CalibrateImage command as follows.

B& = desired_StdDev& / current_StdDev&
C& = desired_Mean& - B& * current_Mean&

LinearEnhanceImage currently takes the channel average mean and standard deviation to calculate A, B and C internally, and 
then runs the CalibrateImage function. Hence, the actual resulting mean and standard deviation will be approximately what you 
specified. If the original data is skewed to low or high values, the resulting mean and standard deviation will also be affected. 
This is normal.

Example:

Linear:
LoadBitmap(ImageFile$,FULL)
LinearEnhanceImage(128.0, 35.0, Res)
If Res <> 0 Then DrawBitMap(10,10,ImageFile$)

 Goto Wait_for_Input

Related Commands:
Histogram  UpdateHistogram  ShowHistogram  ReportHistogramStats  



MakeNDVIimage

geoPiXCL command. Using two single 8-bits per channel images of the same dimensions and geographically, temporally and/or
spectrally related to each other, a Normalized Difference Vegetation Index image can be created. 

Algorithm Description
The techniques for monitoring drought from satellite were developed by NOAA National Environmental Satellite Data and 
Information Service. The NOAA Global Vegetation Index is issued weekly as a database in real time for each 16 x 16 km square,
between 75º N to 55º S latitude. It is available from the NOAA office in Washington D.C. This database product was designed 
through spatial and temporal sampling,    then mapping and calculating the Normalized Difference Vegetation Index (NDVI) from 
the sun's electromagnetic reflectance in the visible and near infrared spectral bands acquired by the AVHRR satellite.

The NDVI concept is based on the properties of green vegetation to reflect solar radiation in two spectral bands sampled by the 
AVHRR sensor: visible, 0.55-0.68µm (Channel 1), and near-infrared, 0.725-1.10µm (Channel 2). The presence of chlorophyll 
pigment in green vegetation and the leaf scattering mechanisms cause low spectral reflectance in Channel 1 and high spectral 
reflectance in Channel 2.

Reflectance values change in the opposite direction if the vegetation is under climatic or growth pattern stress. Thus, the 
difference between the values of these two channels was selected by NOAA as a measure of the degree of vegetation 
"greenness".

The general formula used is 
NDVI = (Ch2-Ch1) / (Ch2 + CH1) 
or for this command

Pxy-out  =    gainC*( ((gainA*ch1+offsetA) - (gainB*ch2+offsetB)) / 
((gainA*ch1+offsetA) + (gainB*ch2+offsetB)) ) + offsetC

where ch1, ch2 == Pxy-in

Inspection of this formula, using 8-bit files as the inputs Ch1 and Ch2 show that the NDVI can range from a value of -1.0 to + 1.0.
In practice, NDVI is a good measure of the density and vigor of green vegetation. For rocks, desert and bare soil, the NDVI is 
always near zero, while for lush vegetation, the NDVI calculated from satellite measurements is close to its practical maximum of
about 0.6.

Syntax:    MakeNDVIimage(HandleA,HandleB, NDVIImage$, gainA&, offsetA&, gainB&, offsetB&, gainC&, offsetC&, Result)

Parameters:
HandleA, HandleB The handles of the input channels loaded into the geoPiXCL image list.
NDVIImage$ The name of the resultinv image that gets created in the image list.
gainA&, offsetA& The calibration values for channel A. The default values are 1.0 and 0.0.
gainB&, offsetB& The calibration values for channel B. The default values are 1.0 and 0.0.
gainC&, offsetC& The calibration values for the output image. The default values are 350.0 and 0.5.
Result 1 if the operation succeeded, otherwise, 0.

Related Commands:
ComputeImage    



MakeScattergram

geoPiXCL command. Using two single 8-bit channel images of the same dimensions and geographically, temporally and/or 
spectrally related to each other, a scattergram or cross plot of the image data is created. 

A third single channel image, typically the result of a classification, can be read to act as a mask for the scattergram creation. 
The resulting image is a 256 pixel square, 256 color bitmap, and is written to a memory bitmap, or automatically written to disk, 
where it can be used by other plotting moduled or commands.

Scattergrams are useful in evaluating the overall relationship of one wavelength channel to another, or the relationship of 
spectral classes within a pair of images, using a thrid mask channel.

Syntax: MakeScattergram(Xhandle,Yhandle, MaskHandle,Mask$,SamplePercent,
ScatterBitmap$,Result)

Parameters:
Xhandle, Yhandle The handles of the images loaded into the geoPiXCL image list. These handles are returned by 

SetCurrentBitmap and TuneImage.
MaskHandle The handle of an optional mask image. Set this to 0 if a mask is not used.
Mask$ A string that defines the mask entries to be used. A set of image mask index values can 

specified, as follows:
 - a single index number in the range 0 - 254: only mask pixels
      with this index will be counted.
 - index 255: count all values. Scatterplot color = theme color,
      multi-class pixels are white (index 255).
 - a set of values, ',' delimited, up to 32. e.g. the arg
      could be "1,3,4,5,8" ... no spaces.
 - a range of values. e.g.    1-8
 - a set and range e.g. 1,2,5-8

SamplePercent The sample rate for the scattergram generation. Acceptable values are 100, 50, 33 and 25. Any other 
values default to 100.

ScatterBitmap$ The name of the scattergram always created on disk and loaded into the geoPiXCL image list.
Result 0 if the operation fails, or the handle of the bitmap that is loaded into the image list. 

Remarks:
The operation will fail if the bitmaps are not 8 bits per pixel, and/or are not the same dimensions.
The scattergam image for X and Y channels with no mask has a white background with dark green scatter pixels. Masked 
scattergrams have black backgrounds with scatter pixels in the standard geoPiXCL class sequence.

Related Commands:
Histogram    ShowHistogram    



MakeSpectralSignatureFiles

geoPiXCL command. Once training areas have been created, a spectral signature is usually required. The spectral signature 
generator function can process up to 32 training areas and eight input bands, to make a set of ASCII SIG files. 

The function differs from other functions, in that file names are passed, rather than a set of image handles that are loaded into 
memory. 

The sets of TRG names and Imagenames are "|" delimited. A single SIG file is created for each TRG file, using the imagenames 
supplied. All imagenames must be 

- 8 bits per pixel hence BMP and TIF are the supported formats. Other formats are usable.
- same #lines, #pixels.

Images are NOT loaded into memory, and instead we read in a line at a time, as needed, while the signatures are generated. 
This is because a training area is generally a small region or regions of the whole file.

A spectral signature is generalized parameter. There is no difference in a signature created for a classification process or a 
principal component process. Hence, any new process that needs a signature can use this tool.

Syntax: MakeSpectralSignatureFiles(TRGfileList$,TRGcount,ImageList$,
ImageCount,ONDISK|MEMORY,Result)

Parameters:
TRGfileList$ A “|” delimited list if input TRG files. Filenames can include ‘space’characters in the path.
TRGcount The number of filenames in TRGList$.
ImageList$ A “|” delimited list of not less than two input images. These images have to be the same 

dimensions as the mask image from which the TRG files were generated.
ImageCount The number of filenames in ImageList$.
ONDISK For 8-bit BMP files in ImageList$ only, the images are accessed as needed on disk, to create the

spectral signature files.
MEMORY For any 8-bit images, the whole image is loaded into memory and the relevent pixels accessed 

to create the spectral signature files. Images are deleted from memory once the operation    is 
complete.

Result 0 if the operation failed, otherwise the number of SIG files created.

Remarks:
Spectral signature files contain the names of the images that were used, the size and mean pixel value of the training area, and 
the covarience matrix for the set of input images. 
 
Related Commands:
ExtractTRGAreaFiles 



MartinTaylorMapping

geoPiXCL command. Another “sort-of” Principal Component inverse function that provides a useful enhancement.

Syntax: MartinTaylorMapping(Handle, MartinTaylorImage$, Result)

Parameters:
Handle The handle of a current 24-bit image in the PiXCL list. This is typically a principal components 

composite.
MartinTaylorImage$ The name of the image to created in the geoPiXCL image list.
Result 1 if the operation was successful, otheriwise 0.

Related Commands:
DecorrelStretchImage    PCEnhanceImage    



MLHClassify

geoPiXCL command. To perform a maximum likelyhood classification of up to 32 input images, a “|” delimited list of the spectral
signature files is created and passed to the MLHClassify command.

Syntax: MLHClassify(SigList$,ThemeImage$,PALfile$, Result)

Parameters:
SigList$ A list of the SIG files that were previously created from a corresponding set of TRG files.
ThemeImage$ The resulting theme image created in the geoPiXCL image list. It is an 8 bit paletted image the 

same dimensions as the input image set. This theme file can be transparently overlaid on to 
other images with the OverlayImage command.

PALFile$ Set to an empty string “” to use the default geoPiXCL theme (class) colour scheme, or specify a 
valid PAL or PBL file to set a custom theme colour palette.

Result 1 if the operation was succesful, otherwise 0.

Related Commands:
ExtractTRGAreaFiles OverlayImage    MakeSpectralSignatureFiles    ConvertPALfile        



ModeFilterImage

geoPiXCL command. A mode filter takes the value of the mode pixel in the neighbourhood surrounding a center pixel and 
replaces the center pixel with that value. It is generally used to clean up small areas in 8 bit theme images, but can also be used 
on an 8 bit grey scale image if desired. For the cases of pixels along the edge of an image, neighbourhood pixels effectively 
outside the image are assumed to be the same as the center pixel.

Syntax: ModeFilterImage(ImageName$, ThemeValue, MinMode, Xsize, Ysize, Result)

Parameters:
ImageName$ An 8 bit theme image loaded in the geoPiXCL image list. If the image is not in the list Result 

returns 0.
ThemeValue The theme pixel value to be processed. Only pixels of this value are processed and all other 

pixels are left unchanged.
MinMode The minimum mode pixel count that will permit the center pixel to be changed. For example, to 

remove a single theme pixel surrounded by pixels of the same colour, the neighbourhood should
be 3x3, and MinMode should be 8.

Xsize,Ysize The size of the neighbourhood, in odd numbers, to a maximum of 7. Xsize and Ysize do not 
have to be the same value.

Result 1 if the operation was successful, othersize 0.

Related Commands:
Filter5x5 Filter15X15 



NLEnhanceImage
Non-linear Logarithmic, exponential and power enhancement functions can be done with the NLEnhanceImage command as 
follows. 

Logarithmic enhancement: Pout = Gain * logK(Pin) + Offset      where    1.00 <= K <= 100.00
Exponential enhancement: Pout = Gain * K**Pin + Offset      where    0.75 <= K <= 1.25
Power enhancement: Pout = Gain * Pin**K + Offset      

Syntax: NLEnhanceImage(Handle, NewImage$,LOG|EXP|PWR, Kfactor&, Gain&, Offset&, MinPixel, MaxPixel, Result)
    
Parameters:
Handle                      Image handle returned from TuneImage.
NewImage$ A name if you want a new result image to be created in the PiXCL list. To process the existing 

image, set this to "" (a null string).
LOG                              Do a logarithmic enhancement. Kfactor& = 2.00 is good starting point.
EXP                              Do an exponential enhancement. Kfactor& = 1.022 is good starting point.
PWR                            Do a power function enhancement. Use Kfactor& = 0.5 for squareroot.
KFactor&                The factor for the Log, Exponent or Power function.
Gain&, Offset& Set a gain and offset factor to scale the result pixel values. Set these to 1.0 and 0.0 results in 

automatic gain and offset calculation to scale the MinPixel, MaxPixel results to 0, 255. Note this 
does NOT set the gain and offset to 1.0 and 0.0. Use, say, 1.01 and 0.01 if you need these 
values.

MinPixel, MaxPixel      Set the range of values to process. MinPixel cannot equal 0. PiXCL automatically changes 0 
values to 1.    You will need to examine the image histogram to decide these values.

Result                        1 if the operation was successful, otherwise 0.

Remarks:
Logarithmic enhancement increases contrast in the lower pixel values, while exponential enhancement increases contrast in the 
higher pixel values. Power functions (e.g. 0.5) tend to smooth the image.

In general, a good starting point for mon-linear enhancement processes is to use the default gain and offset values.

Related Commands:
CalibrateImage  EqualizeImage     NormalizeImage      NormalizeImageRange       Histogram          ShowHistogram 



NormalizeImage

NormalizeImage creates a histogram from the pixel values in the current bitmap and normalizes the range of values in the 
histogram. The histogram is then remapped to the current bitmap. The histogram creation is not reported in the progress 
reporting since it does not take long to create.

Color Support: Paletted, Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: NormalizeImage(Result)

Parameters:
Result Non-zero if the process was successful, otherwise 0.

Example:

Normalizer:
NormalizeImage(Res)
If Res <> 0 Then DrawBitMap(10,10,ImageFile$)

 Goto Wait_for_Input

Related Command:
EqualizeImage NormalizeImageRange 



NormalizeImageRange

NormalizeImageRange creates a histogram from the pixel values in the current bitmap and normalizes a specified range of 
values in the histogram. The histogram is then remapped to the current bitmap. The histogram creation is not reported in the 
progress reporting since it does not take long to create. 

Color Support: Paletted, Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: NormalizeImageRange(Min, Max, Result)

Parameters:
Min, Max The working range, 0 - 255. Min must be less than Max.
Result Non-zero if the process was successful, otherwise 0.

Example:

NormalizerRange:
NormalizeImageRange(10,170,Res)
If Res <> 0 Then DrawBitMap(10,10,ImageFile$)

 Goto Wait_for_Input

Related Command:
EqualizeImage NormalizeImage 



OverlayImage

There are situations where you will want to transparently overlay one bitmap loaded in memory with a another bitmap of the 
same dimensions. For example, the base or background image is a 24 bit color image, and the overlay image is an 8 bit color 
image made of lines and regions of various colors, on a black background. Only the non-black information is to be overlaid on to 
the base image.

This command provides a means to do a transparent overlay of a foreground image on to a background image, such that only 
foreground pixels that are not the transparent color are written. The background image must already be in    memory, and be the 
current bitmap, using one of the DrawBitmap command set. OverlayImage works with all the supported bitmap formats. In most 
cases, the background image will be a 24 bit image e.g. BMP, JPEG, TIF, while the foreground image can be either 8 bit or 24 
bit. Background and foreground bitmaps do not have to be the same image type on disk. 

You can save the result of the overlay operation with the SaveBitmap command.

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: OverlayImage(ForegroundImage$, TrRed, TrGreen, TrBlue, Result)

Parameters:
ForegroundImage$ Name of the foreground image already in memory.
TrRed The red transparency color in range 0-255.
TrGreen The green transparency color in range 0-255.
TrBlue The blue transparency color in range 0-255.
Result 1 if the operation was successful, otherwise 0.

Remarks:
The red, green, blue color value defines the transparency color in the overlay image. These numbers must be in the 
range 0 - 255, and numbers outside this range are set to 0. You can use the ChooseColor command to get an R,G,B 
triplet.

Example:
This code fragment has an image already loaded ( ImageFile$ ) , loads the overlay image, sets the current bitmap 
with the DrawBitmap command, then performs the overlay function. Finally, the updated bitmap is displayed with 
another DrawBitmap command.

OverlayThemes:
LoadBitmap(Image9$)
DrawBitMap(23,23,ImageFile$)
OverlayImage(Image9$, 0,0,0, Res)
DrawBitMap(23,23,ImageFile$) 
Goto Wait_for_Input

Related Commands:
DrawTrBitmap , DrawSizedTrBitmap , SaveBitmap      



PCEnhanceImage

geoPiXCL command. Based on a previously created set of spectral signature (.SIG) files, create a set of principal component 
images. 

The signature file that has been previously generated from the same set of images is passed to the function. Note the image 
names are listed in the SIG file. The images are loaded and the desired number of PC images created.

The Principal Components process is a statistical colour space conversion process, and requires two passes. The first generates
the correction parameters, based on the signature covariance matrix, and the second pass performs the actual conversion to the
PCA colour space.

The result is blue-yellow, red-green image when a 24-bit colour composite is created later. This is not the same as a 
RGB-IHS/VHS conversion, as these process are purely a fixed conversion and makes no assumptions about the input channel 
data space.

An ASCII file, extension .PCM, containing the transformation matrix is created during the process.

Syntax: PCEnhanceImage(SigFile$, BaseFile$, Components, MODE_token, Result)

Parameters:
SigList$ A list of the SIG files that were previously created from a corresponding set of TRG files.
BaseFile$ The name that is used to create the output channel names. The last four characters of the name 

are replaced with PCAn, where ‘n’ is the component number starting from 1. For example, if the 
input is “brsfbnd1.bmp”, the first PC file will be “brsfpca1.bmp”. Note that only BMP and 
TIF/geoTIF formats are supported at present.

Components The number of principal components channels to be created. This is <= to the number of input 
bands specified in the SIG file.

MODE_Token Sets the processing mode.
LISTADD creates the output files in the image list.
DISKONLY creates the output files on disk.

Result 1 if the operation was succesful, otherwise 0.

Related Commands:
ExtractTRGAreaFiles OverlayImage    MakeSpectralSignatureFiles    ConvertPALfile        



PPDClassify

geoPiXCL command. To perform a parallelipiped classification (essentially a simple segmentation) of up to 8 input images, a 
class range is created and passed to the PPDClassify command. Up to 32 classes can be created in one pass.

Syntax: PPDClassify(Handle[Index],ThemeImage$,RangeData$, PALfile$, NumClasses, Result)

Parameters:
Handle[Index] An array of up to 8 image handles for the input channels. Set unused handles to 0. Index is the 

start index in the array for the handles. This will usually be 0. You must create the array prior to 
running this command.

ThemeImage$ The resulting theme image created in the geoPiXCL image list. It is an 8 bit paletted image the 
same dimensions as the input image set. This theme file can be transparently overlaid on to 
other images with the OverlayImage command.

RangeData$ The name of a data file, or the data inself, read from a file, or generated within the geoPiXCL 
application. Range data is in the form of a vector of class low and high pixel values for each 
input channel sequentially. A range has the format of one class entry per line, space delimited, 
with a cr-lf terminator. For example, a two class range for an RGB image might be
10 26 13 35 18 44 crlf          for class #1
39 67 51 88 77 93 crlf          for class #2
Ideally, the class ranges should not overlap, otherwise the results will be meaningless. In 
addition, there is no class priority, so that a pixel assigned to class #1 that subsequently is 
deemed to be in class #2 will be assigned to class #2.

PALFile$ Set to an empty string “” to use the default geoPiXCL theme (class) colour scheme, or specify a 
valid PAL or PBL file to set a custom theme colour palette.

NumClasses The number of classes to create, up to 32. If 0 <= NumClasses > 32, the function will fail, and no
class image will be created.

Result 1 if the operation was successful, otherwise 0.

Related Commands:
ExtractTRGAreaFiles OverlayImage    MakeSpectralSignatureFiles    ConvertPALfile        



ReadLANfileHeader

geoPiXCL command. This command reads the 128-byte header of Erdas ™ LAN and GIS files, and extracts the image 
parameters.

Syntax: ReadLANfileHeader(LANImage$, Hdword$, lpack, Bands, Icols, Irows, Xstart, Ystart, MapType, Nclass, IauType, Acre&,
Xmap&, Ymap&, Xcell&, Ycell& )

Parameters:
LANImage$ The LAN/GIS image to read.
Hdword$ A 6-character string containing “HEAD74”, or “HEADER” for pre-v7.4 files.
Ipack The pack type of the image data. 0 = 8-bit, 1 = 4-bit,    2 = 16-bit.
Bands The number of bands or channel per line. For GIS files, this is always 1. For LAN files, this is 

commonly 1 or 3.
Icols The number of columns or pixels per line.
Irows The number of rows or lines in the image.
Xstart The database x-coordinate of the first pixel in the image i.e. top left corner.
Ystart The database y-coordinate of the first pixel in the image i.e. top left corner.
MapType An integer indicating the type of map projection used.
Nclass The number of classes in the dataset.
IauType The unit of area of each pixel.

0 = none
1 = acre
2 = hectare
3 = other

Xmap&, Ymap& Real numbers that gives the X and Y map coordinates of the top left corner pixel.
Xcell&, Ycell& Real numbers that gives the X and Y size of each cell.

Related Commands:
EditLANfileHeaderBox    WriteLANfileHeader    



ReadSPOTData

geoPiXCL Command. SPOT Image Corporation imagery can be read directly with a command, into the geoPiXCL image list.    
Level 1A/1B panchromatic and multispectral data sets can be read, either entirely, or a partial rectangle.

Syntax: ReadSPOTData(SPOTfile$,OutFile$,InLines, InPixels,OutLines,OutPixels,StartLine, StartPixel, MODE_token, 
INVERT_token, Result)

Parameters:
SPOTfile$ The file to be read into the geoPiXCL image list, or read and converted into a bitmap file on disk, 

if OutFile$ is not null.

OutFile$ The name of the output disk file.

InLines, InPixels The number of lines and pixels read from the SPOT header file.

OutLines, OutPixels The number of lines and pixels written to the output file or bitmap
in memory. The same as InLines, InPixels when the whole image is to be read.

StartLine, StartPixel The image coordinate where data reading starts. 

MODE_token "P" panchromatic format
"XS" multi-spectral format
"15" SPOTview 1.5 format
"40" SPOTView 4.0 format

INVERT_token "STD|INVERT" indicates whether the image is inverted. INVERT is required for image loads into 
the geoPiXCL image list.

Result 1 if the operation was successful, otherwise 0.

Related Commands:
ReadSPOTfileHeader    



ReadSPOTfileHeader

geoPiXCL command. Imagery supplied by the SPOT Image Corporation on CD-ROM include a set of files. One, the image 
header file, contains the information of the image parameters. This command reads that file and extracts information on the 
number of lines and pixels and imagery types.

Syntax: ReadSPOTfileHeader(DATfile$, Lines, Pixels, Interleaving$, Spectralband$, Bandtype$)

Parameters:
DATfile$ The header file LEAD*.dat to be read.
Lines, Pixels The number of lines and pixels of the SPOT image defined in DATfile$.
Interleaving$ The interleaving type string. E.g. BIL.
Spectralband$ The spectral band identifier. PAN = panchromatic mode, XS1 = multispectral band1.
Bandtype$ Indicates the sensor origin. 1A or 1B.

Related Commands:
ReadSPOTData    



RemapImage

With this command you can remap pixel colors, using an imported ASCII text palette file. RemapImage is a direct interface to 
pixel remapping permitting any remapping of source pixel values to destination pixel values. Please note that this is NOT a 
palette remapping function, and it does not work on the basis of manipulating color palette index values. 

RemapImage is used to change the colors of an entire image, and is related to the brightness and contrast manipulation 
functions like TuneImage, EqualizeImage and NormalizeImage.    See the Remarks section below for further explanation. Palette
files can be created with the CreatePALfile command.

Color Support: Indexed, Grayscale, RGB24, RGB555, RGB565, RGB32
Syntax: RemapImage(ColorArrayFile$, Result)

Parameters:
ColorArrayFile$ The color array filename.

Result 1 if the operation succeeded otherwise 0.

Palette File format. 
This ASCII text file consists of three lines of identifiers followed by 256 RGB array entries.    The ! and following text are shown 
here as comments only and are not part of the format. Entries are space or TAB separated and have a carriage-return / linefeed 
at the end of each line.
PiXCL-PAL ! identifer. JASC-PAL (from Paint Shop Pro 4,5,6) is also recognized.
0100 ! version number
256 ! number of entries
0 0 0 ! array entry #1
255 0 0 ! array entry #2
0 255 0
0 0 255
255 255 0
255 0 255
0 255 255
255 128 0
192 192 192
0 128 0
0 0 128
255 0 128
...
0 0 0 ! palette entry #256

It is essential that you understand that the array values are applied to each color channel individually. The read array values are 
applied to ALL pixel values in the Red channel. 8 bit paletted images are considered in effect to be 24 bit images. 
Consider two mapping arrays as shown below.

0  0  0
1  1  1
2  2  2
. . .
255 255 255

255  255  255
254  254  254
253  253  253
. . .
0   0   0 

 
If you apply the left mapping array to an image, there will be no change to the target image, but if you apply the right hand array, 
the image colors will be inverted.

Hence, with RemapImage you can, for example, perform 
1. non-linear enhancements by creating new RGB mapping arrays that replace the linear 0 - 255 standard values. 
2. piece-wise linear enhancements that remap ranges of values to different functions.
3. Map ranges of pixel values to the same color. This is sometimes referred to as image classification. 



Let us consider case #3 above. For example, suppose that you want all pixels that fall in the ranges Red[43-56] , Green[68-75] ,
and Blue[78-85] to be displayed as red (255,0,0). Take the standard linear 0 - 255 array file, and in the red channel, set all 
values in the range 43 - 56 to 255, in the green channel, set all values in the range 68 - 75 to 0,    and in the blue channel, set all 
values in the range 78 - 85 to 0.

When the mapping is applied, only pixels in the desired range will be set to red, while the the rest of the image will be 
unchanged.    To reset the colors, you have to reload the original image: applying a standard linear 0 - 255 mapping array will not 
reset the original colors because the image data has been changed.

Array files can be created with a PiXCL script, entered into a file by hand, or created by other programs.

Related Commands:
CreatePALfile    TuneImage EqualizeImage    NormalizeImage 



RemapTheme

geoPiXCL command.    Thematic images (8 bits / pixel) can contain various classes which sometimes need to be changed. With
the RemapTheme command, you specify an input theme that is to be turned into a target theme. Within the theme image, the 
pixel values are changed, not the image colour map.

Syntax: RemapTheme(ThemeImage$, InputTheme, TargetTheme, Result)

Parameters:
ThemeImage$ A theme image loaded into the geoPiXCL image list.
InputTheme The theme number to be changed.
TargetTheme The theme number (i.e. colour) to which the InputTheme will be converted.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
ModeFilterImage      CombineThemes    



ReplaceChannel

This command is used to experiment with multiple channel images, to see the effects of replacing individual channels in color 
composites.

Syntax: ReplaceChannel(RGBHandle, GRAYhandle, Channel, Result)

Parameters:
RGBHandle Handle of a 24 bit image already in memory.

GRAYhandle Handle of a 8 bit image already in memory.

Channel The 0-indexed channel in the 24 bit image that is to be replaced 
i.e. 0 = Red, 1 = Green, 2 = Blue.

Result 0 if the operation fails, otherwise is the non-zero handle of the new image.

Example:
This example displays a bitmap (previously loaded), gets the handle, then replaces the blue channel with another image loaded 
in memory, and displays the result.

Replacer:
DrawBitMap(23,23,Image8$)
DrawText(0,0,"RGB24 handle= ") 
DrawNumber(135,0,Band8Handle)
TuneImage(0,0,0,0,0,0,Band8Handle)
DrawNumber(230,0,Band5Handle)
ReplaceChannel(Band8Handle,Band5Handle,2,Res)
If Res = 0 
    MessageBox(OK,1,INFORMATION,
    "Replace Channel failed","",Res)
Else
    DrawBitMap(23,23,Image8$)
Endif

Goto Wait_for_Input

Related Commands:
CombineChannels, SaveBitmap 



ResampleImage

ResampleImage provides a means to change the size and aspect ratio of an image by either bi-cubic, bi-linear or nearest 
neighbor methods. The resampling process is especially useful when you need to process 24 bit images to adjust the 
dimensions (i.e. the aspect ratio), or when you have images from sources that are of different resolution, and you need to overlay
one image with another.

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: ResampleImage(Pixels, Lines, NEAREST | BILINEAR | BICUBIC, Result)

Parameters:
Pixels, Lines The desired dimensions of the resized image.

NEAREST Nearest Neighbor method, low quality but fast.
BILINEAR Bi-linear method, high quality but slower.
BICUBIC Bi-cubic method, best quality, slowest.

Result Non-zero if the process was successful, otherwise 0.

Example:

Resampler:
ResampleImage(200,200,NEAREST,Res)
If Res <> 0 
    DrawBackGround
    DrawBitMap(50,50,ImageFile$)
Endif
Goto Wait_for_Input

Related Commands:
CropImage ResizeImage 



ResizeImage

ResizeImage provides a means to change the size and aspect ratio of the current bitmap image using a bi-linear method.

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: ResampleImage(Pixels, Lines, Result)

Parameters:
Pixels, Lines The desired dimensions of the resized image.

Result Non-zero if the process was successful, otherwise 0.

Example:

Resizer:
ResizeImage(200,200,Res)
If Res <> 0 
    DrawBackGround
    DrawBitMap(50,50,ImageFile$)
Endif
Goto Wait_for_Input

Related Commands:
CropImage ResampleImage 



RotateImage, RotateImageBkg

An image can be rotated around its center pixel by a specified angle and the resulting image enclosed in a rectangular bitmap 
with the background set to black. If you want the background colour to be another color, use the RotateImageBkg command

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: RotateImage(Amount,Result)
RotateImageBkg(Amount&,resample_Mode,bkgR, bkgG, bkgB, Result)

Parameters:
Amount A number in degrees between 1 and 360. Larger numbers are automatically converted to 

the modulus 360 number. Negative numbers are permitted.

Amount& A floating point number in degrees between 1.0 and 360.0 Negative numbers are permitted.

resample_Mode NEAREST Nearest Neighbor method, low quality but fast.
BILINEAR Bi-linear method, high quality but slower.
BICUBIC Bi-cubic method, best quality, slowest.

bkgR, bkgG, bkgB The CURRENT background colour for the rotated image. This will usually be the default black (0,0,0), 
and is the colour that a previous call to UseBrush replaces.

Result Non-zero if the process was successful, otherwise 0.

Example:

ImageRotation:
RotateImage(-10,Res)
If Res <> 0 Then DrawBitMap(10,10,ImageFile$)
Goto Wait_for_Input

SavingFile:
WaitInput(1)
Image$ = "..\images\brsfc754.bmp"
DrawBackground
DrawBitmap(20,40,Image$)
Rotate& = -170.0
UseBrush(SOLID,160,255,128)
UsePen(SOLID,1,255,0,0)
RotateImageBkg(Rotate&,BICUBIC,0,0,0,Res) 
WaitInput(250)
GetListBitmapDim(Image$,Lines,Pixels,Bits)
Lines += 41  Pixels += 21
DrawRectangle(19,39,Pixels,Lines)
DrawBitmap(20,40,Image$)
SaveImage$ = SourceDir$ + "\savetest.bmp"
SaveBitmap(SaveImage$,Res)
FreeBitmapAll
Goto Wait_for_Input

Related Commands:
GeoCorrectImage     GeoTranslateImage  RemapImage    RotateImageExt 



RotateImageExt

An image can be rotated around a selected pixel by a specified angle, while the resultiing image dimensions do not change. For 
example, if the selected pixel is in the top left quadrant of the image, you will lose some portions of the original image data in the 
rotation. If you want the background colour to be another color, a subsequent call to RemapImage should be used. 

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: RotateImageExt(rrx,rry,Amount,mode_TOKEN,Result)

Parameters:
rrx,rry The selected point that is used for the rotation.
Amount A number in degrees between 1 and 360. Larger numbers are automatically converted to 

the modulus 360 number. Negative numbers are permitted.
Mode_TOKEN NEAREST: nearest neighbour resampling

BILINEAR: bilinear interpolation resampling
BICUBIC: bicubic interpolation resampling

Result Non-zero if the process was successful, otherwise 0.

Example:

ImageRotation:
RotateImageExt(rx,ry,-10,BICUBIC,Res)
If Res <> 0 Then DrawBitMap(10,10,ImageFile$)
Goto Wait_for_Input

Related Commands:
GeoCorrectImage     GeoTranslateImage     RemapImage    RotateImage 



ScatterPixels

This function processes an image to give an effect rather like viewing through frosted glass or glass with raindrops on it. The 
higher the scatter amount the further apart the pixels are scattered.

Color Support: Paletted, Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: ScatterPixels(Amount,Result)

Parameters:
Amount A number between 1 and 99. Larger and negative numbers are automatically converted to 

the absolute modulus 99 number.

Result Non-zero if the process was successful, otherwise 0.

Example:

DisplacePixels:
ScatterPixels(20,Res)
If Res <> 0 Then DrawBitMap(10,10,ImageFile$)
Goto Wait_for_Input



ScaleCropImage

ScaleCropImage extracts a rectangular section of the current bitmap, discards the original bitmap and scales the new section as 
the current bitmap.

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: ScaleCropImage(x1,y1,x2,y2,Scale&,Result)

Parameters:
x1,y1,x2,y2 The coordinates in the image that define the corners of the desired region.
Scale& A value equal to or greater than 1.0. If a Scale& less than 1.0 is specified, the command does 

nothing. Note that Scale& is a divisor, and the resulting image will be smaller than the coordinate
rectangle specified. If you need to make the image larger, use a subsequent ResampleImage 
command.

Result Non-zero if the process was successful, otherwise 0.

Example:

ScaleCropper:
Scale& = 1.31
ScaleCropImage(20,20,180,220,Scale&, Res)
If Res <> 0 
    DrawBackGround
    DrawBitMap(23,23,ImageFile$)
Endif
Goto Wait_for_Input

Related Commands:
CropImage    ResampleImage 



ScanBlobObjects

geoPiXCL command.  A blob environment contains no blob objects when it is initially created, so the image has to be scanned 
to locate them.

Syntax: ScanBlobObjects(BlobEnvID,ImageFile$,ClassValue,ObjectsFound)

Parameters:
BlobEnvID A number that identifies the blob, returned from CreateBlobEnv.
ImageFile$ An image loaded in the geoPiXCL image list. In the current release, this is required to be 8 bit 

per pixel.
ClassValue An object class pixel value in the range 1 to 255 that is searched for in ImageFile$.  
ObjectsFound The number of discrete, separable objects found in the image.

Related Commands:
CreateBlobEnv    DrawBlobObjLabels    FreeBlobEnv        FreeBlobEnvAll      ExportBlobObjectData        FilterBlobObjects        
GetBlobCount    SetBlobFilterParams 



SetBlobFilterParams

geoPiXCL command.  A blob environment has a set of filters that can be turned on and off before measurements are taken. 
Parameters are applied to ALL blob objects in the Blob Environment.    Min/Max default parameters are
length = 0.0, imagepixels.0; Size = 0.0, imagepixels.0; edge rejection = off (0.0, 0.0), on (1.0, 0.0).

Syntax: SetBlobFilterParams(BlobEnvID,LENGTH|SIZE|RESET|EDGEREJECT, MinVal&, MaxVal&, Result)

Parameters:
BlobEnvID A number that identifies the blob, returned from CreateBlobEnv.
LENGTH Filter Countable blobs according the min and max length parameters, retaining only those within 

the range, and setting all others to NonCountable.
SIZE Filter according the min and max size parameters, retaining only those within the range, and 

setting all others to NonCountable.
RESET Reset all blob objects to Countable state. Length and size parameters are unchanged, but the 

edge reject parameter is reset. To change these parameters, issue a command with the desired 
new settings.

EDGEREJECT Set all blobs with pixels on the edge of the image to NonCountable (MinVal& = 1.0) or Countable
(MinVal& = 0.0). That is, setting the parameter does actually filter the image.

MinVal& The minimum value for the token, expressed in the current metric used in CreateBlobEnv. For 
EDGEREJECT mode, 0.0 disables, and 1.0 enables edge rejection.

MaxVal& The maximum value for the token, expressed in the current metric used in CreateBlobEnv. 
Ignored for EDGEREJECT mode.

Result Non-zero if the process was successful, otherwise 0.

Related Commands:
CreateBlobEnv    DrawBlobObjLabels    FreeBlobEnv        FreeBlobEnvAll      ExportBlobObjectData        FilterBlobObjects        
GetBlobCount      ScanBlobObjects 



SharpenImage

SharpenImage uses a matrix to enhance the contrast of areas of an image so that a sharpening effect is given.

Color Support: Paletted, Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: SharpenImage(Amount,Result)

Parameters:
Amount A number between 1 and 99. Larger and negative numbers are automatically converted to 

the absolute modulus 99 number.

Result Non-zero if the process was successful, otherwise 0.

Example:

Sharpening:
SharpenImage(10,Res)
If Res <> 0 Then DrawBitMap(10,10,ImageFile$)

 Goto Wait_for_Input



SkewImage

Skews an image vertically or horizontally by the specified number of degrees.

Color Support: Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: SkewImage(Degrees,VERT|HORZ,Result)

Parameters:
Degrees A number in the range -90 to +90.

VERT|HORZ Vertical or horizontal token.

Result Non-zero if the process was successful, otherwise 0.

Example:

Skewer:
SkewImage(45,VERT,Res)
If Res <> 0 Then DrawBitMap(10,10,ImageFile$)

 Goto Wait_for_Input



TuneImage

TuneImage ‘tunes’ the brightness and/or contrast of an image, for any or all of the red, green and blue components.

The brightness and contrast percentages must be in the range of -100 and 100. Each element in the array passed to    
TuneImage is the percentage used for each color component. The array is in red, green, blue order.

If contrast or brightness must stay the same then set the unwanted parameter to 0..

Color Support: Paletted, Grayscale, RGB24, RGB555, RGB565, RGB32

Syntax: TuneImage(brightnessR,brightnessG,brightnessB,
 contrastR,contrastG,contrastB,Result)

Parameter:
brightness Array of red, green and blue brightening percentages.

contrast Array of red, green and blue contrast percentages.

Result The image handle if successful, otherwise 0. Image handles are used with other 
commands, for example, CalibrateImage, NLEnhanceImage.

Example:

BrightnessContrastUp:
Count = 0
While Count < 10
    TuneImage(10,10,10,5,5,5,Res)
    Count++
    If Res <> 0 Then DrawBitMap(10,10,ImageFile$)
EndWhile

 Goto Wait_for_Input

See Also
CalibrateImage        NLEnhanceImage 



WriteLANfileHeader

geoPiXCL command. This command writes the 128-byte header of Erdas ™ LAN and GIS files.

Syntax: WriteLANfileHeader(LANImage$, Hdword$, lpack, Bands, Icols, Irows, Xstart, Ystart, MapType, Nclass, IauType, Acre&,
Xmap&, Ymap&, Xcell&, Ycell& )

Parameters:
LANImage$ The LAN/GIS image to read.
Hdword$ A 6-character string containing “HEAD74”, or “HEADER” for pre-v7.4 files.
Ipack The pack type of the image data. 0 = 8-bit, 1 = 4-bit,    2 = 16-bit.
Bands The number of bands or channel per line. For GIS files, this is always 1. For LAN files, this is 

commonly 1 or 3.
Icols The number of columns or pixels per line.
Irows The number of rows or lines in the image.
Xstart The database x-coordinate of the first pixel in the image i.e. top left corner.
Ystart The database y-coordinate of the first pixel in the image i.e. top left corner.
MapType An integer indicating the type of map projection used.
Nclass The number of classes in the dataset.
IauType The unit of area of each pixel.

0 = none
1 = acre
2 = hectare
3 = other

Xmap&, Ymap& Real numbers that gives the X and Y map coordinates of the top left corner pixel.
Xcell&, Ycell& Real numbers that gives the X and Y size of each cell.

Related Commands:
EditLANfileHeaderBox    ReadLANfileHeader    



PiXCL Alphabetical Command Reference

This section describes all the commands you can use in a PiXCL 4.4 and 5.0 program. It provides an alphabetical listing of 
commands with detailed descriptions and sample code.

AbortShutdown    AboutPiXCL    AboutUser Acos     AddFont     Ansi AppWindowHandle Array    Asin  Atan    Average  
AutoProgressBar    Beep    BMWinTitle    Button    ChangeMenuItem    ChangeToolbarBtn    ChooseColor    ChooseFont    Chr    
ClearCommPort    ClipboardAppend    ClipboardEmpty    ClipboardGet    ClipboardGetBitmap    ClipboardPut    ClipboardPutBitmap
CloseBitmapWindow    ComboBox    Cos  Cosh ConvertPALfile    CountBitmapColors    CopyWindowToClipboard      
CountCmdLineArgs    Create5x5Filter     CreateBitmap    CreatePALfile    CustomColor    CustomizeToolBtn    

DDEExecute    DDEInitiate    DDEPoke    DDERequest    DDETerminate 

DebugMsgBox    DialogBox  DirChange    DirExplore    DirGet    DirGetSystem    DirGetWindows    DirListFiles    DirMake    
DirRemove    DiskChange    DlgUnitsToPixels  DragAcceptFile    DrawArc DrawAnimatedRects    DrawBackground    
DrawBackgroundRegion    DrawBitmap DrawBitmapPoint    DrawBitmapWindow    DrawPreviewBitmap DrawCaption    DrawChord
DrawEdgeRectangle    DrawEllipse    DrawFlood    DrawFloodExt    DrawFpNumber  DrawFocusRectangle    DrawFrameControl    
DrawGrid    DrawIcon      DrawLine    DrawNumber    DrawPie    DrawPoint    DrawPolyCurve    DrawPolygon    DrawPolyLine    
DrawRectangle    DrawRoundRectangle    DrawShadeRectangle DrawShadowFpNumber DrawShadowNumber    
DrawShadowText    DrawShadowTextExt    DrawShellIcon    DrawSizedBitmap    DrawStatusText    DrawStatusWinText    DrawText 
DrawTextExt    DrawTrBitmap DrawTriangle DrawTrSizedBitmap DrawVecLabel DrawVecPoint DrawVecLine DrawVecPolygon 
DrawZoomedBitmap    DropFileServer    DuplicateImage    EmptyRecycleBin    End    EnlargeImage  EnlargeImageBox        
EnumChildWindows    EnumDisplayMonitors    EnumPrinters    EnumWindows EscCommFunction    ExitWindows    
ExpExportHistogram     ExtractListBitmapRect    

FileCopy    FileDecrypt    FileDelete    FileEncrypt    FileExist    FileExtension    FileGet    FileGetDate    FileGetDateExt    
FileGetExpandedName    FileGetTempName    FileGetTime    FileGetTimeExt    FileGetSize    FileLZExpand    FileMove    FileName
FilePath    FileRead_ASCII    FileRead_Binary  FileRead_INI    FileRename    FileSaveAs    FileWrite_ASCII    FileWrite_Binary     
FileWrite_INI    FindExecutable    

FlashBMWindow    Float   For-Next Loops    FpStr  FpVal  FreeBitmap    FreeBitmapAll    FreeVar    FreeVarAll    GetBackground 
GetBitMapDim    GetBMWZoom    GetCmdLine    GetCommPort    GetComputerName    GetCopyDataMsg    GetDialogUnits 

GetDiskSpace    GetDragList    GetEnvString    GetEnvVariable    GetFontFace    GetIPAddress        GetListBitMapDim    
GetListBitmapPixel    GetLocalTime GetMapMode GetMenuStatus    GetPixel    GetScreenCaps    GetScreenWorkArea    
GetSysPowerStatus    GetSystemMetrics    GetSystemTime    GetTempPath    GetTextSpacing  GetTimeZone    
GetToolbarBtnStatus GetViewportExtent  GetViewportOrigin  GetVolumeType GetWindowExtent  GetWindowOrigin    
GlobalMemStatus    Gosub    HexToNum    Histogram    HTMLControl    Hypot 

IDR_Add_Legend IDR_CloseIdrisi IDR_DisplayComposition IDR_GetDataDir IDR_GetDir IDR_GetExtensions 
IDR_GetLanguage IDR_GetProgress  IDR_InitProgressTracking  IDR_IsPresent    IDR_Launch  IDR_LaunchModule 
IDR_Read_DocFile IDR_Read_Legend  IDR_Read_Val_DocFile IDR_Read_Vec_DocFile IDR_RegisterClient IDR_SetDataDir 
IDR_SetDebugMode IDR_SetExtensions IDR_SetProgress IDR_UnRegisterClient IDR_Write_DocFile  

If...Then    ImageBox    InfoMenu    InsertListBitmapRect    Instr    Int  IPAddressBox    ItemCount  ItemExtract  ItemInsert  
ItemLocate ItemRemove  

Lcase    Left    LeftOf    Len    ListBox    ListBoxExt    ListLoadedBitmaps    LoadBitmap    Log10  LogE  Logoff    

Max MessageBeep    MessageBox    Min    MonitorFromPoint    MonitorFromRect    MonitorFromWindow      MonthCalControl    
Negate    NumToHex    Pad    PasswordBox    PixelsToDlgUnits  Pow    PrintFile    ProgressBar    PXLCmds  PXLResume    
PXLResumeAt    QueryRecycleBin 

Random    RawDataParamBox  RDBCloseKey    RDBCreateKey    RDBDeleteKey    RDBEnumKey    RDBOpenKey    
RDBQueryKey    RDBQueryValue    RDBSetValue    ReadBitmapRect     ReadRawBitmap  ReadCommPort 
ReadTIFcompressMode    Redraw RegisterExtLibCmdSet    RegisterUserCommand     RemoveFont     RenameListImage    
ReportHistogramStats  ReportMouse    Right    RightOf    RotateRectangle    Run    RunExt    SaveBitmap    SaveRectangle    
SaveTIFcompressMode    

Scrollbar    ScrollbarGetValue    ScrollbarRemove    ScrollbarSetPosition      ScrollbarSetRange    

SendCopyDataMsg    SendKeys    Set SetMapMode SetBMWMouse SetBMWRightMouse    SetColorPalette    SetCommPort    



SetComputerName    SetCtrlMidMouse  SetCtrlMouse    SetCurrentBitmap      SetDblMidMouse  SetDblMouse    
SetDblRightMouse    SetDrawBitmap      SetDrawMode    SetDrawMouse    SetEditControl    SetEnvVariable  SetFontEscapement   
SetKeyboard    SetListBitmapPixel    SetLocalTime    SetMenu SetMidMouse     SetMouse    SetPopupMenu    SetPriority    
SetRightMouse    SetSendKeysPriority SetShftMidMouse     SetShftRightMouse    SetSystemTime SetTextSpacing    

SetVECdrawParams SetViewportExtent    SetViewportOrigin  SetWaitMode    SetWindow SetWindowExtent  SetWindowOrigin  
SetWorkingDirBox    ShellAbout    Shutdown    Sin    Sinh Space    Sqrt      StatusWindow    Str    StrCmp    StrCmpI    StrRepl    
StrReplAll    StrRev    Switch    

Tan    Tanh    TaskBarIcon    TextBox    TextBoxExt TileBitmapWindows    TimeToASCII    ToolBar    ToolWindow 

Trackbar    TrackbarGetValue    TrackbarRemove    TrackbarSetPosition      TrackbarSetRange Trim TrimExt

TWAIN_AbortAllPendingXfers    TWAIN_AcquireNative TWAIN_AcquireToClipboard  TWAIN_AcquireToFilename     
TWAIN_CloseSource  TWAIN_CloseSourceManager     TWAIN_CurrentSourceID    TWAIN_DisableSource     
TWAIN_DisableSource  TWAIN_EnableSource  TWAIN_EnableUI    TWAIN_EnumSource    TWAIN_GetBitDepth     
TWAIN_GetBitmapParams    TWAIN_GetCapability    TWAIN_GetCompression            TWAIN_GetCurrentRes 
TWAIN_GetCurrentUnits    TWAIN_GetFrame      TWAIN_GetPixelType    TWAIN_GetState  TWAIN_IsAvailable 
TWAIN_LoadSourceManager TWAIN_OpenDefaultSource TWAIN_OpenSourceManager TWAIN_OpenSpecificSource 
TWAIN_PxlVersion TWAIN_RegisterApp TWAIN_SelectSource TWAIN_SetBitDepth TWAIN_SetCapability 
TWAIN_SetCompression    TWAIN_SetCurrentRes TWAIN_SetCurrentUnits     TWAIN_SetFrame TWAIN_SetPixelType     
TWAIN_UnloadSourceManager 

Ucase    UpdateHistogram UpdateProgressBar    UseBackground    UseBrush    UseBrushPattern    UseCaption    UseCoordinates  
UseCursor    UseFont    UsePen    Val    ViewFilterFile 

WaitCommEvent    WaitInput    WAVGetDevCaps    WAVGetNumDevs    WAVGetPitch    WAVGetPlayRate    WAVGetVolume    
WAVPlaySound    WAVSetPitch    WAVSetPlayRate    WAVSetVolume    

While Loops    

WinAdjustRect    WinClose    WinExist    WinGetActive    WinGetClientRect    WinGetLocation    WinHelp    WinHTMLHelp     
WinLocate    WinSetActive    WinShow    WinTitle    WinVersion 

WriteBitmapRect     WriteCommPort    

ZoomBitmapWindow    

Image Processing Commands 



AbortShutdown

Windows NT command! Cancels the shutdown process initiated by the Shutdown command.

Syntax: AbortShutdown

Remarks:

By using PiXCL's Shutdown 
command, you can have PiXCL 
display a message box like the one
at left, indicating that the system is 
about to shut down in a specified 
number of seconds. You can 
cancel the shutdown process and 
remove the dialog box by using the
AbortShutdown command. See the
Shutdown command for an 
example.

If this command is used in Windows 95, a message box appears to inform you that the command is not supported. The program 
will then continue.

Related Commands:

Logoff    ExitWindows    Shutdown



AboutPiXCL

The standard About box can be made to appear by clicking on the &Info menu item, unless it has been disabled by the 
InfoMenu(REMOVE/ENABLE) command. The AboutPiXCL command can be used if this standard about box is needed at times 
when the &Info menu item has been disabled, or the entire menu bar has been deleted with the SetMenu() command.

Syntax: AboutPiXCL

Parameters: None

Related Commands:
InfoMenu    SetMenu 



AboutUser

A user defined About box can be made to appear. The title bar string and two user defined strings can be defined if required.

Syntax: AboutUser(Title$,AboutBox_1$,AboutBox_2$)

Parameters:
Title$ Title string that appears in the About box. This can be set to a null string i.e. Title$ = "", 

and no title sting will be displayed. The maximum string length is 128 characters.

AboutBox_1$ Up to two lines of text. This would generally be the name of the new application. If this 
string is set to null (i.e. ""), the region in the About box will appear blank.

AboutBox_2$ Up to four lines of text. This would generally be details of the new application, such as 
technical support contact information, or more data about the program. If this string is set
to null (i.e. ""), the region in the About box will appear blank.

Example

AboutUser("Structured Program Loops with PiXCL 4.0",
  "FOR - NEXT and WHILE - ENDWHILE structures in PiXCL",
  "Sample PiXCL 4.0 program showing variety of built in icons 
   drawn in the client area, depending on the loop parameters")

Related Commands:
ShellAbout    



Acos

Floating Point math library function. Calculate the arc cosine of an angle in radians.

Syntax: Acos(Angle&, Value&)

Parameters:
Angle& The angle in radians
Value& The result of the function.

Related Commands:
Asin  Atan  



AddFont

The AddFont command adds the font resource from the specified file to the Windows font table. The font can subsequently be 
used for text output by any Windows-based application. 

Syntax: AddFont(FontFilename$,Result)

Parameters:
FontFilename$ A valid font file filename. The filename may specify either a .FON font resource file, a .FNT raw 

bitmap font file, a .TTF raw TrueType file, or a .FOT TrueType resource file.

Result 1 if the operation succeeded, otherwise 0. If the font is already installed, Result also returns 0.

Related Commands:
DrawText  DrawNumber  RemoveFont  UseFont 



Ansi

Returns the ANSI code for the first character in a string.

Syntax: Ansi(String$,Code)

Parameters: 
String$ A string consisting of one or more characters.

Code An integer variable that will contain the ANSI character code for the first character in 
String$.

Remarks:

Although Windows NT and 95 support both the ANSI and Unicode character sets, this version of PiXCL supports only the ANSI 
set.

There are 256 characters in the ANSI set, numbered 0 to 255. Characters on your keyboard are represented by numeric values 
between 32 and 126--for example, the ANSI code for T is 84. ANSI characters outside this range represent special characters, 
such as fractions and accented characters. You can use the Windows CHARMAP accessory to view all the available characters 
and extended characters.

Example:

This example draws the number 65--the ANSI code for the letter A---at the point (10,10) in the PiXCL window.

Ansi("Alphonse",Result)
DrawNumber(10,10,Result)
WaitInput()

Related Command:
Chr



AppWindowHandle

PiXCL can be used to call other EXE programs with command line arguments, which may need to send messages back to the 
PiXCL application.    It also reports the interpreter type (PiXCL or geoPiXCL) and the version numbers.

Syntax: AppWindowHandle(Handle,Handle$, geoPiXCLFlag,Major,Minor)

Parameters:
Handle The window handle of the current PiXCL application.

Handle$ Handle expressed as a string variable.

geoPiXCLFlag Returns 1 if the application is using the more extensive geoPiXCL interpreter, otherwise it 
returns 0 for all versions of PiXCL.

Major, Minor The major and minor version numbers of the interpreter.

Remarks:

This command will primarily be of use to programmers writing other applications in Visual Basic, C or C++. If Handle$ is passed 
to another application, you can use the value in Windows SendMessage commands. For example, you can send a 
WM_COPYDATA message to a PiXCL application that tells it to start processing at a specific label. This is useful when you want 
an extension function to send a progress message, and have the PiXCL application display a progress bar.

Related Commands:
None.



Array

PiXCL 5 Command. In PiXCL 5.0 and later, 32-bit integer, 32-bit floating point and string arrays are supported. PiXCL 5.1 added
64-bit integer and 64-bit double arrays. Unlike integer, floating point and string variables that can be set and reset anywhere in a 
program (e.g. strings and the FreeVar command), arrays have to be created or deleted explicitly because of the memory 
allocation and deallocation requirements. 

Syntax: Array(VariableName[Size],Result)        for integer arrays
Array(VariableName$[Size],Result)      for string arrays
Array(VariableName&[Size],Result)      for floating point arrays
Array(VariableName#[Size],Result)      for 64-bit integer arrays
Array(VariableName#&[Size],Result)      for 64-bit double arrays

Parameters:
VariableName The name of the array. This must not be the same as any other variable of the same type. 

Size The number of elements in the array, and must be at least 1. The current maximum size of an 
array is arbitrarily set to 2048K elements. Note that string array elements are actually pointers to 
the first character in a string of arbitrary length.

Result If the creation of the array was successful, Result returns the same value as Size, otherwise 0. 
The usual cause of a 0 return is that Size is greater than the maximum size, or is zero or a 
negative number. 

Remarks:
Integer array elements are initialized to 0.
String array elements are initialized to "".
Float array elements are initialized to 0.0.

If an array variable has been created with the Array command, and you issue another command with the same variable name 
and arbitrary size, the existing array is DELETED and the new array created with zeroed entries. The first array can also be 
deleted with a FreeArrayVar or FreeArrayVarAll command and then the new array can be created. 

When a PiXCL application terminates, all array variables and memory get automatically deleted. From a coding point of view, it’s 
a good idea to have a FreeArrayVarAll command to ensure that cleanup occurs.

Using array variables:
Array variables are referenced with a 0 based index enclosed in square brackets e.g. VariableName[index]    or VariableName 
[index].    Note the space after the VariableName and [index]    : both are supported. We suggest that you use the 
VariableName[index]    for code clarity.

Array variable elements can be used anywhere that the same type of variable is used. For example, let’s say you have the same
image file name in both ImageName1$ and ImageNameArray$[1]

DrawBitmap(x,y,ImageName1$ )    and
DrawBitmap(x,y, ImageNameArray$[1] )

will have the same effect.

If you want to implement multi-dimensional arrays, create a set of name related arrays e.g.
Array(Vector_X [Size],Size)
Array(Vector_Y [Size],Size)
Array(Vector_Z [Size],Size)

Common Programming Errors
You will get a Syntax Error if you 
· try to access an array variable without first declaring it.
· try to access an array element with an out of range index or negative index.



· forget to add a $ or & to a string or float arrayname when accessing an array element.

Related Commands:
FreeArrayVar FreeArrayVarAll



Asin

Floating Point math library function. Calculate the arc sine of an angle in radians.

Syntax: Asin(Angle&, Value&)

Parameters:
Angle& The angle in radians
Value& The result of the function.

Related Commands:
Acos     Atan  



Atan

Floating Point math library function. Calculate the arc tangent of an angle in radians.

Syntax: Atan(Angle&, Value&)

Parameters:
Angle& The angle in radians
Value& The result of the function.

Related Commands:
Acos    Asin  



Average

Floating Point math library function. Calculate the average of a list of real numbers.

Syntax: Average(Number_1&,…,Number_n&, Value&)

Parameters:
Number& Each of the list of numbers. These numbers can be integers (not integer variables).
Value& The average of the list.

Related Commands:
Max     Min  



AutomateApp

PiXCL 5 command: Many programs, notably Microsoft Office applications like Word and Excel, and many other third 
party applications, are what is called Automation servers. That is, it is possible for a client application (here, PiXCL and 
geoPiXCL, but also Visual Basic, C++ and others) to programmatically control the server, using what are called COM 
interfaces.    You will need to know the exact Automation command(s) syntax, which is supplied by the server developer.

Syntax: AutomateApp(Interface, Command$, CommandMODE, 
Integer|Float&|String$, ArgumentType, …, …, …, …, 
Result$ | Result | Result&)

Parameters:
Interface A COM interface initially acquired from a call to CreateCOMinstance, but possibly also from a 

call to this function.
Command$ The Automation command string.
CommandMODE One of the following:

METHOD    A function that invokes some process in the target. It may or may not have 
arguments.

PROPERTYPUT A function that sets a property on the target. Usually takes one argument.
PROPERTYGET A function that gets a property from the target, and takes one argument.

The Automation command arguments come in pairs. Any number of argument pairs can be specified.
Integer|Float&|String$ A static value or variable which is a representation of the argument value. For boolean values in 

strings, use “@TRUE” or “@FALSE”.    Using @TRUE or @FALSE as an integer value here will
result in a syntax error: use 1 or 0 instead.

ArgumentType The type of the argument required by the Automation command. The representation is converted
internally by PiXCL. Currently supported types are:
VT_NULL where a null value is required.
VT_BSTR where a BSTRING is required.
VT_I2, VT_I4 2 byte and 4 byte integers respectively.
VT_R4 where a 4 byte float variable is required.
VT_R8 where an 8 byte double variable is required.

Result$|Result|Result& The return variable of the type required by the Automation command that was specified. Since 
PiXCL and geoPiXCL support three variable types only, choose the most appropriate type for 
Result.    E.g.
BOOLs, Handles, Pointers, Interfaces    == integer
Floats or doubles == float&
Strings == string$
The return value is also used as a negative integer error return, represented in the variable type.
Hence an error return of –1 can also be “-1” and –1.0.

-1 = UNKNOWNINTERFACE: the COM interface specified is unknown.
-3 = MEMBERNOTFOUND: a method requested is unrecognized.
-4 = PARAMNOTFOUND: a property requested is unrecognized.
-5 = TYPEMISMATCH: a type specified for an argument is incorrect.
-6 = UNKNOWNNAME:    the server does not recognize a specified name.

Remarks:
A common programming error is to add extra argument pairs to the command. Please consult your target application 
Automation comand syntax.    Another common error is setting the wrong argument name or type. This will generally 
result in PiXCL halting with a syntax error, which of course, it is.

Related Commands:
CreateCOMinstance    ReleaseCOM 



AutoProgressBar

When PiXCL loads a bitmap into the image list the first time, or performs some of the image processing options, a progress bar 
is displayed by default along the bottom of the client area as the operation progresses. This progress bar display can be disabled
if desired, with the AutoProgressBar command.

Syntax: AutoProgressBar(ENABLE | DISABLE)

Parameters:
ENABLE The default state. 
DISABLE A progress bar is not displayed.

Remarks:
This command can be issued at any time during a program’s operation. It does not affect the ProgressBar command.

Related Commands:
DrawBitmap  DrawSizedBitmap     DrawTrBitmap    DrawTrSizedBitmap     DrawZoomedBitmap 



Beep

Sounds the bell. If a sound card is installed, the current sound for the bell will be played.

Syntax: Beep

Example:

This program puts up a message box with Yes, No, and Cancel buttons. It then beeps once if you select Yes, twice for No, and 
three times for Cancel.

{Put up a message box}
   MessageBox(YESNOCANCEL,1,QUESTION,
              "Did you vote?","Question",Button)
{Test for which button was selected}
   If Button=1 Then Goto Beep1
   If Button=2 Then Goto Beep2
   {Else} Beep
   WaitInput(500)    {Pause for 1/2 second}
Beep2:
   Beep
   WaitInput(500)
Beep1:
   Beep

Related Command:
 MessageBeep    WAVPlaySound 



BitFlag

PiXCL 5 command. Individual bits in an integer value are sometimes used as flags, for example returns from other hardware via
the serial port. The BitFlag command provides the means to check if any bit is set.

Syntax: BitFlag(Number,Bit,BitValue)

Parameters:
Number The number to be checked.
Bit A number in the range 0-31. Out of range or negative numbers are converted to positive and 

mod32 taken.
BitValue 0 or 1

Related Command:
CheckSum      



BitmapToTxt

PiXCL 5 command. It is sometimes helpful to be able to write the pixel values of an image out to a text file. BitmapToTxt accepts
8 bits per pixel only. The output is TAB delimited between values, with a CR-LF after each image line. Use this command with 
care, as it can create very large files up to 4 times larger than the original image.

Syntax: BitmapToTxt(Imagename$,Filename$,Result)

Parameters:
Imagename$ The name of an image loaded into the PiXCL image list e.g. with the LoadBitmap command. 

Must be 8 or 24 bits per pixel, or no file is created.
Filename$ The name of the text file to be written. An existing file is overwritten. A summary of the image 

parameters is written to the first line of the file.
Result 1 if the operation was successful, otherwise 0.

Related Commands:



BMWRedraw

Use this command to refresh the contents of any visible bitmap windows

Syntax: BMWRedraw

Parameters:
None

Related Commands:
BMWSysCmdEndAt    BMWinTitle ChangeBmwImage



BMWSysCmdEndAt

A bitmap window can be closed by clicking the Close button, which also updates the internal PiXCL records.    You can optionally 
have some processing done by specifying an individual label for each window. You can change the defined label at any time. 
Setting the label to NULL i.e. disabling the Close button processing requires the bitmap window to be deleted and redrawn.

Syntax: BMWSysCmdEndAt(WindowID,Label)

Parameter:

WindowID A valid window ID from DrawBitmapWindow.

Label The jump-to label name. If Label does not exist in the script, a syntax error is generated.

Related Commands:
ChangeBmwImage    PXLResumeAt    SysCmdEndAt    WinResizeAt    



BMWinTitle

A bitmap window created by the DrawBitmapWindow command places the selected image filename in the title bar by default. 
When you need to change or add to the title, such as adding more information like the current zoom factor, or last selected 
mouse position, the BMWinTitle command should be used.

Syntax: BMWinTitle(WindowID,NewTitle$)

Parameters:
WindowID The ID number returned by the DrawBitmapWindow command. If the ID does not refer to an 

existing window, the command is ignored.
NewTitle$ The new text that should appear in the title bar.

Remarks:
The bitmap window should have been created with the CAPTION_SIZE or CAPTION_NOSIZE tokens, as these make the title 
bar visible. 

Related Commands:
ChangeBmwImage    DrawBitmapWindow    SetBMWMouse    ZoomBitmapWindow 



BMWUseCursor

PiXCL5 command. Changes the mouse cursor in all displayed bitmap windows to one of the predefined Windows or PiXCL 
cursors. This is independent of the cursor set by the UseCursor command that affects the displayed cursor within the main 
PIXCL client area.

Syntax:
BMWUseCursor(APPSTARTING / ARROW / CROSS / IBEAM / 

ICON / NO / SIZE / SIZEALL /    SIZENESW / 
SIZENS / SIZENWSE / SIZEWE / UPARROW / 
WAIT / ZOOM / CROSSHAIR)

Parameters:
APPSTARTING Standard arrow and small hourglass. 
ARROW Standard arrow. 
CROSS Crosshair. 
IBEAM Text I-beam. 
ICON Empty icon. 
NO Slashed circle. 
SIZE Four-pointed arrow. 
SIZEALL Same as SIZE. 
SIZENESW Double-pointed arrow pointing northeast and southwest. 
SIZENS Double-pointed arrow pointing north and south. 
SIZENWSE Double-pointed arrow pointing northwest and southeast. 
SIZEWE Double-pointed arrow pointing west and east. 
UPARROW Vertical arrow. 
WAIT Hourglass. 
ZOOM Magnifying glass.
CROSSHAIR Crosshair for selecting a pixel.

Remarks:

The BMWUseCursor command has an effect only under these circumstances:

· The new cursor is different from the previous cursor.
· PiXCL is waiting for mouse input; a SetBMWMouse, SetBMWMidMouse or SetBMWRightMouse is in effect.

Related Commands:
ChangeBmwImage
SetCtrlMouse    SetMouse    SetDblMouse    SetRightMouse    WaitInput



Button

Lets you create standard gray rectangular 3-D pushbuttons, round radio buttons, check boxes and group boxes in any 
combination and place them anywhere within a PiXCL window. When the program is pausing for input and you click on a button, 
the program branches to the label associated with that button.

Syntax:
Button() to clear any existing buttons.

or

Button(Btn1_x1,Btn1_y1,Btn1_x2,Btn1_y2, STYLE,ButtonText1$,Label,
Btn2_x1,Btn2_y1,Btn2_x2,Btn2_y2, STYLE,ButtonText2$,Label,
              .
Btnn_x1,Btnn_y1,Btnn_x2,Btnn_y2, STYLE,ButtonTextn$,Label)

Parameters:

Btnx _x1, Btnx _y1 The upper-left corner of a button.
Btnx_x2,Btnx_y2 The lower-right corner of a button.
STYLE token: Selects the type of button:
        PUSH standard pushbutton with text label.
        PUSHBMP PiXCL 5. Pushbutton with custom bitmap file (BMP or RLE).
        PUSHICO PiXCL 5. Pushbutton with ICO icon file or PiXCL or SHELL32 icon.
        RADIO radio button.
        AUTORADIO toggling radio button.
        CHECK check box.
        AUTOCHECK toggling check box.
        GROUP group box.
          NULL PiXCL 5. Draws a flat style button. See the Label to a dummy e.g. Wait_for_Input.

Text$ The text to be displayed within the button control. For the PUSHBMP mode, this becomes the 
name of the BMP or RLE disk file that implements the button. For PUSHICO mode, use an ICO 
filename, or use the same ICON identifiers as used with the DrawIcon and DrawShellIcon 
commands, preceded by a # character e.g. “#ICON07” or “#SCANNER” or “#SHICON33”. 

Label The label you want to branch to when the user clicks on the button.

Remarks: 

When PiXCL encounters a Button command in your program, it immediately draws the specified button styles on the 
screen. You can have multiple button styles at any time, but only one Button command is valid at any instant. 

Push buttons, radio buttons and checkboxes are mouse active, and will branch to the specified label. A groupbox is not 
mouse active, and the label specified will not be accessed. In addition, group boxes are not windows like the 
check/radio/push buttons, but are drawn into the client area. This means that the SetROPcode command can have an 
effect on the appearance. 

For example, the default system background color is light gray (192,192,192), and this is the color of pushbuttons and 
check/radio button text. With the ROP code set to the default SRCCOPY, a group box will show the existing background 
in the box. If the ROP code is DSTCOPY, the group box will be filled with the current system background color.

The Text$ string appears in various ways depending on the button control style. In a standard Pushbutton, it is the title 
that appears on the button. In Radio buttons and Checkboxes, it is the text that appears next to the control. You must 
adjust the x,y coordinates of the control to include the size of the text, since the control is actually a separate small 
window. In a groupbox, Text$ is the title that appears in the group border.

Text$ is also affected by the current font style and size, but will always be displayed in black, regardless of the color 
specified in the UseFont command.



Although the buttons are visible, you cannot actually access them until the program is pausing for input. [To have a 
program pause for input, you must use the WaitInput() command.]    At that time, if you click on a button, control transfers
to the Label associated with the button.

· A Button command remains in effect until any of the following occurs:

· You use another Button command.

· You use Button without any parameters ( i.e. Button() ) to remove all existing buttons from the screen.

· The program ends, and all button resources are freed, and the memory returned to Windows.

When creating a Text$ argument, you can place an & in front of a letter to have the letter appear underlined. For example, the 
parameter "&Cancel" underlines the letter C in the Cancel button.

PiXCL automatically provides mouse support for buttons created with the Button command. If you want the user to be able to 
select a button using the keyboard, you'll need to use the SetKeyboard command (see the example).

Example: 

The following program fragment places three buttons on the screen, as shown in the figure below. Observe how the radio box, 
checkbox and groupbox strings are drawn in the current sytem background color.

 
Creating 3-D buttons, Radio Buttons, Checkbox and GroupBox with the 
Button command. Edit controls are also shown.

New_Buttons:
UseBackground(TRANSPARENT,0,192,192)
UseFont("MS Sans Serif",0,19,NOBOLD,NOITALIC,NOUNDERLINE,255,255,0)
SetEditControl(20,30,125,55,STRING,0,0,Edit1$,

       20,60,125,85,NUMBERUD,100,0,Edit2$,
       20,90,125,115,PASSWORD,0,0,Edit3$)

Button(420,45, 480, 85,PUSH,"&OK",New_Buttons_End,
       420,95, 480, 135,PUSH,"&Cancel",New_Buttons_End,
       180,25,260, 50,AUTORADIO,"Invert",New_Buttons_Wait,
       180,60,260, 85,AUTORADIO,"Normal",New_Buttons_Wait,
       180,100,260,125,AUTOCHECK,"Check",New_Buttons_Wait,
       10,2,400, 150,GROUP,"Value Selections",New_Buttons_End)

New_Buttons_Wait:
WaitInput()

New_Buttons_End:



SetEditControl()
Button()
Goto Wait_for_Input

Related Commands: 
SetKeyboard, WaitInput, UseFont, SetEditControl
See also Making 3D BitMapped buttons, ToolBars and ToolWindows 



Breakpoints

PiXCL 5 command. If the PXLdebug.dll is installed, you can enable a dialog that presents all the integer, float, string, array and 
bitmap records when the associated SetBreakpoint command is encountered.

Syntax: Breakpoints(@FALSE | @TRUE)

Parameter:
@TRUE Enable breakpoints and load PXLdebug.dll. If the DLL is already loaded, it does not get loaded 

again.
@FALSE Disable breakpoints and unload PXLdebug.dll.

Related Command:
SetBreakpoint    



ChangeMenuItem

This function lets you check, uncheck, gray, or enable an existing PiXCL menu item. Menu items are often grayed when the 
selection is not currently meaningful, such as when another function must be executed first. For example, menu items that 
perform image processing functions should be grayed until an image has been loaded into the PiXCL image list.

Syntax:

ChangeMenuItem(Item$,CHECK/UNCHECK/GRAY/ENABLE,Result)

Parameters: 
Item$ The pop-up menu item to be modified. The text of the menu item must be spelled exactly as it 

was when declared with the SetMenu command, including any leading or trailing spaces. If the 
menu item has an underlined letter, be sure to place an & in front of the letter when specifying 
Item$.

CHECK Places a checkmark next to the menu item.

UNCHECK Removes a checkmark from a menu item.

GRAY Disables (grays) a menu item.

ENABLE Enables a grayed menu item.

Result An integer variable that indicates the outcome of the change. If the change was successful, this 
variable is assigned a value of 1. If the menu item was not found, this variable is assigned a 
value of 0. If the menu has been deleted with a SetMenu() command, ChangeMenuItem returns 
0.

Remarks:

You cannot change the appearance of a top-level menu item with this function, only pop-up menu items.

If more than one menu item shares the same text, PiXCL will apply the attribute to the last such item in the menu. 

If you have similar pop-up menu item names, you can differentiate them by using trailing spaces. You can also differentiate 
otherwise identical text with the “&” character to under line a different accelerator key.

This command also works with popup menus created with the SetPopupMenu command.

Example:

The following code fragment creates a simple menu with one top-level menu item--Yearend--and beneath it a pop-up menu with 
two menu items--Tax and Book. The ChangeMenuItem command is then used to place a checkmark next to Tax menu item.

{Set up the menu}
     WaitInput(100) { needed only the first 

  time the SetMenu command is used}
     SetMenu("&Yearend",IGNORE,
                "&Tax",Tax,
                "&Book",Book,
                ENDPOPUP)

{Check the Tax menu item}
     ChangeMenuItem("&Tax",CHECK,Result)

Wait_for_input:
     WaitInput()



Tax:
     {More code goes here...}

Book:
     {More code goes here...}

Related Commands:
SetMenu    GetMenuStatus    SetPopupMenu    ToolBar    ToolWindow    ChangeToolbarBtn    GetToolbarBtnStatus    



ChangeToolbarBtn

This function lets you check, uncheck, press, disable or enable an existing PiXCL toolbar or toolwindow button, in the similar way
to the ChangeMenuItem command.

Syntax: 

ChangeToolbarBtn(Toolbar$,ButtonIndex,DISABLED/ENABLED/CHECKED/PRESSED,Result)

Parameters:
Name$ If NULL (""), refers to the current Toolbar, if present. Otherwise, Name$ refers to a current 

ToolWindow title. If the toolbar or toolwindow is not present, the command is ignored. Result 
returns 0.

BtnIndex Button index, starting from 1, as defined in the Toolbar command in effect.    SEPARATOR 
regions are counted as buttons.

state_TOKEN ENABLED | CHECKED | PRESSED | DISABLED

Result 1 if the button is in the defined state, otherwise 0.

Remarks:
If you send a change state message to a SEPARATOR region, it is ignored and Result returns 1, because it will succesfully do 
nothing.

Example:
See the sample program    toolbars.pxl.

Related Commands:
GetToolBarBtnStatus , ToolBar , ToolWindow 



ChangeBMWimage

PiXCL 5 command. PiXCL supports up to eight bitmap windows with independent zoom and roam, from images loaded into the 
PIXCL image list. It is possible to replace the image displayed in a bitmap window without closing that window and reloading it. 

Syntax: ChangeBMWimage(WindowID, Filename$, Result)

Parameters:
WindowID The bitmap window ID from a DrawBitmapWindow command.
Filename$ The image that is to be displayed in the window. If the image is not already loaded into the 

PIXCL image list, it is automatically loaded. If the the image cannot be found, the command has 
no effect.

Result 1 if the operation was successful, otherwise 0.

Remarks:
All this command does is replace the name of the image that is to be displayed in the bitmap window, then redraw the window. 
The scroll bars may change if the new image dimensions are different, but no changes are made to the zoom factor.

Related Commands:
BMWinTitle    CloseBitmapWindow    DrawBitmapWindow    FlashBMWindow    



CheckBitmapFormat

When you need to attempt to load a image file from the disk, it can be helpful to check if the format is one of those supported by 
the library.    DrawBitmap and LoadBitmap do not make this check, but LoadBitmapExt does.

Syntax: CheckBitmapFormat(Filename$,Supported)

Parameters:
Filename$ The disk image file.
Supported If the file format is recognized, returns 1, or 0 if the format is unknown or the file is not found.

Related Commands:
DrawBitmap    LoadBitmapExt    



CheckSum

PiXCL 5 command. Generate the checksum of a string.

Syntax: CheckSum(String$,CheckSumValue)

Parameters:
String$ The string to be used to calculate the checksum. The ASCII character values are summed.
CheckSumValue The lower 4 bits of the sum are returned as an integer.

Related Command:
BitFlag    



ChooseColor

The standard COMDLG32 library call can be used to display the Color select dialog box in various formats. The chosen color is 
returned as an RGB triplet, and can be used in any PiXCL command that uses color, such as DrawFlood, UsePen, UseBrush, 
UseFont or UseBackground.

 
The standard ChooseColor dialog.

The ChooseColor commands are handy when you want to offer the user a defined choice of color, for example to set the color of a 
pen, brush, or any situation where a color value is required.

You can also create a set of user defined colors with the CustomColor command. This set is static for the duration of the PiXCL 
application, that is, is remains as you set or reset it each time you exit from the ChooseColor dialog. For PiXCL 4.22 and later, 
the ChooseColor command has been extended with the ability to modify the dialog window position, title, basic and custom 
strings, as shown in the dialog shown above.

Syntax: ChooseColor(STYLE_TOKEN,Red,Green,Blue)
ChooseColor(STYLE_TOKEN,Red,Green,Blue,X,Y,Title$,Basic$,Custom$)

Parameters:
STYLE_TOKEN

STD display a small color select dialog with User Defined Color button enabled.
SMALL displays a small color select dialog with User Defined Color button disabled.
SMALLRGB displays a small color select dialog with default RGB color selected.
FULL displays a large color select dialog.
FULLRGB displays a large color select dialog with default RGB color selected

Red, Green, Blue Red, Green and Blue set the default color, and return the selection values in the range 0-255.
X,Y The top-left corner position for the dialog, in client area coordinates. These coordinates can be negative.
Title$ A user defined title for the dialog. If this is set to null, the default “Color” string is used.
Basic$ A string that replaces the default “Basic Colors:”. If this is set to null, the default string is used.
Custom$ A string that replaces the default “Custom Colors:”. If this is set to null, the default string is 



used.

Remarks:
If you select the Cancel button, Red returns a -1 value.

Related Commands:
CustomColor



ChooseFont

The standard COMDLG32 library call for choosing a font can be accessed to dynamically select the font style for text output. The
command parameters are both inputs and outputs, and can be used to initialize the dialog controls.

 

Syntax: ChooseFont(Font$,Width,Height,r,g,b,Bold,Italic,Underline,Strikeout)

Parameters: 
Font$ The name of the selected font or currently available font. If you set this variable 

before calling ChooseFont, the name appears in the Font edit control.

Width,Height The default input and returned selected width and height. You can set these to 0 
as defaults. If you specify non-zero values, the equivalent point size is calculated
and displayed in the Size control.

r,g,b The default input and returned color for the selected font.

Bold,Italic, These are also input and output values. If the values are
Underline, zero, the style is not asserted. If asserted, the value is 
Strikeout set to 1.

Remarks:
If you press the Cancel button, Font$ returns a null string.

Related Commands 
AddFont UseFontExt    DrawText    DrawTextExt    RemoveFont     



Chr

Returns a one character string based on the specified ANSI code.

Syntax: Chr(Code,String$)

Parameters: 
Code An integer from 0 to 255.

String$ A string variable that will contain the ANSI character.

Remark:

If Code is outside the range 0 to 255, PiXCL will issue an error message.

Example:

This example draws the letter Z -- the ANSI character assigned to code number 90 -- at the point (10,10) in the PiXCL application
client area.

Code=90
Chr(Code,Char$)
DrawText(10,10,Char$)
WaitInput()

Related Command:
Ansi



ClearBitmapOptions

PiXCL 5 command.    JPG, PNG and TIF images that have text fields defined in the file headers load this data into Options 
fields. You can remove these Options with this command. Renaming the image with RenameListImage has the same effect.

Syntax: ClearBitmapOptions(ListImage$, Result)

Parameters:
ListImage$ An image loaded into the PiXCL image list.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
GetJPGOptions    GetPNGOptions    GetTIFOptions RenameListImage    SetJPGOptions    SetPNGOptions    SetTIFOptions



ClearCommPort

This command clears the selected communications port, deletes any outstanding data in the buffers, and resets the port error 
indicator.

Syntax: ClearCommPort(COMx)

Parameters:
COMx Port, where x = 1 – 4 for standard PCs. PiXCL 5: If you have a multiple COM port board installed, ports 

5-13 are supported.

Remarks:
The same effect can be achieved by sending SetCommPort.

Related Commands:
EscCommFunction    GetCommPort    ReadCommPort    SetCommPort    WaitCommEvent    WriteCommPort 



ClipboardAppend

Copies text to the end of the Windows Clipboard’s existing text.

Syntax: ClipboardAppend(String$,Result)

Parameters: 
String$ The text you want to append to the Clipboard's existing text.

Result An integer variable that indicates the outcome of the operation. If the operation was successful, 
this variable is assigned a value of 1. If the operation fails either because of a shortage of 
memory or the presence of a non-text Clipboard format, this variable is assigned a value of 0.

Remark: 

The ClipboardAppend command will set Result to 0 if the Clipboard doesn't already contain text.

Example:

This example reads text from the Clipboard and displays it on the screen for 1 second. It then creates a second copy of the text 
in Clipboard using the ClipboardAppend function.

{Get the Clipboard's contents and display them}
     ClipboardGet(Contents$,Result)
     If Result = 0 Then Beep | End
     Gosub Drawit
     WaitInput(1000)

{Create a second copy of the Clipboard's contents}
     ClipboardAppend(Contents$,Result)
     If Result = 1 Then Goto Getit
     Beep | End

{Draw the Clipboard's contents again}
Getit:
     ClipboardGet(Contents$,Result)
     If Result = 0 Then Beep | End
     Gosub Drawit
     WaitInput()

{Drawing subroutine}
Drawit:
     Len(Contents$,Length)
     DrawText(10,10,"Length of Contents$ is")
     DrawNumber(100,10,Length)
     DrawText(10,20,"Contents$ contains")
     DrawText(100,20,Contents$)
     Return

Related Commands:
ClipboardEmpty    ClipboardGet    ClipboardPut



ClipboardEmpty

Empties the Windows Clipboard of its contents. This includes any bitmap, text or other data.

Syntax: ClipboardEmpty

Comment:

You don't need to empty the Clipboard before using ClipboardPut. This command will empty the Clipboard automatically before 
copying text to it.

Related Commands:
 ClipBoardAppend    ClipboardGet    ClipboardPut



ClipboardGet

Reads text from the Windows Clipboard.

Syntax: ClipboardGet(String$,Result)

Parameters: 
String$ A string variable that will receive the Clipboard's text.

Result An integer variable that indicates the outcome of the operation. If the operation was successful, 
this variable is assigned a value of 1. If the operation failed, this variable is assigned a value of 
0.

Remarks: 

The ClipboardGet command will fail to read the Clipboard's contents under the following circumstances:

· The Clipboard contains no text.

· If there is not enough memory to hold the text. (To free string variables from memory, use the 
FreeVar or FreeVarAll command.)

In either case, String$ returns empty.

Example:

This example reads text from the Clipboard (if there is any) and displays it in a message box.

ClipboardGet(Contents$,Result)
If Result=0 Then Contents$ = "Clipboard has no text"
MessageBox(OK,1,INFORMATION,

Contents$,"Clipboard text",Button)

Related Commands:
ClipboardAppend    ClipboardEmpty    ClipboardPut



ClipboardGetBitmap

This command takes an image that is loaded into the Clipboard, and pastes it the PiXCL image list. All images loaded into PiXCL
are Windows bitmaps, regardless of the type of image that was originally loaded from the disk.

Syntax: ClipboardGetBitmap(ListImageName$,Result)

Parameters:
ListImageName$ An image to be created in the PiXCL image list. This can be any name, but should preferably 

include a path if you want to save it, and specify one of the supported bitmap formats as the 
extension. Note that this format will only be effective once the bitmap has been saved to disk.

Result 1 if the operation was successful, otherwise 0. If ListImageName$ is in the list, it is first deleted 
and the new image replaces it.

Remarks:
If you are working with RLE images, please be aware of the following:
1. An RLE4 image loaded from the disk will be rendered as 8 bits per pixel in the image list. PiXCL support saving RLE 

images in 8-bit mode only.
2. You can copy a 4-bit image from an image editor to the clipboard, and then to the PiXCL image list, and it will be in 4-bits 

per pixel.
3. Images are stored in the image list as UNCOMPRESSED bitmaps, even if the source image was compressed.

Related Commands:
ClipboardEmpty    ClipboardPutBitmap    CopyWindowToClipboard    



ClipboardPut

Copies text to the Windows Clipboard, replacing the Clipboard's current contents.

Syntax: ClipboardPut(String$,Result)

Parameters:
String$ A string containing the text you want to copy to the Clipboard.

Result An integer variable that indicates the outcome of the Clipboard operation. If the operation was 
successful, this variable is assigned a value of 1. If there was not enough memory to carry out 
the operation, this variable is assigned a value of 0.

Remarks: 

PiXCL always clears the Clipboard before copying text to it.

If you want text to appear on separate lines in the Clipboard, be sure to place a carriage return and a linefeed character at the 
end of each line (see the example).

Example:

This example places a carriage return and linefeed character between the words "Testing" and "123". It then copies the result to 
the Clipboard.

{Place carriage return in CR$ and linefeed in LF$}
    Chr(13,CR$)
    Chr(10,LF$)

{Put carriage return/linefeed between two strings}
    Toclip$ = "Testing" + CR$
    Toclip$ = Toclip$ + LF$
    Toclip$ = Toclip$ + "123"

{Copy Contents$ to the Clipboard}
    ClipboardPut(Toclip$,Result)

Related Commands:
ClipboardEmpty    ClipboardGet    ClipboardAppend



ClipboardPutBitmap

This command takes an image that is loaded in the PiXCL imagelist and passes a COPY of it into the Clipboard. All images 
loaded into PiXCL are Windows bitmaps, regardless of the type of image that was originally loaded from the disk.

Syntax: ClipboardPutBitmap(ListImageName$,Result)

Parameters:
ListImageName$ An image that has been loaded into PiXCL. 
Result 1 if the operation was successful, otherwise 0. If ListImageName$ is not in the list, the operation 

fails.
Remarks:
It is possible to copy a window to the Clipboard and then copy it back to the PiXCL image list.

Related Commands:
ClipboardGetBitmap    CopyWindowToClipboard 



ClipCursor

PiXCL 5 command. The ClipCursor function confines the cursor to a rectangular area on the virtual screen. If a subsequent 
cursor position lies outside the rectangle, the system automatically adjusts the position to keep the cursor inside the rectangular 
area.    The default is the coordinates of the primary monitor screen (e.g. 0,0,1024,768).

Syntax: ClipCursor(sx1,sy1,sx2,sy2)

Parameters:
sx1,sy1,sx2,sy2 The screen coordinates for the desired region. 

Remarks:
The cursor is a GLOBAL resource, so unless you want to leave the clip region active for all other applications, your PiXCL 
application must include ClipCursor(0,0,0,0) to reset the default.

Related Commands:
GetClipCursor    



CloseBitmapWindow

Use this command to close a bitmap window. Closing a bitmap window does NOT delete the bitmap from the PiXCL image list. 
This requires the FreeBitmap command.

Syntax: CloseBitmapWindow(WindowID)

Parameters:
WindowID The ID number variable returned from the DrawBitmapWindow command. WindowID returns a 

zero if the bitmap window was closed. 

Remarks:
To close all bitmap windows, set WindowID to zero. A common programming error is to use a value for WindowID 
instead of a variable. E.g. 

CloseBitmapWindow(0) will cause a syntax error, whereas
WindowID = 0
CloseBitmapWindow(WindowID) will run correctly.

Related Commands:
DrawBitmapWindow    FlashBMWindow    SetBMWMouse    ZoomBitmapWindow FreeBitmap FreeBitmapAll 



CloseEvent

Events may be used or required by extension libraries only. For more information, see the topics on Synchronization Functions in
your compiler documentation.    This function terminates an existing event.

Syntax: CloseEvent(EventHandle,Result)

Parameters:
EventHandle The event handle created by CreateEvent. 
Result 1 if the function succeeds, otherwise 0.

Related Commands: 
CreateEvent PulseEvent    ResetEvent 



CmdLineArg

You can get individual command line arguments and pass them into string variables with the CmdLineArg command. 
This saves you the effort of parsing the command line yourself in PIXCL code. Arguments should be delimited with a space 
character.

Syntax: CmdLineArg(Index, Arg$)

Parameters:
Index Starting from 1, the command line argument. 
Arg$ The argument. If Index is greater than the number of arguments, the return string is empty.

Related Commands:
GetCommandLine    CountCmdLineArgs 



ComboBox

A combo box is a unique type of control that combines much of the functionality of a list box and an edit control. 

Comboboxes provide three styles, the SIMPLE combobox, which has an edit/display region with a permanently enabled 
dropdown region; or 

or DROPDOWN, which has an edit control with a dropdown arrow control; 

or DROPDOWNLIST, generally used when the string variable is a list. 

A combo box consists of a list and a selection field. The list presents the options a user can select and the selection field displays
the current selection. Except in drop-down list boxes, the selection field is an edit control and can be used to enter text not in the 
list. 

Syntax: ComboBox() to clear all comboboxes, or 
ComboBox(x1,y1,x2,y2,TOKEN,List$,Delimter$,Input$...)

Parameters:
x1,y1,x2,y2 The coordinates of the combobox. Note that this includes the dropdown region, if appropriate, as

well.

SIMPLE Creates a simple combobox with a permanent listing region below it.

DROPDOWN Creates a combobox with a down arrow that makes a dropdown region. A list item can be 
selected, or you can type in a new selection into the edit control.

DROPDOWNLIST Creates a combobox with a down arrow that makes a dropdown region. The user input function 
is disabled, and you can only select one of the items in the list.

List$ The optional list that appears in the dropdown region.

Delimiter$ The single character (e.g. “|”) that is used to delimit each item in the list. This character must 
follow all list items. If you want a list item to be a null string, use two delimiters e.g. “||”.    If the 
last item does not have a delimiter character, it will not appear in the dropdown list.

Input$ The default variable that is used to display the current selection and return the selected or 
entered string.

Remarks:
The text that appears in the combobox is written in the current font, in monochrome, regardless of the current font color. For 
SIMPLE and DROPDOWN styles, the edit control will automatically scroll horizontally if the text will not fit in the available space.

For DROPDOWN and DROPDPWNLIST styles, a vertical scrollbar is created if the list is longer than the available dropdown 
window.



 
Multiple comboboxes styles and button.

Example:
The above figure was produced with the code fragment in this example. Note the vertical scrollbar in the lefthand control. Once 
input is complete, the “Done” button is clicked to update the return strings, and draw them in the client area. Note also that the 
final list item (“Cbarg#8”) does not appear because the delimiter character has been omitted.

Make_ComboBox:
DrawBackGround
UseFont("MS Sans Serif",0,19,NOBOLD,NOITALIC,NOUNDERLINE,0,255,0)
Cbox1$ = "ComboBox#1"
Cbox2$ = "ComboBox#2"
Cbox3$ = "ComboBox#3"
Delimiter$ = "|"
List1$ = "CBarg#1|CBarg#2|CBarg#3|CBarg#4|CBarg#5|CBarg#6|CBarg#7|CBarg#8"

List2$ = "CBarg#1|CBarg#2|CBarg#3|CBarg#4|"

ComboBox(5,10,120,145,DROPDOWN,List1$,Delimiter$,Cbox1$,
130,10,230,180,DROPDOWNLIST,List2$,Delimiter$,Cbox2$,
245,10,345,95,SIMPLE,List1$,Delimiter$,CBox3$)

WaitInput(1)
Button(360,10,420,45,PUSH,"Done",Remove_ComboBox)
WaitInput()

Remove_ComboBox:
DrawBackground
Button()
ComboBox()
UseFont("MS Sans Serif",0,19,BOLD,NOITALIC,NOUNDERLINE,0,255,0)
DrawText(10,10,Cbox1$)
DrawText(10,30,Cbox2$)
DrawText(10,50,Cbox3$)
Goto Wait_for_Input

Related Commands:
Button    DialogBox     SetEditControl



CopyArray

PiXCL 5 command. The contents or partial contents of an array can be copied to another array of the same type.    You can also
copy one portion of an array to another portion of the same array.

Syntax: CopyArray(SrcArray[src_start_index], DstArray[dst_start_index], CopyElements,Result)

Parameters:
SrcArray The name of the source array.
src_start_index The source array start index from which elements are copied.
DstArray The name of the destination array.
dst_start_index The destination array start index to which elements are copied.
CopyElements The number of elements to copy.
Result The number of elements copied, otherwise 0. The command will fail if the indices are out of 

range.

Related Commands:
Array    FreeArrayVar FreeArrayVarAll RestoreArray    SaveArray    



CopyWindowToClipboard

Any top-level window, including a current PiXCL application and most child windows, can have a copy of that window pasted to 
the Clipboard as a bitmap. This is often called window capturing or grabbing. Once in the Clipboard, the image can be pasted 
into any other application that supports bitmap cut and paste. Examples are MS-Word, JASC Inc PaintShopPro, Adobe 
PhotoShop, and any other image editting application.    The pasted bitmap will always be 24 bits per pixel. You may need to 
reduce the pixel depth of the pasted image using facilities in your image editor.

Syntax: CopyWindowToClipboard(TopLevelWindow$,ChildWindow$,Result)

Parameters:
TopLevelWindow$ The name that appears in the target window titlebar. This is also used for POPUP windows such 

as toolbars and dialog boxes.
ChildWindow$ The name of a child window of TopLevelWindow$. Set this to a NULL string to get a top-level 

window. Child windows may not always be accessible for transfer.

Result 1 if the operation was successful, otherwise 0.

Remarks:
The Clipboard is emptied of all other data before the transfer occurs. It is your responsibility to empty the Clipboard once the 
window snapshot is no longer required.    To paste a bitmap into the PiXCL image list, use the ClipboardGetBitmap command.

Related Commands:
ClipBoardEmpty ClipboardGetBitmap    EnumWindows      EnumChildWindows    



Cos

Floating Point math library function. Calculate the cosine of an angle in radians.

Syntax: Cos(Angle&, Value&)

Parameters:
Angle& The angle in radians
Value& The result of the function.

Related Commands:
Sin  Tan  



Cosh

Floating Point math library function. Calculate the hyperbolic cosine of an angle in radians.

Syntax: Cosh(Angle&, Value&)

Parameters:
Angle& The angle in radians
Value& The result of the function.

Related Commands:
Sinh  Tan  



ConvertPALfile

geoPiXCL command only. This command complements the CreatePALfile command, and converts a PiXCL/geoPiXCL ascii 
PAL file into a binary PBL file that includes the same information, and vice-versa.

Syntax: ConvertPALfile(PaletteFile$,Res)

Parameters:
PaletteFile$ A valid PiXCL PAL or PBL file.
Result 1 if the operation was successful, otherwise 0. If the files are not valid ascii or binary files, the 

operation will return 0.

Related Command:
CreatePALfile    



CopyListBitmapRect

Create a subarea of an image loaded into memory. This can be useful where you need to get a subarea of a compressed image 
e.g. JPEG.

Syntax: CopyListBitmapRect(x1,y1,x2,y2,ListImageName$,SubAreaName$,Result)

Parameters:
x1,y1,x2,y2 The sub-area coordinates.
ListImageName$ The source image loaded into the PiXCL image list.
SubAreaName$ The name of the new subarea.
Result 1 if the command was successful, otherwise 0.

Related Commands:



CountBitmapColors

This command returns the number of unique colors in any of the supported bitmap formats. The algorithm treats each 
pixel in the image as an integer and creates a dynamically sorted linked list as it scans through the bitmap. PiXCL 
creates a zero filled bit array that corresponds to the number of possible colors. Hence for a 24 bit image, this array is 
2MB in size. Each new pixel value is the bit address in the array, and the bit is set to 1. At the end of the process, the 
number of unique colors is the number of ‘1’ bits, which is returned to the command, and the bit array memory is 
returned to the operating system. 

If the specified bitmap Filename$ has been loaded into the PiXCL Bitmap List, CountBitmapColors accesses the 
memory copy, otherwise the bitmap Filename$ is read from the disk.

Syntax: CountBitmapColors(Filename$,Colors)

Parameters:
Filename$ The desired image filename string.

Colors The number of unique colors. This will be a number in the range 1 to the number of pixels 
in the image, or the maximum number of colors possible in the bitmap format, whichever is 
the smaller.If the function fails, for example, if the file cannot be found or is an unrecognised
format, Colors returns 0.

Related Commands:
GetBitmapDim 



CountCmdLineArgs

If you invoke a PiXCL application with a command line that has a variable number of arguments, CountCmdLineArgs returns the 
number of arguments by counting the space delimiters which will always be present.

Syntax: CountCmdLineArgs(ArgNumber)

Parameter:
ArgNumber The number of arguments after the EXE name.

Related Command:
GetCmdLine    



CountRegdUserCmds

The number of registered external commands can be obtained with this command. 

Syntax: CountRegdUserCmds(Count)

Parameter: 
Count The number of registered commands.

Related Commands:
RegisterExtLibCmdSet    RegisterUserCommand    UnregisterUserCmds 



Create5x5Filter

PiXCL supports 5x5 and 15x15 filters. You can display a dialog box to edit an existing 5x5 filter or create a new 5x5 filter. When 
you need to create 15x15 filters, we suggest the PiXCL MDI Editor, or another text editor.

 

Syntax: Create5x5Filter(Filter$,Result)

Parameters:
Filter$ The name of the filter. If the filter is invalid in some way or does not exist, a MessageBox informs

you of the problem, then displays the empty dialog, above.
Result 1 of the operation has sucessfully written a new filter file, otherwise 0.    Returns 0 if the Cancel 

button is pressed.

Related Commands:
FilterImage5x  ViewFilterFile  



CreateBitmap

A memory bitmap of arbitrary dimensions and pixel depth can be created in the PiXCL image list, as either a 256 colour paletted 
image with a user-defined colormap, or as a full colour 24-bit image. The bitmap data is set to black (0,0,0).    The bitmaps 
created with CreateBitmap will generally be saved to disk with the SaveBitmap command. Once the new bitmap has been 
created in memory, it is the set as the current bitmap for image processing or save operations.

Syntax: CreateBitmap(Pixels, Lines, Bits, PaletteFile$, ImageName$,Result)

Parameters:
Pixels, Lines The dimensions of the new bitmap.
Bits The pixel depth desired. Must be either 8 or 24 or 32. Any other value will cause the command to

fail and Result returns 0.
PaletteFile$ The full path and name of an ascii PAL file. See RemapImage for details of the PAL file format. 

PaletteFile$ is ignored if Bits is 24 or 32. You can also import ascii palette files created in JASC 
Paint Shop Pro 4, 5 and 6.

ImageName$ The name of the new bitmap added to the image list. If an image of the same name is already in 
the list, it is first deleted, and the new image added.

Result 1 if the operation succeeded. If the palette file format is not recognized, Result returns 0. If the 
palette file is not found, Result returns -1.

Related Commands:
CreatePalFile       RemapImage    SaveBitmap     CopyListBitmapRect    



CreateColorSpace

PiXCL 5 command. A colour space is a mapping of colour components onto a Cartesian coordinate system in three or more 
dimensions. 

Syntax: CreateColorSpace(Type_TOKEN, Intent_TOKEN,
RedX,RedY,RedZ, GreenX,GreenY,GreenZ, BlueZ,BlueY,BlueZ,
RGamma,GGamma,BGamma, CSHandle)

Parameters:
Type_TOKEN CALIBRATED_RGB Color values are calibrated RGB values. The values are translated using 

the endpoints.
WINDOWS_COLOR_SPACE Color values are Windows default color space color values. 
sRGB    Use sRGB values.

Intent_TOKEN ABS_COLORIMETRIC Maintain the white point. Match the colors to their nearest color in the 
destination gamut. 
BUSINESS Maintain saturation. Used for business charts and other situations in which 
undithered colors are required. 
GRAPHICS Maintain colorimetric match. Used for graphic designs and named colors.
IMAGES Maintain contrast. Used for photographs and natural images.

RedX|Y|Z The red endpoints.
GreenX|Y|Z The green endpoints.
BlueX|Y|Z The blue endpoints.
R|G|BGamma The gamma scaling values (x100?)
CSHandle The handle of the created colour space, otherwise 0.

Related Commands:
DeleteColorSpace    



CreateCOMinstance

PiXCL 5 command: subject to change. A PiXCL application can become a COM client to a COM server. Calling this command 
initializes the Windows COM libraries. When using PiXCL as a COM client, you will need to have the necessary access or 
programming or scripting information on the server application.

Uses of COM include Automation of servers    (eg MS-Office applications) and ActiveX controls.

Syntax: CreateCOMinstance(ProgramID$, ServerMode_TOKEN, Computer$, IUnknown)

Parameters:
ProgramID$ The ProgramID string that identifies the server application. The registry is acessed and the 

classID and GUID acquired. More notes required.
ServerMode_TOKEN One of the following:

INPROC_SERVER if the server is a DLL on the local machine. The DLL becomes part of the 
PiXCL process. This is known as in-process mode.
INPROC_HANDLER if this is a DLL that runs in the client process and implements client-side 
structures of this class when instances of the class are accessed remotely
LOCAL_SERVER if the server is a EXE on the local machine. That is, it runs on same machine 
but in a different process.    Paint Shop Pro 4, 5 and 6, MS-Word are examples. This will likely be
the most commonly used mode.
REMOTE_SERVER if the server is a EXE on a remote machine.
CTX_SERVER  indicates server code, whether in-process, local, or remote. 
CTX_ALL indicates all class contexts. 

Computer$ For the local machine INPROC or LOCAL servers, use "". When specifying a remote machine, 
use the naming scheme of the network transport link. By default, all UNC ("\\server" or "server") 
and DNS names ("server.com", "www.foo.com", or "135.5.33.19") names are allowed. 

IUnknown If the command is successful, returns a non-zero number that is the pointer to the server 
IUnknown interface, otherwise 0.    For Microsoft servers, these numbers will be positive, and for 
third-party servers, negative.

Remarks:
It is advisable that ReleaseCOM be called before your PiXCL application exits.

Related Commands:
ReleaseCOM    QueryCOMinstance



CreateEvent

Events may be used or required by extension libraries only. For more information, see the topics on Synchronization Functions in
your compiler documentation.

Syntax: CreateEvent(ManualReset, InitialState, Name$, EventHandle)

Parameters:
ManualReset Specifies whether a manual-reset or auto-reset event object is created. If @TRUE, then you 

must use the ResetEvent function to manually reset the state to nonsignaled. If @FALSE, the 
system automatically resets the state to nonsignaled after a single waiting thread has been 
released. 

InitialState Specifies the initial state of the event object. If TRUE, the initial state is signaled; otherwise, it is 
nonsignaled. 

Name$ A name unique to your program, or a null string.
EventHandle The event handle that is used by the other event commands. If the function fails, EventHandle 

returns 0.

Related Commands:
CloseEvent    PulseEvent    ResetEvent 



CreatePALfile

Palette files are ASCII files used with the RemapImage command and other commands where a set of 256 palette values are 
required.

Syntax: CreatePALfile(Filename$,MODE_token,Result, 
[NumberOfClasses, class range pair triplets]    )

Parameters:
Filename$ The name of the PAL file to be created. If the file exists, it is overwritten. If you need to keep an 

existing file, use the FileExist command first.
STANDARD Creates a standard PAL file with entries from “0 0 0” to “255 255 255”. Applying this file to an 

image will not change it.
INVERSE Creates an inverse PAL file with entries from “255 255 255” to “0 0 0”. Applying this file to an 

image will invert the colors. It is functionally equivalent to using the InvertImage command.
CLASSIFY A classification PAL file is to be created, according the notes below.
Result 1 if the operation succeeded, otherwise zero. For STANDARD and INVERSE modes, 

this is the last argument.

For CLASSIFY mode only …
NumberOfClasses The number of class range pairs following. The maximum is 8 sets. 
RLoValue, RHiValue The range of values for each class in the Red channel.
GLoValue, GHiValue The range of values for each class in the Green channel.
BLoValue, BHiValue The range of values for each class in the Blue channel.

Remarks:
LoValues must be less than HiValues in each channel, and classes must be defined so that thay do not overlap on previous 
classes. E.g Class#1 5-13; Class#2 17-32    Class#3 41-55 and so on. If any overlap exists, Result returns 0 and no file is 
created.
CreatePALfile is a variable argument command, so only the range values desired are required.    The colors used for each class 
are predefined as Red, Green, Blue, Yellow, Magenta, Cyan, Orange and Mid-Gray. These colors can be changed by using 
the CustomColor command prior to CreatePALfile to set the desired class colors.

Related Commands:
ConvertPALfile    CustomColor    InvertImage       RemapImage    



CustomColor

This command goes with the ChooseColor command that displays a common dialog with 16 user definable colors (initially set to 
black), and these can be set or reset to any desired color, while the PiXCL application is running.    Hence, if your application 
needs to define a specific set of colors for pens, brushes or backgrounds, or perhaps palette file entries, you must program these
into the application, or possibly read them from an INI file, or from a previously defined location in the Registry.

Syntax: CustomColor(r1,g1,b1, r2,g3,b3,...,r16,g16,b16)

Parameters:
r,g,b Integer color values. These must be in the range 0-255. If they are not they are clipped by 

ANDing the value with 0x000000FF. It is preferable but not essential that your script ensures that
the color ranges are correct.    All sixteen colors must be defined, even if set to 0,0,0.

Related Commands:
CreatePALfile    ChooseColor    UseBackground    UsePen    UseBrush



CustomizeToolBtn

Toolbars and toolwindows can be customized by moving and deleting buttons. A system dialog can be displayed either by double
clicking the toolbar or toolwindow background, or by issuing the CustomizeToolBtn command.

Syntax: CustomizeToolBtn(ToolWindow$)

Parameters:
ToolWindow$ For the toolbar, set this to a NULL string (""). For a toolwindow, use the relevent name 

specified in the ToolWindow command.

Related Commands:
ChangeToolbarBtn    GetToolBarBtnStatus    ToolBar    ToolWindow 



DDEExecute

Sends a command string to a server application in a Dynamic Data Exchange (DDE) conversation.

Syntax: DDEExecute(ChanNum,ExecuteString$,Result)

Parameters:
ChanNum The channel number established by the DDEInitiate command.

ExecuteString$ A string containing the command to execute. The command must match the format 
that the server application will recognize, usually in the application's native macro 
language.

Result An integer variable that indicates the outcome of the transaction. It is assigned 1 if the 
transaction was successful; otherwise 0.

Remarks: 

Before using DDEExecute, you must use a DDEInitiate command to start a DDE conversation with a server application and 
establish a valid value for the ChanNum variable.

Each server application requires its own format for the command strings that are sent to it in a DDE conversation. Typically, the 
format must match the application's native macro language. For example, when sending a command to Microsoft Excel, it must 
be in Excel's macro language (see the second example). Another common requirement is that the command string be enclosed 
in square brackets.

Not all Windows applications support DDE, which has been largely superceded by OLE 2 (Object Linking and Embedding, 
version 2) software technology. Some applications, mostly from Microsoft, do support DDE communications. The best way to find
out is to try some of the tests here.

You can also search in the Registry for a ddeexec key related to the application of interest. Subkeys application and topic are 
the DDE Service name and main Topic respectively.    See the DDEInitiate topic for more information.

Examples: 

The following example shows how to use the DDEExecute command to activate the Main program group in Program Manager.

{Initiate DDE conversation with Program Manager}
     DDEInitiate("PROGMAN","PROGMAN",ChanNum)

{Set command to execute. Because Main is a personal group,
 ShowGroup's third parameter is set to 0. (With Common 
 program groups, third parameter is set to 1 or left out.)}
     ExecuteString$ = "[ShowGroup(Main,1,0)]"

{Send the execute message}
     DDEExecute(ChanNum,ExecuteString$,Result)
     If Result = 0 Then Beep

{Terminate the conversation}
     DDETerminate(ChanNum)

Windows Explorer in Win95/NT4 also supports DDE conversations. You can bring up the FileFind dialog, and Explore or View a 
specific folder contents. 

Start_Explorer_DDE:
DDEInitiate("Folders","AppProperties",ChanNum)  
Goto Wait_for_Input



FindFolder_DDE: 
{display the Find: All Files dialog from Explorer.

  DDEexec = [FindFolder("%l", %I)]
  arg#1 = the start-in [path]directory string, 

    no spaces; quotes not needed
  arg#2 = number. Set to 0.
}
UseCursor(WAIT)
DDEExecute(ChanNum,"[FindFolder(c:\windows\system,0)]",Res)
If Res = 0 Then DrawText(10,25,"DDE Exec failed.") 
UseCursor(ARROW)
Goto Wait_for_Input

ExploreFolder_DDE:  
{display the Find: All Files dialog from explorer.

  arg#1 = [path]directory; 
  arg#2 =  unknown, set to 0.
  arg#3 = 0 | 1 -> Explorer window not visible | visible
}
UseCursor(WAIT)
DDEExecute(ChanNum,"[ExploreFolder(c:\windows\system, 0, 1)]",Res)
If Res = 0 Then DrawText(10,25,"DDE Exec failed.") 
UseCursor(ARROW)
Goto Wait_for_Input

ViewFolder_DDE:  {display the Find: All Files dialog from explorer. }
{arg#1 = [path]directory; 
  arg#2 =  set to 0
  arg#3 = 0 | 1 ->Explorer not visible |  visible
}
UseCursor(WAIT)
DDEExecute(ChanNum,"[ViewFolder(c:\windows\system, 0, 1)]",Res)
If Res = 0 Then DrawText(10,25,"DDE Exec failed.") 
UseCursor(ARROW)
Goto Wait_for_Input

FindFile_DDE: 
{display the Find: All Files dialog from Explorer.

 arg#1 =  start-in directory string, has to be valid 
  directory eg \ on the C: drive. Don't seem 
  able to set the start disk to any other disk.

  arg#2 = set to 0
}
UseCursor(WAIT)
DDEExecute(ChanNum,"[OpenFindFile(\,0)]",Res)
If Res = 0 Then DrawText(10,25,"DDE Exec failed.") 
UseCursor(ARROW)
Goto Wait_for_Input

The next example shows how to start a DDE conversation with Microsoft Excel 97 using the "System" topic. This allows 
DDEExecute to send Excel a command string to execute in the form of an Excel macro function. Here the example instructs 
Excel to open the worksheet "SALES.XLS". (The example assumes that Excel is already running.)

{Initiate DDE conversation}



     DDEInitiate("Excel","System",ChanNum)

{Create command string that uses double quotes in the form
 [OPEN(""C:\EXCEL\EXAMPLES\BUDGET.XLS"")]}
     Chr(34,DblQuote$)
     Command$ = "[OPEN("
     Command$ = Command$ + DblQuote$
     Command$ = Command$ + "C:\EXCEL\EXAMPLES\BUDGET.XLS"
     Command$ = Command$ + DblQuote$
     Command$ = Command$ + ")]"

{Send the command string}
     DDEExecute(ChanNum,Command$,Result)
     If Result = 0 Then Beep

{Terminate the conversation}
     DDETerminate(ChanNum)

Related Commands: 
DDEInitiate    DDETerminate      DDEPoke  and    DDERequest



DDEInitiate

Initiates a new DDE conversation and returns the associated channel number.

Syntax: DDEInitiate(Service$,Topic$,ChanNum)

Parameters:
Service$ A string that specifies the service name of the server application with which a 

conversation is to be established--for example, "Excel".

Topic$ A string that specifies the name of the topic on which a conversation is to be 
established--for example, "System".

ChanNum A numeric variable that will contain the channel number of the established 
conversation. If the function fails, ChanNum is assigned a value of 0.

Remarks: 

PiXCL can function only as a client to a DDE server (such as Windows Explorer) in a DDE conversation. 

The service name of a server application usually matches its program name, and can be found in the Registry. Look for a 
ddeexec key in the application of interest entries. Subkeys application and topic are the Service Name and main Topic 
respectively.

For example, Service Names and some topics are …
"Excel" for Microsoft Excel 97. Multiple topics exist.
"MSAccess" for Microsoft Access 97. Multiple topics exist.
"WinWord" for Microsoft Word 97. Multiple topics exist.
"Folders" for Microsoft Windows Explorer, only topic is "AppProperties".
"IExplore" for Microsoft Internet Explorer, only topic is "WWW_OpenURL".
"Netscape" for Netscape Navigator, only topic is "WWW_OpenURL".

The topic name is a string that identifies the topic for the conversation. Each application has its own set of valid topic names. 
With many applications, the name of an open file is a valid topic name. For example, if Excel is currently using the the worksheet
file "SALES.XLS," you could use the following PiXCL command to initiate a DDE conversation with that Excel worksheet:

DDEInitiate("Excel","C:\SALES.XLS",ChanNum)

By using the "System" topic, you can often use the DDERequest command to obtain a list of the strings that an application 
accepts as valid topic names--for example, a list of the files that are currently in use. (See the DDERequest command more 
explanation and an example using Excel.)

PiXCL can set up multiple, simultanous DDE conversations. Your program must keep track of the DDE channel created, and 
ensure that they are correctly terminated.

Once a DDE conversation has been initiated with a server application, you can use any of these DDE-related commands to 
communicate with it:

· DDERequest -- To read information from the server.

· DDEPoke -- To write information to the server. 

· DDEExecute -- To send a command string to be executed by the server.

Example:

See the DDEExecute, DDEPoke, and DDERequest commands for examples.



Related Commands: 
DDETerminate    DDEPoke    DDERequest DDEExecute 



DDEPoke

Sends data to an item in a DDE conversation. You can for example send data an Excel spreadsheet cell.

Syntax: DDEPoke(ChanNum,Item$,Data$,Result)

Parameters:
ChanNum The channel number established by the DDEInitiate command.

Item$ A string that identifies an item that is appropriate for the server application. Different 
applications support different item names. In an Excel worksheet, for example, you 
can use a string of the form "R1C1" to identify row 1, column 1 in the worksheet.

Data$ A string containing the data you want to send to the item identified in Item$.

Result An integer variable that indicates the outcome of the transaction. It is assigned 1 if the 
transaction was successful; otherwise 0.

Example: 

The following example stores the simple message "Hello from PiXCL!" in the first cell of an Excel worksheet. This example 
assumes that you've just started Excel and that Sheet1 is the active worksheet:

DDEInitiate("EXCEL","[Book1]Sheet1",ChanNum)
DDEPoke(ChanNum,"R1C1","Hello from PiXCL!",Ignore)
DDETerminate(ChanNum)

Related Commands: 

DDEInitiate    DDETerminate    DDERequest    DDEExecute 



DDERequest

Requests information from a specified item in a DDE conversation.

Syntax: DDERequest(ChanNum,Item$,Result$)

Parameters:
ChanNum The channel number established by the DDEInitiate command.

Item$ A string that identifies an item that is appropriate for the server application. Different 
applications support different item names. 

Result$ A string of information returned from the item. If the request is unsuccessful, a null 
string (" ") is returned.

Remarks:

Each application supports its own set of topic and item names. Many, but not all, DDE server applications support the "System" 
topic. If it does, it will usually support one or more of the following topics as well:
"Formats" "Status" "SysItems" "Topics" "Help" "ReturnMessage" "TopicItemList"

For example, The Table below shows some of the items that you can use with DDERequest after you've initiated a conversation 
with Excel using a given topic name. 

Topic name Item name Result$ returns

"System" "SysItems" A list of item names that you can 
use with the "System" topic in 
subsequent DDE commands, 
shown below.

"Topics" A list of DDE topic names accepted 
by Excel, including the names of all 
open worksheet files.

"Formats" A list of Clipboard formats 
supported by Excel--for example, 
"TEXT    BITMAP".

"Status" Returns “Ready” if the spreadsheet
can be accessed.

"Selection" The currently selected cell e.g. 
"[Book1]Sheet1!R1C1"

Protocols Returns "StdFileEditing" and 
"Embedding". These are used with 
OLE functions.

EditEnvItem
s

Returns "StdHostNames”, 
"StdTargetDevice" and 
"StdDocDimensions".

The name of an 
Excel worksheet
currently in use,
e.g. 
"[Book1]Sheet1"

A string of 
the form 
“R1C1” (for 
row 1, 
column 1)

A string representing the current 
contents of the specified cell.

Examples:

The following example uses DDERequest to get the current contents of the first cell in an Excel worksheet and display it in the 
PiXCL window. This example assumes Excel is already running.

DDEInitiate("EXCEL","Sheet1",ChanNum)
DDERequest(ChanNum,"R1C1",Contents$)



DDETerminate(ChanNum)
DrawText(10,10,Contents$)
WaitInput()

The next example gets all the group names from Program Manager and draws the string that contains them on the screen.

Item$ = "Groups"   {Get all group names from Program Manager}
DDEInitiate("PROGMAN","PROGMAN",ChanNum)
DDERequest(ChanNum,Item$,List$)
DrawText(10,10,List$)
DDETerminate(ChanNum)
WaitInput()

If you try this example, you'll see that the names are delimited by carriage return / linefeed pairs.

The next example uses the "System" topic with the "Sysitems" item to get a list of available item names from Excel. A list box 
displays the results. This example assumes Excel is already running.

DDEInitiate("Excel","System",ChanNum)
DDERequest(ChanNum,"SysItems",List$)
DDETerminate(ChanNum)
Chr(9,Tab$) {List is delimited by Tabs}
ListBox("Excel System topics",List$,Tab$,Ignore$)
WaitInput()

This final example sends a word to Winword for spell checking. It shows how to use some of the available DDE commands. See 
your Word and WordBasic documentation for more information.

{Initiate DDE conversation}
     DDEInitiate("Winword","Document1",ChanNum)

{Build bookmark command}
     Item$ = "here" {This is just a placeholder}
     Chr(34,DblQuote$)
     ExecuteString$ = "[InsertBookMark.Name = "
     ExecuteString$ = ExecuteString$ + DblQuote$
     ExecuteString$ = ExecuteString$ + Item$
     ExecuteString$ = ExecuteString$ + DblQuote$
     ExecuteString$ = ExecuteString$ + "]"

{Create bookmark in Word}
     DDEExecute(ChanNum,ExecuteString$,Result)
     If Result = 0 Then Beep

{This the word to check}
WordCheck$ = "Testiing"

{Send WordCheck$ to bookmark}
     DDEPoke(ChanNum,Item$,WordCheck$,Result)
     If Result = 0 Then Beep

{Spell check it}
     DDEExecute(ChanNum,"[ToolsSpellSelection]",Result)

{Put up button for requesting word back from Word}
     UseCoordinates(PIXEL)
     Button(200,200,400,300,"Request back",Request)



     WaitInput()

{Request word back from Word and display it on screen}
Request:
     DDERequest(ChanNum,Item$,Result$)
     If Result$ <> "" Then WordCheck$ = Result$
     UseCoordinates(METRIC)
     DrawText(10,50,WordCheck$)

Wait_for_input:
     DDETerminate(ChanNum)
     WaitInput()

See also the sample program    pxlexplor.pxl    which demonstrates DDE conversations with Explorer, Access, Excel and 
Netscape or Internet Explorer.

Related Commands: 
DDEInitiate    DDETerminate    DDEPoke    DDEExecute 



DDETerminate

Closes a DDE conversation.

Syntax: DDETerminate(ChanNum)

Parameter:
ChanNum The channel number established by the DDEInitiate command.

Remarks:

Once a DDE conversation has served it purpose and is no longer needed, your PiXCL script MUST terminate the conversation 
through the DDETerminate command.    If you do not, a conversation can be left open, and Windows will eventually need to be 
rebooted to clear it.

You should use one DDETerminate command for each conversation you've started.

See the other DDE commands for examples.

Related Commands: 

DDEInitiate,    DDEPoke and DDERequest, DDEExecute 



DebugMsgBox

To display the value of any variable in a messagebox, use the DebugMsgBox command. The current application title is used for 
the debug message box. For example, if the the title is Test Application, the message box title becomes Test Application : Debug
Message.

Syntax: DebugMsgBox(String$ | Number | FPNumber&)

Parameter:
String$ | Number | String, integer and floating point static values and variables are automatically 
FPNumber& converted to a string for display. Floating point numbers will display a maximum of eight decimal 

places.

Related Commands:
MessageBox  



DeleteColorSpace

PiXCL 5 Command: A previously created logical colour space should be deleted with this command.

Syntax: DeleteColorSpace(CSHandle, Result)

Parameters:
CSHandle A handle returned from the CreateColorSpace command.
Result 1 if the colour space was deleted, othewise 0.

Related Command:
CreateColorSpace    



DialogBox

In PiXCL 4.20 and later, you can define your own custom popup modal dialog boxes, with combinations of push buttons, radio 
buttons, checkboxes, group boxes, edit controls, static text, List box, and combo boxes, with the DialogBox command.    These 
same input controls can be created in the PiXCL client area using other commands.

DialogBox is a variable argument list command, with syntax as described below, and is the most complex command in the PiXCL
language. Dialog boxes must also appear the same regardless of the current screen resolution and the small or large system 
font in use. Consequently, the coordinates for the dialog box position, and the controls within the dialog are expressed in what 
Windows calls dialog units, rather than in the pixel coordinates used in most other PiXCL commands. An example custom 
dialog box appears below.

 

Syntax: DialogBox(x1,y1,x2,y2,Title$,STYLE_token, ix,iy,iXsize,iySize,ICON_token,
 bx1,by1,bx2,by2,BtnLabel$,
 Controls, ... control definitions)

Parameters:
x1,y1,x2,y2 The PiXCL client dialog unit coordinates where the custom popup modal dialog is to appear.    

Coordinates can be negative (e.g. when the PiXCL client is below the dialog), so long as x1 < x2 
and y1 < y2.

Title$ The Title of the custom dialog.
STYLE_token The appearance of the dialog box.

CAP_CTR show a title bar, centralise dialog in screen work area.
CAP_NCTR show a title bar, dialog relative to client area coords.

ix,iy TL corner position in pixels to draw a built-in icon. 
ixSize,iySize Icon size in pixels to draw a built-in icon. 
ICON_token The icon token, same as MessageBox command. INFORMATION, EXCLAMATION, 

QUESTION, STOP, WINLOGO, NOICON, ICON01 - ICON19.
bx1,by1,bx2,by2 The dialog client coordinates where the mandatory button is to appear.
BtnLabel$ The text label of the mandatory button.
NumControls The number of additional controls that appear in the custom dialog. The current maximum 

number is 60. See Remarks below for more information.
Result The value returned by the dialog. A dialog always has one button that terminates the dialog. 

Result is the ordinal number (starting from 1) in which the buttons were defined in the DialogBox 
command. Please note that regardless of the button pressed, DialogBox will return the string or 
numeric variables from other control items, if any.

Control Definitions: Zero to sixty of these must follow in the form…
… cx1,cy1,cx2,cy2, CONTROL_type, CONTROL_style,Text$, [return_variable,] …

cx1,cy1,cx2,cy2 dialog unit coordinates for control position.
CONTROL_type, CONTROL_style

BTN Same styles as in Button command. Available styles are …
PUSH        Pushbutton        
GROUP Group box. If the verical size of the group box is 5 dialog units, a single horizontal



line is drawn. If the horizontal size of the group box is 1 dialog unit, a single 
vertical line is drawn. You should set Text$ to a null string in these cases.

Text$ The text string to be displayed within the control. This can be a null string if 
desired.

The next two styles have an additional argument for the returned state.
AUTORADIO        Toggling radio button. 
AUTOCHECK        Standard    toggling check box.        
Text$ The text string to be displayed within the control. 
State Integer variable of the radio or check state when the dialog is initialized, and 

when it exits. For pressed or checked, State is set to or returns 1, otherwise it is 
set to or returns 0. It is possible to initialize all radio buttons to pressed, but when 
a button is pressed, the states will correct themselves. If you don’t initialize the 
State variable before using it in a DialogBox command, the default is 0. The 
command automatically sets any non-zero initialize State value to 1.

EDIT Edit control with auto scroll
SCREDITEdit control with vertical scroll bar

STRING Single line string entry. Carriage return terminates the dialog.
MLSTRING Multi-line string entry. Text wraps around the end of each line automatically, and 

scrolls vertically as needed. Carriage returns are accepted as new line 
characters. The maximum size of a string for the edit control is 64KB.

NUMBER positive number entry. For negative numbers, use STRING.

PASSWORD All typed characters are presented as a row of    ********.
InitText$ Initializing text variable. This can be a null string.
ReturnText$ Return text variable. For the NUMBER style, this is the ascii string for the number

that will need to be converted to an integer variable if required. For the 
PASSWORD type, this is the actual text typed into the control. 

STATIC Static text region. This is commonly presented enclosed in a group box.
LEFT Align text to the left margin
CENTER Align text to the center of the region.
Text$ The text string to be displayed within the static text control. 

LIST Single or mult colum list box.
SINGLE Displays the list in a single column, with a vertical scroll bar if necessary.
MULTI Displays the multi-column list with a vertical scroll bar if necessary.
List$ The delimited text string list to be displayed within the list control. The delimiter 

character must be “|”, and the last element must have a delimiter appended.
Selection$ The first item in the list if no selection has been made, otherwise the current 

selection.
COMBO Standard combobox.

SIMPLE The list region is always visible.
DROPDOWN The list region appears when the arrow button is pressed, and the edit control 

can updated manually. If the list region cannot display all the list, it will 
automatically scroll downward when you click and drag, but no scroll bar 
appears.

DROPDOWNLIST Similar to DROPDOWN, but the edit control cannot be manually updated.
Text$ The text string to be displayed within the combobox control. The delimiter 

character must be “|”, and the last element must have a delimiter appended.
ReturnText$ Return text variable that contains the text in the edit control part of the combobox.

This can be a null string if no selection has been made.. 

Remarks:
The minimum command is 

DialogBox(x1,y1,x2,y2,Title$,STYLE_token,ix,iy,isx,isy,ICON01,
bx1,by1,bx2,by2,BtnLabel$,0,Result)

which produces a dialog box with a titlebar and one button that when clicked, terminates the dialog box. i.e. not a very useful 



dialog.

A common programming error is coding an incorrect value for NumControls which will result in either 
· not all the controls appearing if NumControls is less than the number of controls defined in the command; or
· the dialog box not appearing at all if NumControls is greater than the number of controls defined in the command. 

Examples:
Please see the DlgBoxes.pxl program in the ..\learning subdirectory for some examples of the DialogBox command.

You can also create popup dialogs that track when the right mouse is clicked in the client area, and appear with the top left 
corner near the point on which the mouse was clicked. The PixelsToDlgUnits command is needed here.

Related Commands:
Button  ComboBox     DrawIcon     SetEditControl  GetDialogUnits  DlgUnitsToPixels  PixelsToDlgUnits  



DirChange

Sets the current directory to the specified drive and path.

Syntax: DirChange(DirectoryName$,Result)

Parameters: 
DirectoryName$ The name of the directory you want to make the current directory. If the directory is on 

another drive, precede the directory name with the appropriate drive designation.

Result An integer variable that indicates the outcome of the directory change operation. If the 
operation was successful, this variable is assigned a value of 1. Otherwise, it is 
assigned a value of 0.

Remarks: 

The directory change operation will fail and PiXCL will assign a value of 0 to Result if any element of the pathname does not 
exist. 

The current directory is made up of two parts: a disk designator (either a drive letter followed by a colon or a server name and 
sharename: "\\servername\sharename") and a directory on that disk designator.

You can use a relative path for DirectoryName$ (for example, "..") or a fully qualified path. 

By using a drive letter followed by a colon for DirectoryName$ (for example, "B:"), you can switch to the current directory on the 
named drive--in effect, making DirChange equivalent to PiXCL's DiskChange command.

The presence of "\" at the end of DirectoryName$ does not cause the function to fail.

Examples: 

This example sets the current directory to the Windows NT SYSTEM32 directory. If the operation fails, the variable Changed is 
assigned a value of 0, and the program beeps and ends. If the directory is successfully changed, the program checks for the 
presence of SHELL.DLL. If it is found, a message to that effect is displayed.

DirGetSystem(SystemDir$)
DirChange(SystemDir$,Changed)
If Changed=0 Then Goto Beep_End  {Dir not changed}
FileExist("SHELL.DLL",Found) {Check for SHELL.DLL}
If Found=0 Then Goto Beep_End
MessageBox(OK,1,INFORMATION,
"SHELL.DLL was found","",Temp)
End

Beep_End:
Beep
End

This next example changes the current directory to C:\LETTERS. It then launches a copy of the command interpreter CMD.EXE:

DirChange("C:\LETTERS",There)
If There=1 Then Run("CMD.EXE")

The advantage of using the DirChange command in this example is that C:\LETTERS will be the current directory when the 
command prompt appears.

Related Commands:
DirMake    DirRemove    DiskChange





DirExplore

You can select a directory and invoke an Explorer window to show the contents of the directory with the DirExplore command. 
This uses the Windows shell and accesses Explorer using a DDE exchange. For more advanced actions with Explorer, you will 
need to use the DDE commands. The Explorer window that appears will not close automatically: you will have to do this 
manually or with code.

Syntax: DirExplore(DirName$,Result)

Parameters:
DirName$ The directory that you wish to explore. If the directory does not exist, or is a NULL string, this 

command has no effect.

Result 1 if the operation was sucessful, otherwise 0.

Related Commands:
DDEInitiate    DDEPoke    DDERequest    DDEExecute    DDETerminate



DirGet

Gets the current directory. 

Syntax: DirGet(DirectoryName$)

Parameter:
DirectoryName$ A string variable that will contain the current directory.

Remarks:

PiXCL returns a fully qualified pathname, including the drive identifier and leading “\” where necessary.    Root directories and 
subdirectories are treated the same. Hence, you might get a return directory c:\sample    for a subdirectory, and c: for a root 
directory. Note that in both cases there is no trailing “\”. See the second example below.

The current directory is made up of two parts: a disk designator (either a drive letter followed by a colon or a server name and 
sharename: "\\servername\sharename") and a directory on that disk designator.

Example:

This example gets the current directory and draws it at point (10,10) in the PiXCL window. Next, it makes the Excel directory the 
current directory, and then shows that it has made the change by drawing the new current directory at (10,20).

DirGet(DirectoryName$)
DrawText(10,10,DirectoryName$)
DirChange("C:\EXCEL",Result)
DirGet(DirectoryName$)
DrawText(10,20,DirectoryName$)
WaitInput()

Another example is where you want to make an application run from any installation directory, including a root directory if 
necessary.
DirGet(SourceDir$)
Image1$  = SourceDir$ + “\image1.bmp”
Image2$  = SourceDir$ + “\image2.bmp”
Image3$  = SourceDir$ + “\image3.bmp”

Related Commands:
DirChange    DirGetWindows    DirGetSystem



DirGetColor

PiXCL 5 command. Gets the Windows 98 / 2000 Color directory where colour profiles are stored.. 

Syntax: DirGetColor(DirectoryName$)

Parameter:
DirectoryName$ A string variable that will contain the Windows COLOR directory. In Windows 98, 

this is usually c:\windows\SYSTEM\COLOR. The directories are set to upper 
case by the Windows API call.

Remarks:

PiXCL returns a fully qualified pathname, including the drive identifier and leading \.

Related Commands:
InstallColorProfile      UninstallColorProfile 



DirGetSystem

Gets the Windows 95/98 SYSTEM or Windows NT / 2000 SYSTEM32 directory. 

Syntax: DirGetSystem(DirectoryName$)

Parameter:
DirectoryName$ A string variable that will contain the Windows NT/2000 SYSTEM32 or Windows 

95 SYSTEM directory.

Remarks:

PiXCL returns a fully qualified pathname, including the drive identifier and leading \.

Example:

This example loads the SETUP.INF (located in the Windows    SYSTEM directory) into Notepad so that you can view its contents.

DirGetSystem(SystemDir$)
SetupInf$ = SystemDir$ + "\setup.inf"
CmdLine$ = "Notepad " + SetupInf$
Run(CmdLine$)

Related Commands:
DirChange    DirGet    DirGetWindows    DirGetTwain    



DirGetTwain

Gets the Windows 32 bit TWAIN directory. This is usually C:\Windows\Twain_32. Drivers for TWAIN compatible scanners, 
digital cameras, video recorders and similar devices are stored in this directory, or in subdirectories.

Syntax: DirGetTwain(TwainDirectoryName$)

Parameter:
TwainDirectoryName$ A string variable that will contain the Windows NT/2000 or Windows 95/98 

Twain_32 directory.

Remarks:

PiXCL returns a fully qualified pathname, including the drive identifier and leading \.

Related Commands:
DirChange    DirGet    DirGetWindows



DirGetWindows

Gets the Windows directory.

Syntax: DirGetWindows(DirectoryName$)

Parameter:
DirectoryName$ A string variable that will contain the Windows directory.

Remark:

PiXCL returns a fully qualified pathname, including the drive identifier and leading \.

Example:

This example tests for the presence of TARTAN.BMP in the Windows directory. If it's found, the program loads it into Paintbrush 
for editing. Otherwise, an error message is displayed.

DirGetWindows(WindowsDir$)
Tartan$ = WindowsDir$ + "\tartan.bmp"
FileExist(Tartan$,Exist)
CommandLine$ = "pbrush " + Tartan$
If Exist = 1 Then Run(CommandLine$) | End
MessageBox(OK,1,INFORMATION,
   "Couldn't find tutor","Not found",Temp)

Related Commands:
DirChange    DirGet    DirGetSystem    DirGetTwain



DirListFiles

List the set of the filenames located in a specific directory.

Syntax: DirListFiles(Path$,Delimiter$,Number,List$)

Parameters:
Path$ The disk, directory and file type to be listed. To list all files, use *.*.    To list all files of particular 

type, use e.g. *.pxl. 
Delimiter$ The delimiter character e.g. “|”.
Number The number of files of the type in Path$ in the directory.
List$ The set of files found in the directory.

Related Commands:
FileExist DirMake    DirRemove



DirMake

Creates a new directory. 

Syntax: DirMake(DirectoryName$,Result)

Parameters:
DirectoryName$ The name of the directory you want to create. If the directory is on another drive, 

precede the directory name with the appropriate drive designation.

Result An integer variable that indicates whether the directory was successfully created. If it 
was, this variable is assigned a value of 1. If it was not successfully created. For 
example, an element of the pathname does not exist: this variable is assigned a value 
of 0.

Remarks: 

The directory will not be created and PiXCL will assign Result a value of 0 under the following circumstances: 

· Any element of the pathname does not exist.

· A directory with the same name already exists. 

DirectoryName$ may be a relative path (for example, "..\temp") or a fully qualified path.

If you want to determine whether a directory already exists before trying to create it, use the FileExist command.

Example: 

The following example creates a \TXTFILES subdirectory off of C:\WINDOWS. If the operation fails--for example, the directory 
already exists--the Created and False variables are equal, and the program beeps and ends. If the operation is a success, the 
program displays a message to that effect.

False = 0
DirMake("C:\WINDOWS\TXTFILES",Created)
If Created=False Then Beep | End
MessageBox(OK,1,INFORMATION,"\TXTFILES successfully created",
           "",Temp)

Related Commands: 
DirChange    DirRemove    DiskChange    FileExist



DirMakePath

PiXCL 5 command. Creates a new directory path. 

Syntax: DirMakePath(DirectoryPath$,Result)

Parameters:
DirectoryPath$ The name of the directory path you want to create. If the directory is on another drive, 

precede the directory name with the appropriate drive designation. 
Result An integer variable that indicates whether the directory path was successfully created. 

If it was, this variable is assigned a value of 1. If it was not successfully created. For 
example, an element of the pathname does not exist: this variable is assigned a value 
of 0.

Remarks: 

The path to be created is terminated by the last trailing backslash. For example, a path “C:\Test1\Test2\
Test3.dir\” creates “C:\Test1\Test2\Test3.dir\”    while “C:\Test1\Test2\Test3.dir” creates “C:\Test1\Test2”

If you want to determine whether a directory already exists before trying to create it, use the FileExist 
command.    See also the set of Path* commands.

Related Commands:
DirMake    



DirRemove

Deletes an existing directory. 

Syntax: DirRemove(DirectoryName$,Result)

Parameters: 
DirectoryName$ The name of the directory you want to delete. If the directory is on another drive, 

precede the directory name with the appropriate drive designation.

Result An integer variable that indicates whether deletion of the directory was successful. If 
the deletion was a success, this variable is assigned a value of 1. If the deletion was 
not a success--for example, an element of the pathname does not exist -- the Result 
variable is assigned a value of 0.

Remarks: 

The deletion will fail and Result will be assigned a value of 0 under the following circumstances:

· Any element of the pathname does not exist.

· The specified directory is also the current directory. 

· The directory still contains files (or subdirectories). 

DirectoryName$ may be a relative path (for example, "..\temp") or a fully qualified path.

Example: 

The following example deletes the C:\WINDOWS\MYFILES directory. If the operation fails--for example, the directory doesn't 
exist--the Deleted and False variables are equal, and the program beeps and ends. If the deletion is successful, the program 
displays a message to that effect:

False=0
DirRemove("C:\WINDOWS\MYFILES",Deleted)
If Deleted=False Then Beep | End
MessageBox(OK,1,INFORMATION,

"\WINDOWS\MYFILES successfully deleted",
   "",Temp)

Related Commands: 
DirChange    DirMake    DiskChange



DiskChange

Makes another disk drive the active drive.

Syntax: DiskChange(DriveLetter$,Result)

Parameters: 
DriveLetter$ A string indicating the letter of the drive you want to make the active drive.

Result An integer variable that indicates whether the disk change was successful. If it was 
successful, this variable is assigned a value of 1. If it was not successful, this variable 
is assigned a value of 0.

Remarks: 

When you change disk drives with this command, the current directory settings are not affected.

A colon is optional after the driver letter. In fact, any characters after the drive letter are ignored.

Example: 

This program makes drive E the current drive. If the disk change fails--for example, the drive doesn't exist--the program beeps 
and ends. If the disk change is successful, the program displays a message indicating that E is now the active drive.

False = 0
DiskChange("E",Changed)
If Changed=False Then Beep | End
MessageBox(OK,1,INFORMATION,

"Drive E is the active drive",
   "",Temp)

Related Commands: 
All the Directory and File commands.



DlgUnitsToPixels

Converts a dialog units coordinate to a client pixel coodinate.

Syntax: DlgUnitsToPixels(Dx,Dy,Px,Py)

Parameters:
Dx,Dy The dialog box coordinate.
Px,Py The returned pixel coordinate.

Remarks:
Converting between pixels and dialog coordinates will result in some loss of precision.

Related Commands:
DialogBox    PixelsToDlgUnits 



Double

PiXCL 5.1 command. An integer or int64 number can be converted to a double (64 bit floating point). 

Syntax: Double(Integer|Integer64#, Fp64#& )

Parameters: 
Integer, Integer64 Any static number or integer variable
Fp64#& The resulting double variable.

Related Command:
Float    



DragAcceptFile

With this command, and the related GetDragList command, you can drag and drop single or multiple files into your PiXCL 
application for processing by PiXCL code. These files will often be images, but can also be text files, or any filename on which 
your PiXCL application performs some process.

Syntax: DragAcceptFile(ENABLE|DISABLE,label)

Parameters:
ENABLE|DISABLE Enables or disables the drag accept file function. 
label The label in your program that handles the file or file list.

Remarks:
Default is DISABLE if your program does not include a DragAcceptFile command. If you issue multiple DragAccceptFile 
commands, the most recent command jump-to label becomes the current label.

When you try to drag and drop a file into a PiXCL application, the cursor changes to the standard drop enable or drop disable 
style once the mouse is in the client area. If enabled, once you click the left mouse, the cursor changes back the arrow.
For example, to load a set of image filenames from Explorer, select the set of files, click and hold the left mouse key,    drag    
over to your PiXCL application, and release the mouse.    The set of filenames will be then available to your PiXCL application via
the GetDragList command. 

Related Commands:
DropFileServer    GetDragList 



DrawAnimatedRects

The DrawAnimatedRects function draws a wire-frame rectangle and animates it to indicate the opening of an icon or the 
minimizing or maximizing of a window or region. This is what you see when Windows 95/98/2000 opens and closes application 
windows, or minimizes them on to the task bar.

Syntax: DrawAnimatedRects(WindowName$,
fx1,fy1,fx2,fy2,    tx1,ty1,tx2,ty2,
OPEN | CLOSE | CAPTION, Result)

Parameters:
WindowName$ The exact Title string. The EnumWindows command is useful to get windownames. If you use a null 

string "" the PiXCL application window text and icon is drawn.

fx1,fy1,fx2,fy2 The client area co-ordinates of the rectangle from which the rectangle is to be drawn.

tx1,ty1,tx2,ty2 The client area co-ordinates of the rectangle to which the rectangle is to be drawn.

OPEN Use to open or enlarge a window or region.
CLOSE Use to close or compact a window or region.
CAPTION Use to take the title bar and caption of the target window for the animate process.

Result 1 if success, otherwise zero.

Related Commands:
None



DrawArc

Draws an elliptical arc using the current pen. To draw the arc, you use the points (x1,y1) and (x2,y2) to define a rectangle that 
bounds the ellipse containing the arc. You then use the parameters (x3,y3) to specify the point on the ellipse where the arc 
starts, and the parameters (x4,y4) to specify where it ends. Note that when the GDI sweeps the arc, it begins at (x3,y3) and 
moves in a counterclockwise direction towards (x4,y4).

Syntax: DrawArc(x1,y1,x2,y2,x3,y3,x4,y4)

Parameters:
x1,y1 The upper-left corner of the rectangle bounding the ellipse containing the arc.

x2,y2 The lower-right corner of the rectangle bounding the ellipse containing the arc.

x3,y3 The starting point of the arc on the ellipse. 

x4,y4 The ending point of the arc on the ellipse.

Remark:

The points (x3,y3) and (x4,y4) do not have to lie precisely on the ellipse. If they do not, however, the GDI uses points on the 
ellipse that are the shortest distance from (x3,y3) and (x4,y4).

Examples:

This example sets the coordinate system to pixels, then draws an arc within the rectangle defined by the points (30,20) and 
(200,180). It sweeps the arc starting from the point (200,20) and moving in a counterclockwise direction to the point (30,20).

UseCoordinates(PIXEL)
DrawArc(30,20,200,180,200,20,30,20)
WaitInput()

The next program draws an arc by asking you to click on each of the four points needed to define the arc. The first point it asks 
for is the upper-left corner of the rectangle bounding the ellipse containing the arc, and the second is the lower-right corner of 
that same rectangle. The program then draws a temporary ellipse using the points you've defined so that you can select the third
and fourth points needed for the arc--its starting and ending points. After you've clicked on these points on the ellipse, the 
program clears the screen and draws the arc using the DrawArc command. It then loops back up for you to specify another arc.

{Set up the environment}
   SetWindow(MAXIMIZE)
   UseCoordinates(PIXEL)
   UseFont("Terminal",10,10,

    NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)

Arc1:
   UsePen(DOT,1,0,0,0) {Dotted pen for the temp ellipse}
   SetMouse(0,0,700,600,Arc2,x1,y1)
   Text1$ = "Click on upper-left corner of rectangle bounding arc"
   DrawText(10,300,Text1$)
   Goto Get_Input
Arc2:
   SetMouse(0,0,700,600,Arc3,x2,y2)
   Text2$ = "Click on lower-right corner of rectangle bounding arc"
   DrawText(10,300,Text2$)
   Goto Get_Input
Arc3:
   DrawEllipse(x1,y1,x2,y2)          {Draw a temporary ellipse}



   SetMouse(0,0,700,600,Arc4,x3,y3)
   Text3$ = "Click on arc's starting point"
   Len(Text2$,Length2)
   Len(Text3$,Length3)
   Difference = Length2 - Length3
   Pad(Text3$,Difference)            {Pad text with spaces}
   DrawText(10,300,Text3$)
   Goto Get_Input
Arc4:
   SetMouse(0,0,700,600,Arc_End,x4,y4)
   Text4$ = "Click on arc's ending point"
   Len(Text4$,Length4)
   Difference = Length2 - Length4
   Pad(Text4$,Difference)            {Pad text with spaces}
   DrawText(10,300,Text4$)
   Goto Get_Input

Arc_End:
   DrawBackground                    {Clear the temporary ellipse}
   UsePen(SOLID,1,0,0,0)             {Use a solid black pen}
   DrawArc(x1,y1,x2,y2,x3,y3,x4,y4)
   Goto Arc1

Get_Input:
   WaitInput()

Related Commands:
DrawEllipse    UsePen    UseBrush



DrawBackground

Draws a window's background using the current background color. If the window has any contents, they are overwritten in the 
process.

Syntax: DrawBackground

Remark:

You control the current background color using the UseBackground command. (The current background mode, TRANSPARENT 
or OPAQUE, has no effect on the DrawBackground command's behavior.)

Example:

This example sets the background color to green using the UseBackground command and then draws the background. Next, it 
draws some text in the window, waits for 2 seconds, and erases the text by issuing the DrawBackground command again.

UseBackground(TRANSPARENT,0,255,0)
DrawBackground
DrawText(10,10,"The effect of text")
WaitInput(2000)     {Pause for 2 seconds}
DrawBackground      {Erase the text}
WaitInput()

Related Commands: 
GetBackground    UseBackground 



DrawBackgroundRegion

PiXCL has a foreground and background copy of what you see in the PiXCL application client area on your screen. It is possible 
to draw in either the foreground or background separately, or both, which is the default setting when the PiXCL application starts.

DrawBackgroundRegion is designed to be used with simple animation, where you want to copy a region of the client area to the 
foreground. For example, if an animation bitmap has a cell size of 23x64 pixels, you can specify just the background region 
under the cell to be refreshed.    If you use the SetDrawMode command which works with all the DrawBitmap commands, you 
can use the background memory image for double buffering animation.

Syntax: DrawBackgroundRegion(x1,y1,x2,y2)

Parameters:
x1,y1 The top left corner of the region to be redrawn.
X2,y2 The bottom right corner of the region to be drawn.

Remarks:
This command is NOT the same as the DrawBackground command, which sends a message to PiXCL to redraw the entire screen
image with the current background color. Rather, it takes a copy of the specified region and passes it to the foreground.    
DrawBackgroundRegion is NOT affected by the SetDrawMode command.

Related Commands:
DrawBackgound    SetDrawMode    SetROPcode    DrawBitmap



DrawBitmap, DrawPreviewBitmap

Places the contents of a bitmap (BMP, JIF, JPEG, PCD, PCX, PNG, PPM, PSD, RAS, RLE, TGA, TIF) file at a specified location 
on the screen.    The bitmap can be a Preview size which has maximum dimensions of 256x256, with the same aspect ratio as 
the full image.

Syntax: DrawBitmap(x,y,Filename$)
DrawPreviewBitmap(x,y,Filename$) 

Parameters:
x The x-coordinate of the upper-left corner of the bitmap. 

y The y-coordinate of the upper-left corner of the bitmap. 

Filename$ The name of the bitmap file. Include the path if the bitmap file is not in the current 
directory.

Remarks:

DrawBitmap supports 256-color and 24-bit bitmaps. Be aware, however, that this type of bitmap can consume a substantial 
amount of memory. For example, a bitmap containing an entire screen image of a 1024x768-pixel 256-color SuperVGA is over 
768K.

When you use the DrawBitmap command to place a bitmap in an PiXCL window, PiXCL stores the bitmap image in Windows 
global memory, as well as in the application memory and display contexts. These contexts are, in effect, the actual PiXCL 
window as you see it, one stored somewhere in global memory (the memory context), and the other on your video card memory 
(the display context). When your script ends, PiXCL removes the bitmap(s) from memory and recovers the space it occupies.    
The image you see drawn in the client area is a copy of the bitmap stored elsewhere in memory.

In most cases,    we advise you to remove a bitmap from memory once you have loaded the image file. In most cases, this will 
not have an undesirable effects. What this approach does is free up the image file global memory, while leaving the memory and 
display contexts alone.

If you are retrieving the same bitmap from disk and the disk bitmap has changed from the bitmap in program memory, you MUST
use FreeBitMap before you reload with DrawBitmap, or else the original bitmap in the memory context will be displayed.

One way to reduce a bitmap's memory consumption is to convert it to RLE (Run Length Encoded) bitmap format. (JASC Paint 
Shop Pro, a popular Windows shareware program, is handy for doing so.) By converting a bitmap to RLE format, you can usually
compress it to half its original size, sometimes smaller, with no ill-effects. Like many Windows programs, PiXCL fully supports 
RLE bitmap files.    You could also use the format conversion ability within PiXCL, and use the SaveBitmap command to save an 
image into RLE format.

If you draw one 256-color bitmap after another in the same PiXCL window, the first bitmap will likely change color as the second 
bitmap's color palette is realized; this occurs instantly, just before the second bitmap is appears on the screen (the second 
bitmap appears normally). The SetColorPalette command was introduced to try to mitigate this problem. By using 
SetColorPalette(GENERATE), you can have PiXCL generate an evenly distributed color palette that is used by both bitmaps. 
Neither bitmap will appear optimal, but one bitmap's colors will not override the other's.    If this is a problem for you, we suggest 
that you install video card with 2MB or more video memory, as this greatly increases the available palette colors.

Example:

This example reads the arches bitmap file (ARCHES.BMP) in the Windows directory and draws its contents beginning in the 
upper-left corner of the window.

DirGetWindows(WinDir$)
Bitmap$=WinDir$+"\ARCHES.BMP"
DrawBitmap(0,0,Bitmap$)
WaitInput()

This next example places two bitmaps on the screen: the chitz bitmap (CHITZ.BMP) starting at (5,5), and the ball bitmap 



(BALL.BMP) starting at (100,5):

DirGetWindows(WinDir$)
Bitmap1$=WinDir$+"\ARCHES.BMP"
DrawBitmap(5,5,Bitmap1$)
Bitmap2$=WinDir$+"\BALL.BMP"
DrawBitmap(100,5,Bitmap2$)
WaitInput()

Remarks:
You can draw into the foreground or background by using the SetDrawMode command.

Related Commands:

DrawSizedBitmap    FreeBitmap    FreeBitmapAll    GetBitMapDim    SetColorPalette    DrawZoomedBitmap    LoadBitmap 



DrawBitMapExt

This command offers some additional bitmap draw options according to the TOKEN used. It places the contents of a bitmap file 
at a specified location on the screen. 

Syntax: DrawBitmapExt(x,y,Filename$,TOKEN)

Parameters:
x The x-coordinate of the upper-left corner of the bitmap. 

y The y-coordinate of the upper-left corner of the bitmap. 

Filename$ The name of the bitmap file. Include the path if the bitmap file is not in the current 
directory.

BLACKONWHITE

COLORONCOLOR

HALFTONE

WHITEONBLACK

Remarks:
These commands will often appear to have no or little effect. See what happens if you use the SetROPcode command.
You can draw into the foreground or background by using the SetDrawMode command.

Related Commands:

DrawSizedBitmap    FreeBitmap    FreeBitmapAll    GetBitMapDim    SetColorPalette    DrawZoomedBitmap    LoadBitmap 
 



DrawBitmapPoint

This command is provided when you need to identify a point in a bitmap window, such as when selecting with the 
SetBMWMouse and SetBMWRightMouse commands. The point is written in the current pen color for 24 bit images, and for 8 bit 
paletted images, the current pen color if it exists in the palette, otherwise as pixel value 255.

 

Syntax: DrawBitmapPoint(WindowID,Filename$,x,y,style_TOKEN,Result)

Parameters:
WindowID The bitmap window ID returned by a DrawBitmapWindow command.

Filename$ The image that is displayed in the bitmap window. This image must be in the PiXCL image list.

x,y The bitmap coordinates for the point that is to be written. Note that this is NOT the client area 
coordinate.

CROSS an X, as shown above.
PLUS a + , as shown above.
CIRCLE a circle with a center dot, as shown above. 
BOX a box with a center dot, as shown above. 
DIAMOND a diamond with a center dot, as shown above.
DOT a 3x3 dot, as shown above.

Result 1 of the operation succeeds, otherwise 0.

Remarks:
DrawBitmapPoint writes data to the bitmap loaded into memory. You can save the image, and the points will appear in the new 
image. If the points are written on a temporary basis, prior to some other operation, you should reload the image by issuing a 
FreeBitmap and a LoadBitmap or DrawBitmap command sequence.

Related Commands:
DrawBitmapWindow    DrawPoint    SetBMWMouse    UsePen 



DrawBitmapWindow

This command is provided when you want to see a large image at full resolution, but in a limited region of the PiXCL application 
client area. You can specify the position and dimensions of the display window, and it appears with both vertical and horizontal 
scroll bars, unless the size of the window exactly matches the dimensions of the image to be displayed. The image that is loaded
into the bitmap window is also written to the PiXCL bitmap list and can be listed with the ListLoadedBitmap command, and 
removed with the FreeBitmap command.

 

Up to eight bitmap windows can be displayed. Each window can be independently scrolled with the scrollbars, and zoomed with the 
ZoomBitmapWindow command, perhaps controlled by a trackbar as in the image above. The default bitmap window title is the 
name of the image displayed there: You can change this with the BMWinTitle command.

Syntax: DrawBitmapWindow(x1,y1,x2,y2, Filename$, STYLE_token, WindowID)

Parameters:
x1,y1,x2,y2 The PiXCL application client area coordinates for the bitmap window. If a sizing or captioned 

window is defined, it can be moved around the PiXCL client area with the mouse.

Filename$ The name of the image to be displayed. This is the default window title. If the image is not already loaded
into the PiXCL image list, it is loaded automatically at full resolution. If you want to display    preview 
images in a bitmap window, use the LoadBitmap(Imagename$,PREVIEW) or the DrawPreviewBitmap 
commands. 

STYLE_token NOCAPTION_NOSIZE: create a non-sizing window without a caption.
NOCAPTION_SIZE: create a sizing window without a caption.
CAPTION_NOSIZE: create a non-sizing window with a caption.
CAPTION_SIZE: create a sizing window with a caption.

WindowID The ID of the window created. This variable is usually needed to be used with the 
CloseBitmapWindow command, and also for the FlashBMWindow and SetBMWMouse 
commands. If Filename$ cannot be located or loaded, the operation fails and WindowID returns 
0.

Remarks:
The bitmap window caption, if enabled, is the image Filename$. Depending on the image dimensions, the size of the slider 
buttons will vary. This is normal Windows operation. 

Image processing commands do not directly display the results. To display a result image, use the ZoomBitmapWindow in 
INCREMENT mode, with value set to 0.



You have left and right mouse access to a bitmap window with the SetBMWMouse and SetBMWRightMouse commands, which 
are very similar in operation to the SetMouse commands for the PiXCL client area.

A maximum of eight bitmap windows can be defined. PiXCL keeps track of any available window entries, so it is possible to 
delete one window and add another. If eight windows are already defined, no additional bitmap windows will be created. If the 
bitmap window has a titlebar enabled, the window can be closed by clicking the close button, which frees the relevent bitmap 
record for further use.

Related Commands: 
BMWinTitle    ChangeBmwImage      CloseBitmapWindow    FlashBMWindow    GetBMWZoom    SetBMWMouse 
SetBMWRightMouse TileBitmapWindows      ZoomBitmapWindow    



DrawCaption

Any window caption and its icon can be drawn in the client area,even if the window is not visible. The background of the 
rectangle is the same as the current title bar background system color. The DrawCaption command is used to draw application 
buttons similar to those in the Windows task bar.

Syntax: DrawCaption(WindowName$,x1,y1,x2,y2,
(NO)ICON, COLOR|SMALLCAP,
(NO)INBUTTON, Result)

 
Parameters:

WindowName$ The exact Title string. The EnumWindows command is useful to get windownames. If you 
use a null string " " the PiXCL application window text and icon is drawn.

x1,y1,x2,y2 The client area co-ordinates of the rectangle in which the information is to be drawn.

NOICON | ICON Token that displays or hides the default icon for the chosen window.

COLOR Use system colors for background and text.
SMALLCAP Use gray background and white text.

 (NO)INBUTTON Set a light gray or dark gray background to the specified drawing rectangle.

Result Zero if the target window cannot be located, otherwise 1.

Remarks:
If the window title text is longer that the defined rectangle, the text is truncated, the same as in the Windows task bar.

Related Commands:
EnumWindows 



DrawChord

Draws a chord--a region bounded by the intersection of a line and an ellipse. To draw a chord, you use the points (x1,y1) and 
(x2,y2) to define a rectangle that bounds the ellipse that is part of the chord. You then specify the line that intersects the ellipse 
using the points (x3,y3) and (x4,y4). The command draws the chord's border using the current pen and fills its interior using the 
current brush. 

Syntax: DrawChord(x1,y1,x2,y2,x3,y3,x4,y4)

Parameters:
x1,y1 The upper-left corner of the rectangle bounding the ellipse that is part of the chord.

x2,y2 The lower-right corner of the rectangle bounding the ellipse that is part of the chord.

x3,y3 A point on the line that intersects the ellipse.
 
x4,y4 A second point on the line that intersects the ellipse. 

Remark:

The points (x3,y3) and (x4,y4) do not have to lie precisely on the ellipse. If they do not, however, the GDI uses points on the 
ellipse that are the shortest distance from (x3,y3) and (x4,y4).

Examples:

This example draws a chord by using the points (40,30) and (210,190) to define the rectangle that bounds the ellipse that is part 
of the chord. The points used for the line that intersects the ellipse are (210,30) and (40,30). The chord is drawn with the default 
black pen and a solid aqua brush.

UseCoordinates(PIXEL)
UseBrush(SOLID,0,255,255)
DrawChord(40,30,210,190,210,30,40,30)
WaitInput()

This next example is a variation of one shown for the DrawArc command. It draws a chord by prompting you to click on the four 
points needed to define a chord. The first point is the upper-left corner of the rectangle bounding the ellipse that is part of the 
chord; the second is the lower-right corner of that same rectangle; the third is a point on the line bounding the chord; and the 
fourth is another point on that same line. After you've clicked on all four points, the program draws the chord using the 
DrawChord command, then loops back up for you to specify another chord.

{Set up the environment}
   SetWindow(MAXIMIZE)
   UseCoordinates(PIXEL)
   UseFont("Terminal",10,10,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0) 
Chord1:
   UsePen(DOT,1,0,0,0)      {Use dotted pen for temporary ellipse}
   UseBrush(NULL,0,0,0)     {Use hollow brush for temporary ellipse}
   SetMouse(0,0,65000,65000,Chord2,x1,y1)
   Text1$ =
     "Click on upper-left corner of rectangle bounding chord "
   DrawText(10,300,Text1$)
   Goto Get_Input
Chord2:
   SetMouse(0,0,65000,65000,Chord3,x2,y2)
   Text2$ =
     "Click on lower-right corner of rectangle bounding chord"
   DrawText(10,300,Text2$)



   Goto Get_Input
Chord3:
   DrawEllipse(x1,y1,x2,y2)   {Draw temporary ellipse}
   SetMouse(0,0,65000,65000,Chord4,x3,y3)
   Text3$ = "Click on one point of line defining chord"
   Len(Text2$,Length2)
   Len(Text3$,Length3)
   Difference = Length2 - Length3
   Pad(Text3$,Difference)            {Pad text with spaces}
   DrawText(10,300,Text3$)
   Goto Get_Input
Chord4:
   SetMouse(0,0,65000,65000,Chord_End,x4,y4)
   Text4$ = "Click on second point of line defining chord"
   Len(Text4$,Length4)
   Difference = Length2 - Length4
   Pad(Text4$,Difference)            {Pad text with spaces}
   DrawText(10,300,Text4$)
   Goto Get_Input

Chord_End:
   DrawBackground               {Clear the temporary ellipse}
   UsePen(SOLID,1,0,0,0)        {Use a solid black pen}
   UseBrush(SOLID,255,0,0)      {Use a solid red brush}
   DrawChord(x1,y1,x2,y2,x3,y3,x4,y4)
   Goto Chord1

Get_Input:
   WaitInput()

Related Commands:

UseBrush, UsePen



DrawCircle

Draws a circle. To specify the circle, you use the centre point (x1,y1) the radius. The command uses the current pen to draw the 
border and the current brush to fill the interior.

Syntax: DrawCircle(x1,y1, radius)

Parameters:
x1,y1 The centre point of the circle.

radius The radius of the circle.

Related Commands:
DrawEllipse 



DrawEdgeRectangle

The DrawEdgeRectangle function draws one or more edges of a rectangle, in the current system background color, which is 
usually set to light gray (192, 192, 192). DrawEdgeRectangle is useful to create status bars and 3D buttons with multiple states. 
It is also possible to add one of the icons built into PiXCL as button Bitmap, using the DrawIcon command.

Syntax: DrawEdgeRectangle(x1,y1,x2,y2,TOKEN#1,TOKEN#2,TOKEN#3)

Parameters:
x1,y1,x2,y2 The client area co-ordinates of the rectangle to be drawn.

TOKEN#1
Specifies the type of inner and outer edge to draw. 
    
Value Meaning

BUMPEDGE A two pixel wide 3D effect like a raised line
ETCHEDEDGE A two pixel wide 3D effect like a scored or etched line.
RAISEDEDGE A 3D effect that makes the rectangle appear raised one pixel.
SUNKENEDGE A 3D effect that makes the rectangle appear sunken one pixel.

TOKEN#2

Token #2 and token #3 specify the type of border for the rectangle, and are combined when the command is executed.
    
Value Meaning

ADJUST Rectangle to be adjusted to leave space for client area.
BOTTOM Bottom of border rectangle.
BOTTOMLEFT Bottom and left side of border rectangle.
BOTTOMRIGHT Bottom and right side of border rectangle.
DIAGONAL Diagonal border. 
DIAG_ENDBTMLEFT Diagonal border. The end point is the bottom-left    corner of the rectangle; the origin is 

top-right corner.

DIAG_ENDBTMRIGHT Diagonal border. The end point is the bottom-right corner of the rectangle; the origin is 
top-left corner. 

DIAG_ENDTOPLEFT Diagonal border. The end point is the top-left corner of the rectangle; the origin is 
bottom-right corner. 

DIAG_ENDTOPRIGHT Diagonal border. The end point is the top-right corner of    the rectangle; the origin is 
bottom-left corner.

TOKEN#3
Value Meaning
 
LEFT Left side of border rectangle.
MIDDLE Interior of rectangle to be filled.
RECT Entire border rectangle.
RIGHT Right side of border rectangle.
TOP Top of border rectangle.
TOPLEFT Top and left side of border rectangle.
TOPRIGHT Top and right side of border rectangle.

Related Commands:



DrawRectangle, DrawStatusText , all the SetMouse commands, Button



DrawEllipse

Draws an ellipse (or circle). To specify the ellipse, you use the points (x1,y1) and (x2,y2) to define a rectangle that bounds the 
ellipse. The command uses the current pen to draw the border and the current brush to fill the interior.

Syntax: DrawEllipse(x1,y1,x2,y2)

Parameters:
x1,y1 The upper-left corner of the rectangle bounding the ellipse.

x2,y2 The lower-right corner of the rectangle bounding the ellipse.

Examples:

The following example draws an ellipse that is bounded by the rectangle specified by the points (20,30) and (80,60). The ellipse 
is drawn using a solid black pen (the default) and a solid yellow brush.

UseBrush(SOLID,255,255,0)
DrawEllipse(20,30,80,60)
WaitInput()

This second example prompts you to click on the points of the rectangle bounding an ellipse. It then draws the ellipse using the 
default pen and a solid green brush.

{Set up the environment}
   SetWindow(MAXIMIZE)
   UseCoordinates(PIXEL)
   UseFont("Terminal",10,10,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
   UseBrush(SOLID,0,255,0)   {Use a solid green brush}
   GetScreenCaps(HORZRES,MaxX)
   GetScreenCaps(VERTRES,MaxY)

Ellipse1:
   SetMouse(0,0,MaxX,MaxY,Ellipse2,x1,y1)
   DrawText(10,300,
    "Click on upper-left corner of rectangle bounding ellipse ")
   Goto Get_Input
Ellipse2:
   SetMouse(0,0,MaxX,MaxY,Ellipse3,x2,y2)
   DrawText(10,300,
    "Click on lower-right corner of rectangle bounding ellipse")
   Goto Get_Input
Ellipse3:
   DrawEllipse(x1,y1,x2,y2)
   Goto Ellipse1

Get_Input:
   WaitInput()

Related Commands:
DrawCircle UseBrush, UsePen



DrawFlood

Fills in any enclosed shape or area using the current brush. It begins at the point specified by the x and y parameters and fills in 
all directions until it reaches the color boundary specified by the r, g, b parameters. 

Syntax: DrawFlood(x,y,r,g,b) 

Parameters:
x The x-coordinate of a point inside the area you want to fill.

y The y-coordinate of a point inside the area you want to fill.

r,g,b Specifies the color of the boundary up to which PiXCL is to fill.

Example:

This example draws a series of shapes on the screen using a blue pen and a hollow brush. It then sets the brush to solid red and
asks you to click within an area to flood it with red. When you click on an area, the program branches to Flood_Mouse, where the
DrawFlood command fills in the selected area using the current brush. (Notice that the r,g,b parameters are 0,0,255, causing the 
command to fill an area until it encounters a blue border.) The program stays in a loop, allowing you to flood as many areas as 
you like. 

{Set up the mouse, pen, and brush}
     SetWindow(MAXIMIZE)
     SetMouse(0,0,700,600,Flood_Mouse,Flood_x,Flood_y)
     UsePen(SOLID,3,0,0,255) {Use a 3 pixel wide blue pen}
     UseBrush(NULL,0,0,0)    {Use hollow brush for random shapes}

{Fill the window with random shapes}
     DrawRectangle(5,15,200,150)
     DrawRectangle(55,31,82,50)
     DrawRectangle(105,41,120,140)
     DrawRectangle(50,50,100,150)
     DrawRectangle(105,50,120,133)
     DrawRectangle(5,120,180,125)
     DrawEllipse(30,30,140,140)
     DrawEllipse(10,30,150,100)
     DrawEllipse(25,15,50,100)
     DrawEllipse(33,51,123,143)

     DrawText(5,3,"Click within an area to flood it with red")
     UseBrush(SOLID,255,0,0)    {Use a red brush for flooding}
     UseCoordinates(PIXEL)      {More accurate than metric}

Flood_Wait:
     WaitInput()

Flood_Mouse:
     DrawFlood(Flood_x,Flood_y,0,0,255) {Flood till it meets blue}
     Goto Flood_Wait

Related Commands:

DrawFloodExt, UseBrush, UseBrushPattern 



DrawFloodExt

This command is similar to DrawFlood except that it offers an option to continue filling outward in all directions as long as r,g,b is 
encountered.

Syntax: DrawFloodExt(x,y,r,g,b,BORDER/SURFACE)

Parameters:
x The x-coordinate of a point inside the area you want to fill.

y The y-coordinate of a point inside the area you want to fill.

r,g,b When used with BORDER, specifies the color of the boundary up to which PiXCL is to 
fill. When used with SURFACE, specifies the color that must be encountered for 
PiXCL to continue filling.

BORDER Causes PiXCL to fill until the border specifed by the r,g,b arguments is reached. Using 
this setting makes DrawFloodExt identical to DrawFlood.

SURFACE Causes PiXCL to continue filling outward in all directions as long as r,g,b is 
encountered.

Example:

The following program draws an ellipse within a rectangle using a green brush and a black pen. If you then click on one of the 
green areas generated by these shapes, PiXCL uses the DrawFloodExt with the SURFACE parameter to change the color of the
chosen area to blue.

{Set up environment}
     UseCoordinates(PIXEL)  {Coordinate system to pixels}
     r=0
     g=255
     b=0
     UseBrush(SOLID,r,g,b)  {Green brush}
     UsePen(SOLID,1,0,0,0)  {Black pen}

{Draw ellipse within rectangle}
     DrawRectangle(1,1,300,200)
     DrawEllipse(1,1,300,200)

     DrawText(10,215,
              "Click on a green area to change it blue")

{Get mouse point}
     SetMouse(0,0,3000,3000,MouseHit,x,y)

Wait_for_Input:
     WaitInput()

MouseHit:
     UseBrush(SOLID,0,0,255)   {Blue brush}
     DrawFloodExt(x,y,r,g,b,SURFACE)  {Fill until not green}
     Goto Wait_for_Input

Related Commands
 
DrawFlood, UseBrush, UseBrushPattern





DrawFocusRectangle

Draws a rectangle using a black dotted line in the style that indicates the focus is in the defined rectangle. You specify the upper-
left corner of the rectangle using (x1,y1) and the lower-right corner using (x2,y2). 

Syntax: DrawFocusRectangle(x1,y1,x2,y2)

Parameters:
x1,y1 The upper-left corner of the rectangle.

x2,y2 The lower-right corner of the rectangle.

Remarks:

The DrawFocusRectangle command toggles, that is, if the same coordinates are issued, the focus rectangle previously drawn at 
those coordinates is deleted. If a different rectangle is specified, an additional rectangle is redrawn. If your program needs to 
move the focus rectangle around, you should delete the first rectangle before drawing the next.

Examples:

The following example draws a rectangle whose upper-left corner is located at (10,10) and lower-right corner is at (200,100), 
waits then turns the focus rectangle off.

UseCoordinates(PIXEL)
DrawDocusRectangle(10,10,200,100)
WaitInput(800)
DrawDocusRectangle(10,10,200,100)

Related Commands:

UsePen, UseBrush, SetMouse commands



DrawFpNumber

Syntax: DrawFpNumber(x,y,Number&,Digits)

Parameters:
x Specifies the x-coordinate of the starting point of the real.

y Specifies the y-coordinate of the starting point of the real.

Number& The real or the value of the real variable you want to display.

Digits The number of decimal place digits to draw.

Examples:

This example displays the number -2482.2887 starting 20 pixels to the right and 10 pixels below the upper-left corner of the 
window.

Number& = -2482.2887
DrawFpNumber(20,10,Number&,5)
WaitInput()

Related Commands:
DrawNumber 



DrawFrameControl

FrameControls are the little bitmaps that are used to create controls in a window frame such as title bar buttons, scrollbar 
buttons, grips, as well as radio buttons and push buttons. The DrawFrameControl function draws a frame control of the specified 
type and style, within the specified drawing rectangle.    

 

How can the controls be used ?    

Draw the frame control in the desired location and use any of the five SetMouse commands. A SetMouse handler can redraw the 
control to indicate that the control has been pushed or activated, and you construct your program to process accordingly.

Syntax: DrawFrameControl(x1,y1,x2,y2,TYPE_token,
STATE_token ,Result)

    
Parameters:
x1,y1,x2,y2 The client area coordinates of the bounding rectangle for the frame control. This means that the control 

can be drawn any size you want. The same co-ordinates should be used for an accompanying SetMouse
command.

TYPE_token Specifies the type of frame control to draw. This parameter can be one of the following values:

Value Meaning
BUTTON3STATE Three-state button
BUTTONCHECK Check box 
BUTTONPUSH Push button
BUTTONRADIO Radio button

CAPTIONCLOSE Close button
CAPTIONHELP Windows 95 only: Help button
CAPTIONMAX Maximize button
CAPTIONMIN Minimize button
CAPTIONRESTORE Restore button

MENUARROW Submenu arrow
MENUBULLET Bullet mark
MENUCHECK Check mark

SCROLLCOMBOBOX Combo box scroll bar
SCROLLDOWN Down arrow of scroll bar



SCROLLLEFT Left arrow of scroll bar
SCROLLRIGHT Right arrow of scroll bar
SCROLLSIZEGRIP Size grip in bottom-right corner of window
SCROLLUP Up arrow of scroll bar

STATE_token Use this to change the visible state of the control

Value Meaning
CHECKED Control is checked.
FLAT Control has a flat border.
INACTIVE Control is inactive (grayed, the initial state).
MONO Control has a monochrome border.
PUSHED Control is pushed.

Result Zero if failed, 1 of succeeded.



DrawGrid

Use this command when you want to draw a standard sized rectangular grid anywhere in the PiXCL client area, for example, 
when preparing to draw a graph.

Syntax: DrawGrid(x1,y1,x2,y2,Hcellsize,Vcellsize, r,g,b, NONE | STYLE_1 | STYLE_2)

Parameters:
x1,y1,x2,y2 The rectangle in which the grid is to be drawn.
Hcellsize,Vcellsize The horizontal and vertical grid cell size.
r,g,b, The color of the pen that is used.

NONE No border is drawn around the grid area.
STYLE_1 A one pixel wide border is drawn around the grid.
STYLE_2 A double line border is drawn around the grid.

Remarks:
Setting the pen color does not set the current pen value, which happens with the UsePen command. If a STYLE_1 or STYLE_2 
border is specified, the rectangle drawn will use the current brush. If you need just the grid, insert a UseBrush(NULL,r,g,b) 
command before the DrawGrid command, as seen below.

Example:
This code fragment gets the current client area coordinates and draws two overlapping grids.
DrawingGrids:

DrawBackground
WinGetClientRect("",cx1,cy1,cx2,cy2)
UseBrush(NULL,0,0,0)
DrawGrid(cx1,cy1,cx2,cy2, 22, 22, 255,255,255, NONE)
UseBrush(SOLID,255,255,255)
DrawGrid(100,100, 400, 300, 50,50, 128,0,0, STYLE_2)
Goto Wait_for_Input

The visual effect of the above code could be duplicated with a For loop, and a series of DrawLine commands, but since this is 
interpreted code, it would be noticably slower.

Related Commands:
DrawLine , UseBackground , DrawBackground , UseBrush , UsePen 



DrawIcon

Draw one of eighteen default PiXCL icons, or one of six system icons at the specified position in the client area, at default or user
specified size.

Syntax: DrawIcon(Xpos,Ypos,Xsize,Ysize,TOKEN)

Parameters:
Xpos, Ypos The top left corner pixel co-ordinates in the client area where the icon will be drawn.

Xsize, Ysize The size in pixels in which the icon will be drawn. If either of these values are 0, the 
icon is drawn at the default size of 32x32. The Xsize, Ysize    values do not have to be 
the same. 

TOKEN This is the upper-case string that defines the icon to be drawn. The twenty-four    icons 
embedded in PiXCL are ICON01 - ICON19, PXLHISTOGRAM and PXLTOOLBAR, 
SCANNER, DIGICAM and SCANCAM.

The system icon TOKENS supported are the same as those available in the MessageBox(...) command: 
INFORMATION, EXCLAMATION, QUESTION, STOP, APP and WINLOGO.

Remarks:

 
The built-in and system messagebox icons.

It is possible to modify the 
set of icons in PiXCL and 
using the DrawIcon 
command, produce an 
animated icon set.    Use an 
icon management tools to 
create and insert your own 
icons into either your runtime
applications or into the 
PiXCL interpreter. 

The icons above are numbered Left to Right, Top to Bottom.

The built-in icons, ICON01 - ICON19, PXLHISTOGRAM, PXLTOOLBAR, SCANNER, DIGICAM and SCANCAM are also 
available to be used in the MessageBox command.

Example:

Here is some sample code that draws the standard icons, then draws them again.

Draw_Icon:
DrawIcon(10,10,0,0,ICON01)
DrawIcon(50,10,0,0,ICON02)
DrawIcon(90,10,0,0,QUESTION)
DrawIcon(130,10,0,0,EXCLAMATION)
DrawIcon(170,10,0,0,ASTERISK)
DrawIcon(210,10,0,0,STOP)



DrawIcon(10,50,48,48,ICON01)
DrawIcon(60,50,48,48,ICON02)
DrawIcon(110,50,48,48,QUESTION)
DrawIcon(160,50,48,48,EXCLAMATION)
DrawIcon(210,50,48,48,ASTERISK)
DrawIcon(260,50,48,48,STOP)

Goto Wait_for_Input

Related Command:
DrawBitMap, DrawSizedBitmap, MessageBox 



DrawIconFile

This command provides a means to read icons and cursor files from the disk and display them in the client area. The command 
also supports OPAQUE and TRANSPARENT modes. This is supposed to provide for transparency in icons and cursors. If you 
need to draw a bitmap with a transparency color, use the DrawTrBitmap command.

Syntax: DrawIconFile(x,y,x_size,y_size,Filename$,TOKEN1,TOKEN2)

Parameters:
Xpos, Ypos The top left corner pixel co-ordinates in the client area where the icon, cursor or 

bitmap will be drawn.

Xsize, Ysize The size in pixels in which the icon will be drawn. If either of these values are 0, the 
icon or cursor is drawn at the default size of 32x32. The Xsize, Ysize values do not 
have to be the same. 

Filename$ The full path and name of the file on disk.

TOKEN1 ICON, CURSOR or BITMAP

TOKEN2 TRANSPARENT or OPAQUE.

Example:

DrawIconFile(60,10,0,0,IconFile$,ICON,TRANSPARENT)
DrawIconFile(110,10,0,0,CursorFile$,CURSOR,TRANSPARENT)
DrawIconFile(10,60,0,0,Bitmap$,BITMAP,TRANSPARENT)

Related Commands:
DrawIcon    DrawTrBitmap 



DrawLine

Draws a line using the current pen. The line begins at the point specified by (x1,y1) and extends up to, but does not include, the 
point specified by (x2,y2). 

Syntax: DrawLine(x1,y1,x2,y2)

Parameters:
x1,y1 The coordinates of the first point on the line. 

x2,y2 The coordinates of the ending point on the line. 

Example:

This program draws a series of five lines, each one using a different pen width.

UsePen(SOLID,1,0,0,0)
DrawLine(10,10,40,10)

UsePen(SOLID,2,0,0,0)
DrawLine(10,15,40,15)

UsePen(SOLID,3,0,0,0)
DrawLine(10,20,40,20)

UsePen(SOLID,4,0,0,0)
DrawLine(10,25,40,25)

UsePen(SOLID,5,0,0,0)
DrawLine(10,30,40,30)

WaitInput()

See the UsePen command for another example of DrawLine. 

Related Command:

UsePen



DrawNumber

Displays an integer, Number, using the current font. The starting position of the integer is given by the x and y parameters.

Syntax: DrawNumber(x,y,Number)

Parameters:
x Specifies the x-coordinate of the starting point of the integer.

y Specifies the y-coordinate of the starting point of the integer.

Number The integer or the value of the integer variable you want to display.

Examples:

This example displays the number -2482000 starting 20 pixels to the right and 10 pixels below the upper-left corner of the 
window.

Number = -2482000
DrawNumber(20,10,Number)
WaitInput()

This next example reads a mouse click and uses the DrawNumber command to display the coordinates of where the mouse 
pointer was when the click took place. 

{Get screen capacity in millimeters}
     GetScreenCaps(HORZSIZE,Horz)
     GetScreenCaps(VERTSIZE,Vert)

{Set mouse hit-testing area and where to branch on click}
     SetMouse(0,0,Horz,Vert,Draw_Coord,Mouse_x,Mouse_y)
     DrawText(5,5,"Click the mouse anywhere in the window")

Wait_Mouse:
     WaitInput()

{Draw the x coordinate}
Draw_Coord:
     DrawNumber(Mouse_x,Mouse_y,Mouse_x)

{Increase the x coordinate by 4 millimeters for each digit in Mouse_x}
     If Mouse_x>=100 Then x=Mouse_x+12 | Goto Draw_Comma {3 digits}
     If Mouse_x>=10  Then x=Mouse_x+8  | Goto Draw_Comma {2 digits}
     {Else}               x=Mouse_x+4                {1 digit only}

{Draw the comma}
Draw_Comma:
     DrawText(x,Mouse_y,",")
{Increase x by 2 and draw the y coordinate}
     x=x+2
     DrawNumber(x,Mouse_y,Mouse_y)
     Goto Wait_Mouse

Related Command:



DrawShadowNumber    UseFont



DrawNumber64

PiXCL 5.1 command.    Displays a 64-bit integer, Number64, using the current font. The starting position of the integer is given 
by the x and y parameters.

Syntax: DrawNumber64(x,y,Number64#)

Parameters:
x Specifies the x-coordinate of the starting point of the integer.

y Specifies the y-coordinate of the starting point of the integer.

Number64# The 64-bit integer variable you want to display. This may have been obtained 
from the FileGetSize64 command.

Related Command:

FileGetSize64      Str64      Val64 



DrawOutlineNumber

PiXCL 5 command. This command extends the DrawNumber command to draw a number string outlined using the currently 
defined pen, and filled with the current brush or pattern.

Syntax: DrawOutlineNumber(x,y,Number)

Parameters:
x The x-coordinate of the starting point of the number string. 

y The y-coordinate of the starting point of the number string. 

Number The number string to be drawn. 

Related Command:
DrawNumber    DrawOutlineText    UsePen    UseBrush    UseBrushPattern 



DrawOutlineText

PiXCL 5 command. This command extends the DrawText command to draw a text string outlined using the currently defined 
pen, and filled with the current brush or pattern.

Syntax: DrawOutlineText(x,y,Text$)

Parameters:
x The x-coordinate of the starting point of the string. 

y The y-coordinate of the starting point of the string. 

Text$ The character string to be drawn. 

Related Command:
DrawText    DrawOutlineNumber UseBrush    UseBrushPattern



DrawPie

Draws a pie wedge using the current pen and filled with the current brush color and pattern. A pie wedge consists of an arc 
whose center and end points are connected by lines. To draw the arc, you use the points (x1,y1) and (x2,y2) to define a 
rectangle that bounds the ellipse containing the arc, as shown in the figure below. You then use the parameters (x3,y3) and 
(x4,y4) to specify the starting and ending points of the arc. Note that when the GDI sweeps the arc, it begins at (x3,y3) and 
moves in a counterclockwise direction toward (x4,y4). 

 
DrawPie coordinates

Syntax: DrawPie(x1,y1,x2,y2,x3,y3,x4,y4)

Parameters:
x1,y1 The upper-left corner of the rectangle bounding the ellipse containing the arc.

x2,y2 The lower-right corner of the rectangle bounding the ellipse containing the arc.

x3,y3 The starting point of the arc. This point does not have to lie on the arc.

x4,y4 The ending point of the arc. This point does not have to lie on the arc.

Remark:

The points (x3,y3) and (x4,y4) do not have to lie precisely on the ellipse. If they do not, however, the GDI uses points on the 
ellipse that are the shortest distance from (x3,y3) and (x4,y4).

Examples:

This example draws a pie wedge using the default black pen to draw the border and an aqua brush to fill the interior. The pie 
wedge is bounded by the rectangle specified by the points (110,30) and (160,80). The pie's arc starts at the point (160,30) and 
ends at the point (160,80).

UseBrush(SOLID,0,255,255)
UseCoordinates(PIXEL)
DrawPie(110,30,160,80,160,30,160,80)
WaitInput()

This next script draws a pie wedge based on your mouse clicks. The first two clicks define the rectangle bounding the arc, and 
the second two define the lines connecting the points of the arc with its center.

{Set up the environment}
   SetWindow(MAXIMIZE)
   UseCoordinates(PIXEL)
   UseFont("Terminal",10,10,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
   GetScreenCaps(HORZRES,MaxX)
   GetScreenCaps(VERTRES,MaxY)

Pie1:



   UsePen(DOT,1,0,0,0)      {Dotted pen for temporary ellipse}
   UseBrush(NULL,0,0,0)     {Hollow brush for temporary ellipse}
   SetMouse(0,0,MaxX,MaxY,Pie2,x1,y1)
   Text1$ =
     "Click on upper left corner of rectangle bounding pie "
   TextPos = MaxY - 100
   DrawText(10,TextPos,Text1$)
   Goto Get_Input
Pie2:
   SetMouse(0,0,MaxX,MaxY,Pie3,x2,y2)
   Text2$ =
     "Click on lower right corner of rectangle bounding pie"
   DrawText(10,TextPos,Text2$)
   Goto Get_Input
Pie3:
   DrawEllipse(x1,y1,x2,y2)
   SetMouse(0,0,MaxX,MaxY,Pie4,x3,y3)
   Text3$ = "Click on one end of arc defining pie"
   Len(Text2$,Length2)
   Len(Text3$,Length3)
   Difference = Length2 - Length3
   Pad(Text3$,Difference)            {Pad text with spaces}
   DrawText(10,TextPos,Text3$)
   Goto Get_Input
Pie4:
   SetMouse(0,0,MaxX,MaxY,Pie_End,x4,y4)
   Text4$ = "Click on other end of arc defining pie"
   Len(Text4$,Length4)
   Difference = Length2 - Length4
   Pad(Text4$,Difference){Pad text with spaces}
   DrawText(10,TextPos,Text4$)
   Goto Get_Input

Pie_End:
   DrawBackground
   UsePen(SOLID,1,0,0,0)
   UseBrush(SOLID,255,0,0)
   DrawPie(x1,y1,x2,y2,x3,y3,x4,y4)
   Goto Pie1

Get_Input:
   WaitInput()

Related Commands:

UsePen, UseBrush



DrawPoint

PiXCL 4.12 and later provides preset point icons that are useful when plotting graphs. The current pen is used to draw the point 
style. Available point styles are shown in the image below.

 

Syntax: DrawPoint(x,y,STYLE_token)

Parameters:
x,y The desired point coordinates. This may be the return values from a SetMouse command.
CROSS an X, as shown above.
PLUS a + , as shown above.
CIRCLE a circle with a center dot, as shown above. The current brush affects the fill color.
BOX a box with a center dot, as shown above. The current brush affects the fill color.
DIAMOND a diamond with a center dot, as shown above.
DOT a 3x3 dot, as shown above.

Related Commands:
UseBrush    UsePen 



DrawPolyCurve, DrawPolyLine

DrawPolyCurve and DrawPolyLine are variable argument length functions. DrawPolyCurve draws cubic Bézier curves by using 
the endpoints and control points specified in the argument list. The first curve is drawn from the first point to the fourth point by 
using the second and third points as control points. Each subsequent curve in the sequence needs exactly three more points: the
ending point of the previous curve is used as the starting point, the next two points in the sequence are control points, and the 
third is the ending point.    A cubic Bezier curve does not link the points, but calculates and draws the best fit curve.

DrawPolyLine draws connecting lines between the endpoints and control points specified in the argument list.    The figure below 
shows the difference between DrawPolyLine (in green) and DrawPolyCurve (in red) using the same points. Note that the points 
(“+”), shown for clarity only, are offset because the actual draw points are the top left corner of the character cell.

 

Both these functions draw lines by using the current pen.

Syntax: DrawPolyCurve(x1,y1,x2,y2,x3,y3,x4,y4,…)

x1,y1,x2,y2,x3,y3,x4,y4 The first four points that define the Bezier curve. You can specifiy up to 32 coordinate pairs.

Syntax: DrawPolyLine(x1,y1,x2,y2,…)

x1,y1,x2,y2,… The first points that define the polyline. You can specifiy up to 32 coordinate pairs.

Remarks:

For DrawPolyCurve the number of points specified must be a multiple of three, plus one (the starting point) or a syntax error will 
occur. Points can be read in from a file or acquired from the client area using one of the SetMouse commands.
For DrawPolyLine the minimum number of points is two.
 
Related Commands:

DrawLine , DrawPolygon , DrawTriangle , SetMouse 



DrawPolygon

Convex and concave polygons with up to 32 vertices can be drawn with the current pen and current brush.    DrawPolygon is a 
variable argument list command, so you need to include the list of required vertices only. The polygon is drawn in the order that 
the vertices are specified. The sample image below shows replicated polygons. See sample program boxes.pxl for more 
information. The maple leaf polygon (see image below) in the boxes.pxl example has 19 vertices.

 

Syntax: DrawPolygon(x1,y1,x2,y2,x3,y3, . . . . ,x32,y32)

Parameters:
x1,y1 The first vertex of the polygon.

x2,y2 The second vertex of the polygon.

X32,y32 The thirtysecond vertex of the polygon.

Related Commands:

DrawTriangle, DrawRectangle, UsePen, UseBrush



DrawPolygonExt

PiXCL 5 command. Convex and concave polygons with up to 65,536 vertices can be drawn with the current pen and current 
brush. The polygon is drawn in the order that the vertices are specified. The sample image below shows replicated polygons. 
See sample program boxes.pxl for more information. The maple leaf polygon (see image below) in the boxes.pxl example has 
19 vertices.

 

Syntax: DrawPolygonExt(NumberOfVertices, IntegerArrayVariable[0],Result)

Parameters:
NumberOfVertices The number of vertices in the polygon.

IntegerArrayVariable[0] An array of points starting at element 0, in order x0,y0,x1,y1,x2,y2,…The array must have at 
least NumberOfVertices    times 2 elements or the command will have no effect.

Result 1 if the operation was successful, otherwise 0. 

Related Commands:

DrawTriangle, DrawRectangle, UsePen, UseBrush



DrawRectangle

Draws a rectangle using the current pen and fills its interior using the current brush. You specify the upper-left corner of the 
rectangle using (x1,y1) and the lower-right corner using (x2,y2),.

Syntax: DrawRectangle(x1,y1,x2,y2)

Parameters:
x1,y1 The upper-left corner of the rectangle.

x2,y2 The lower-right corner of the rectangle.

Examples:

The following example draws a rectangle whose upper-left corner is located at (10,10) and lower-right corner is at (200,100). It 
uses a black pen that is three pixels wide and fills the interior using an orange brush.

UsePen(SOLID,3,0,0,0)
UseBrush(SOLID,255,128,0)
UseCoordinates(PIXEL)
DrawRectangle(10,10,200,100)
WaitInput()

This next example draws a rectangle based on two mouse clicks. The first mouse click defines the upper-left corner of the 
rectangle and the second one defines the lower-right. The rectangle is filled using a light cream-colored brush.

{Set up the environment}
   SetWindow(MAXIMIZE)
   UseCoordinates(PIXEL)
   UsePen(SOLID,3,0,0,0)
   UseBrush(SOLID,255,255,230)

UseFont("Terminal",10,10,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
   GetScreenCaps(HORZRES,MaxX)
   GetScreenCaps(VERTRES,MaxY)

Rect1:
   SetMouse(0,0,MaxX,MaxY,Rect2,x1,y1)
   TextPos = MaxY - 100
   DrawText(10,TextPos,
     "Click on upper left corner of the rectangle ")
   Goto Get_Input
Rect2:
   SetMouse(0,0,MaxX,MaxY,Rect3,x2,y2)
   DrawText(10,TextPos,
     "Click on lower right corner of the rectangle")
   Goto Get_Input
Rect3:
   DrawRectangle(x1,y1,x2,y2)
   Goto Rect1

Get_Input:
   WaitInput()

Related Commands:

UsePen, UseBrush





DrawRoundRectangle

Draws a rectangle with rounded corners. The border of the rectangle is drawn using the current pen and the interior is filled using
the current brush. You specify the upper-left corner of the rectangle using (x1,y1) and the lower-right corner using (x2,y2) as 
shown in the figure below. You control the width and height of the ellipse used to draw the rounded corners using x3 and y3.

 
DrawRoundRectangle coordinates

Syntax: DrawRoundRectangle(x1,y1,x2,y2,x3,y3)

Parameters:
x1,y1 The upper-left corner of the rectangle.

x2,y2 The lower-right corner of the rectangle.

x3 The width of the ellipse used to draw the rounded corners. 

y3 The height of the ellipse used to draw the rounded corners. 

Example:

The following example draws a rounded rectangle whose upper-left corner is located at (20,30) and lower-right corner is at 
(300,200). The height and width of the ellipse used to draw the rectangle's rounded corners are both 30 pixels. A black pen two 
pixels wide is used to draw the rectangle's outer shape, and the interior is filled using a green brush.

UsePen(SOLID,2,0,0,0)
UseBrush(SOLID,0,255,0)
UseCoordinates(PIXEL)
DrawRoundRectangle(20,30,300,200,30,30)
WaitInput()

Related Commands:

UsePen, UseBrush



DrawShadeRectangle

Draws a rectangle with a color gradient. Gradients are useful in drawing backgrounds.

Syntax: DrawShadeRectangle(x1,y1,x2,y2,r1,g1,b1,r2,g2,b2,TOPBOTTOM | BOTTOMTOP)

Parameters:
x1,y1 The upper-left corner of the rectangle.

x2,y2 The lower-right corner of the rectangle.

r1,g1,b1 The RGB color that the color gradient starts the draw process. 

r2,g2,b2 The RGB color that the color gradient ends the draw process. 

TOPBOTTOM | BOTTOMTOP
The direction in which the color gradient is generated.

Remarks:
This command takes the input co-ordinates and calculates the RGB color increments that will apply for each line in the rectangle,
and draws using a pen. The current pen style is not affected by the DrawShadeRectangle command.

Example:
The current PiXCL application client area is located and a black to blue gradient background is drawn, then a central region is 
inverted.

WinGetClientRect("",cx1,cy1,cx2,cy2)
DrawShadeRectangle(cx1,cy1,cx2,cy2, 0,0,0, 0,0,255, TOPBOTTOM)
cx1 = 100
cy1 = 100
cx2 -= 100
cy2 -= 100
InvertRectangle(cx1,cy1,cx2,cy2)

Related Commands:
GradientFillRect    InvertRectangle, WinGetClientRect 



DrawShadowFpNumber

It is often handy to draw numbers with a so-called drop shadow in another contrasting color. While this can be done by changing 
the font color with UseFont and using multiple DrawFpNumber commands, the DrawShadowFpNumber command merges this 
operation into one command.

Syntax: DrawShadowFpNumber(x,y,Number&,Digits,R,G,B,XY_Offset)

Parameters:
x The x-coordinate of the starting point of the number. 

y The y-coordinate of the starting point of the number. 

Number& The real number to be drawn. 

Digits The number of decimal place digits to draw.

R,G,B The font color to be used for the shadow number.

XY_Offset The +ive or -ive offset used for the shadow number

Remark:

By default, PiXCL uses the System font in black when drawing text. You can change the font with the UseFont command.

Example:

These two code fragments are functionally equivalent. First, using DrawFpNumber …

UseFont("Arial",11,23,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawFpNumber(11,31,AppNumber&,5)
UseFont("Arial",11,23,NOBOLD,NOITALIC,NOUNDERLINE,255,255,0)
DrawFpNumber(10,30,AppNumber&,5)

and now, using the DrawShadowFpNumber command …

UseFont("Arial",11,23,NOBOLD,NOITALIC,NOUNDERLINE,255,255,0)
DrawShadowFpNumber(10,30,AppNumber&,5,0,0,0,1)

Related Commands:

UseFont, UseBackground, DrawFpNumber ,    DrawShadowTextExt, DrawTextExt SetFontEscapement



DrawShadowNumber

It is often handy to draw numbers with a so-called drop shadow in another contrasting color. While this can be done by changing 
the font color with UseFont and using multiple DrawNumber commands, the DrawShadowNumber command merges this 
operation into one command.

Syntax: DrawShadowNumber(x,y,Number,R,G,B,XY_Offset)

Parameters:
x The x-coordinate of the starting point of the number. 

y The y-coordinate of the starting point of the number. 

Number The integer number to be drawn. 

R,G,B The font color to be used for the shadow number.

XY_Offset The +ive or -ive offset used for the shadow number

Remark:

By default, PiXCL uses the System font in black when drawing text. You can change the font with the UseFont command.

Example:

These two code fragments are functionally equivalent. First, using DrawNumber …

UseFont("Arial",11,23,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawNumber(11,31,AppNumber)
UseFont("Arial",11,23,NOBOLD,NOITALIC,NOUNDERLINE,255,255,0)
DrawNumber(10,30,AppNumber)

and now, using the DrawShadowNumber command …

UseFont("Arial",11,23,NOBOLD,NOITALIC,NOUNDERLINE,255,255,0)
DrawShadowNumber(10,30,AppNumber,0,0,0,1)

Related Commands:

UseFont, UseBackground, DrawNumber ,    DrawShadowTextExt, DrawTextExt SetFontEscapement



DrawShadowText

It is often handy to draw text with a so-called drop shadow in another contrasting color. While this can be done by changing the 
font color with UseFont and using multiple DrawText commands, the DrawShadowText command merges this operation into one 
command.

Syntax: DrawShadowText(x,y,Text$,R,G,B,XY_Offset)

Parameters:
x The x-coordinate of the starting point of the string. 

y The y-coordinate of the starting point of the string. 

Text$ The character string to be drawn. 

R,G,B The font color to be used for the shadow text.

XY_Offset The +ive or -ive offset used for the shadow text.

Remark:

By default, PiXCL uses the System font in black when drawing text. You can change the font with the UseFont command.

Example:
These two code fragments are functionally equivalent. First, using DrawText …

UseFont("Arial",11,23,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(11,31,"PiXCL 4.1 Graphics and Imaging")
UseFont("Arial",11,23,NOBOLD,NOITALIC,NOUNDERLINE,255,255,0)
DrawText(10,30,"PiXCL 4.1 Graphics and Imaging")

and now, using the DrawShadowText command …

UseFont("Arial",11,23,NOBOLD,NOITALIC,NOUNDERLINE,255,255,0)
DrawShadowText(10,30,"PiXCL 4.1 Graphics and Imaging",0,0,0,1)

Related Commands:

UseFont, UseBackground, DrawShadowTextExt, DrawTextExt SetFontEscapement



DrawShadowTextExt

It is often handy to draw text in a rectangular region with a so-called drop shadow in another contrasting color. While this can be 
done by changing the font color with UseFont and using multiple DrawTextExt commands, the DrawShadowTextExt command 
merges this operation into one command.

Syntax: DrawShadowTextExt(x1,y1,x2,y2,Text$, LEFT | CENTER | RIGHT,R,G,B,XY_Offset)

Parameters:
x1,y1 The top left corner of the starting rectangle of the string. 

x2,y2 The bottom right corner of the starting rectangle of the string. 

Text$ The character string to be drawn. 

LEFT | CENTER | RIGHT
These tokens dictate how the output text is drawn: Left justified, Centered in the 
rectangle, or right justified.

R,G,B The font color to be used for the shadow text.

XY_Offset The +ive or -ive offset used for the shadow text.

Remark:

By default, PiXCL uses the System font in black when drawing text. You can change the font with the UseFont command.

Example:

These two code fragments are functionally equivalent. First, using DrawTextExt …

UseFont("Arial",11,23,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawTextExt(11,31,121,61,"PiXCL 4.1 Graphics and Image Processing",LEFT)
UseFont("Arial",11,23,NOBOLD,NOITALIC,NOUNDERLINE,255,255,0)
DrawText(10,30,120,60,"PiXCL 4.1 Graphics and Image Processing",LEFT)

and now, using the DrawShadowTextExt command …

UseFont("Arial",11,23,NOBOLD,NOITALIC,NOUNDERLINE,255,255,0)
DrawShadowTextExt(10,30,120,60,"PiXCL 4.1 Graphics and Image Processing",LEFT,0,0,0,1)

Related Commands:
UseFont, UseBackground, DrawShadowTextExt, DrawTextExt    SetFontEscapement 



DrawShellIcon

In addition to the icons built into PiXCL, there are around 70 icons in the system file shell32.dll. There are slight differences in 
the icons depending on the version of shell32.dll installed by Internet Explorer 4 or 5 or with Windows 98 or 2000.

Syntax: DrawShellIcon (x,y,Xsize,Ysize,TOKEN)

Parameters:
x,y The client-area coordinates for the top left corner of the icon to be drawn.
Xsize,Ysize The size of the icon to be drawn.
TOKEN The icon to be drawn. Note that the numbers are not contigous, and vary slightly depending on 

the version of shell32.dll that is installed. If an unsupported icon is specified, the command does
nothing. Supported token values are
SHICON01-47,133-148, 151-161, 165-171, 173.

Example:
See the sample program shoicons.pxl

Related Commands:
DrawIcon    DrawIconFile    



DrawSizedBitmap

Reads the contents of a bitmap (BMP, JIF, JPEG, PCD, PCX, PNG, PPM, PSD, RAS, Raw, RLE, TGA, TIF) file and either 
stretches or compresses it to fit within a specified rectangle. You indicate the upper-left corner of the rectangle using (x1,y1), and
the lower-right corner using (x2,y2). This command will create a mirror image of the bitmap if (x1,y1) is the lower-right instead of 
the upper-left corner.

Syntax: DrawSizedBitmap(x1,y1,x2,y2,Filename$) 

Parameters:
x1,y1 The upper-left corner of the rectangle.

x2,y2 The lower-right corner of the rectangle.

Filename$ The name of a bitmap file (see DrawBitmap for details). Include the path if the bitmap 
file is not in the current directory. 

Remarks:
You can draw into the foreground or background by using the SetDrawMode command.

DrawSizedBitmap creates a mirror image of a bitmap if x2,y2 is above or to the left of x1,y1 (see the examples).

DrawSizedBitmap supports 256-color bitmaps. Be aware, however, that this type of bitmap can consume a substantial amount of
memory. For example, a bitmap containing an entire screen image of a 1024x768-pixel 256-color SuperVGA is over 768K.

When you use the DrawSizedBitmap command to place a bitmap in an PiXCL window, PiXCL stores the bitmap image in 
Windows global memory, as well as in the application memory and display contexts. These contexts are, in effect, the actual 
PiXCL window as you see it, one stored somewhere in global memory (the memory context), and the other on your video card 
memory (the display context). When your script ends, PiXCL removes the bitmap(s) from memory and recovers the space it 
occupies.    The image you see drawn in the client area is a copy of the bitmap stored elsewhere in memory.

In most cases,    we advise you to remove a bitmap from memory once you have loaded the image file. In most cases, this will 
not have an undesirable effects. What this approach does is free up the image file global memory, while leaving the memory and 
display contexts alone.

If you are retrieving the same bitmap from disk and the disk bitmap has changed from the bitmap in program memory, you MUST
use FreeBitMap before you reload with DrawBitmap or DrawSizedBitMap, or else the original bitmap in the memory context will 
be displayed.

You can also load a bitmap without displaying it by setting all the coordinates to zero. i.e. DrawSizedBitmap(0,0,0,0,ImageFile$), 
or by using the equivalent LoadBitmap command.

Examples:

 

The above image was produced by the following program uses the DrawSizedBitMap command to read the bubbles bitmap 
(BUBBLES.BMP) and place it on the screen. (This bitmap is located in the Windows directory.) Next, it uses the DrawSizedBitMap 



command to make additional copies of the bitmap next to the first one and create inverted and mirror images.

UseCoordinates(PIXEL)DirGetWindows(WindowsDir$)Bitmap$ = WindowsDir$ + "\
BUBBLES.BMP"UseFont("Arial",7,15,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawTextExt(218,10,300,150,
 "Sized Bitmaps inverted and mirrored by changing co-ord sequence.",LEFT)
DrawSizedBitMap(10,10,73,73,Bitmap$)
DrawSizedBitMap(143,73,80,10,Bitmap$)
DrawSizedBitMap(213,10,150,73,Bitmap$)
DrawRectangle(10,80,73,143)  
DrawNumber(12,82,1) DrawNumber(60,128,2)
DrawRectangle(80,80,143,143)  
DrawNumber(130,128,1) DrawNumber(82,82,2)
DrawRectangle(150,80,213,143)  
DrawNumber(200,82,1) DrawNumber(152,128,2)

Related Commands:

DrawBitmap, FreeBitmap, FreeBitmapAll, GetBitMapDim, InvertRectangle, DrawZoomedBitmap, LoadBitmap 



DrawSizedBitmapExt

This command offers some additional bitmap draw options according to the TOKEN used. It places the contents of a bitmap (in 
PiXCL, BMP or .RLE; plus in PiXCLpro, TIF, TGA, RAS, JPEG,PNG and PCX) file at a specified location on the screen. 

Syntax: DrawSizedBitmapExt(x1,y1,x2,y2,Filename$,TOKEN)

Parameters:
x1, y1 The coordinates of the upper-left corner of the bitmap. 

x2,y2 The coordinates of the bottom-right corner of the bitmap. 

Filename$ The name of the bitmap file. Include the path if the bitmap file is not in the 
current directory.

BLACKONWHITE

COLORONCOLOR

HALFTONE

WHITEONBLACK

Remarks:
These commands will often appear to have no or little effect. See what happens if you use the SetROPcode command.
You can draw into the foreground or background by using the SetDrawMode command.

Related Commands:

DrawSizedBitmap, FreeBitmap, FreeBitmapAll, GetBitMapDim, SetColorPalette, DrawZoomedBitmap, LoadBitmap 



DrawStatusText

A status text string can be written into a specific region of the PiXCL application client area. The background is the current color, 
usually (192,192,192). The currently selected font is used. If no font has been selected, the system font is used.

Syntax: 
DrawStatusText(x1,y2,x2,y2,Text$, TOKEN)

Parameters:
x1,y2,x2,y2 The client area co-ordinates in which the text string is drawn.

Text$ The text string. Carriage returns and Linefeeds are not supported.

TOKEN NOBORDER No raised border is drawn.
POPOUT The default. The region appears to be raised.

Remarks
You can also create a status window with the StatusWindow command, and add text to it with the DrawStatusWinText command.

Related Commands
DrawEdgeRectangle, DrawText, DrawTextExt, StatusWindow, DrawStatusWinText  



DrawStatusWinText

A status text string can be written into a specific part of a status bar, if it has been enabled. The background is the current system
color, usually light gray (192,192,192).

 

Syntax: 
DrawStatusWinText(Part,StatusText$)

Parameters:
Part The zero based index of the required status bar part. If this number is then text is drawn in the 

first part (which may be the whole status bar). This number must be in the range 0 - 255. 
Numbers outside this range are clipped to 0 and 255.

StatusText$ String variable of the required text to be written to the specified part of the status bar.

Related Commands
DrawTextExt, DrawStatusText, StatusWindow.



DrawText

Draws a character string in the window, using the current font. The starting position of the string is given by the x and y 
parameters.

Syntax: DrawText(x,y,Text$)

Parameters:
x The x-coordinate of the starting point of the string. 

y The y-coordinate of the starting point of the string. 

Text$ The character string to be drawn. 

Remark:

By default, PiXCL uses the System font in black when drawing text. You can change the font with the UseFont command.

Example:

This example uses Windows    Arial font to draw the string "PiXCL 4.0 DrawText command" in a window in two different sizes. 
The figure shows the results.

 
The effect of the DrawText command with different size fonts

UseCoordinates(PIXEL)
UseFont("Arial",0,20,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(10,10,"Windows ")
UseFont("Arial",0,30,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(10,30,"PiXCL 4.0 DrawText command")
WaitInput()

This next script shows the effect of the current background setting when you draw text. In this example, the first character string 
is drawn using the default background, opaque white. The second string is drawn after the background has been set to light gray.
Before the third character string is drawn, the font is changed to white, creating a reverse effect. See UseFont and 
UseBackground for more on this.

UseCoordinates(PIXEL)
UseFont("System",0,20,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
Name$ = "PiXCL 4.0 DrawText command"
DrawText(10,10,Name$)
UseBackground(OPAQUE,128,128,128)    {Light gray background}
DrawText(10,30,Name$)
UseFont("System",0,20,NOBOLD,NOITALIC,NOUNDERLINE,255,255,255)
DrawText(10,50,Name$)
WaitInput()

Related Commands:
 
UseFont, UseBackground, DrawShadowText, DrawTextExt SetFontEscapement





DrawTextExt

If you need to draw multiple lines of text, the DrawText command is rather tedious to use. The DrawTextExt command draws a 
multi-line character string in the window client area, in a defined rectangle, using the current font style and color. The coordinates
of the rectangle are given by the x and y parameters. 

Syntax: DrawTextExt(x1,y1,x2,y2,String$,LEFT | CENTER | RIGHT)

Parameters:
x1,y1,x2,y2 The rectangle in the client area in which the required text is to be written. 

String$ The text that is required to be displayed. This text can include carriage returns, but will
also wrap around in the specified rectangle.

LEFT | CENTER | RIGHT
These tokens dictate how the output text is drawn: Left justified, Centered in the 
rectangle, or right justified.

Here is an example code fragment that draws a multiline text string on the client area in a specified rectangle.

MultiLine:
TextString$ = 

“This is a multiple line of text that
should wrap around on the specified
rectangle region, left justified.”

DrawText(10,30,220,100,TextString$,LEFT)
Goto Wait_for_Input

Related Commands:
UseFont, DrawText DrawShadowText    DrawShadowTextExt    SetFontEscapement



DrawTrBitmap, DrawTrSizedBitmap

These two commands extend the bitmap handling capability of PiXCL by providing a means to display a bitmap with a 
transparency effect, sometimes referred to as a transparent overlay.    A specific pixel color, most commonly black, can be 
specified as the transparency color, such that the underlying or base image is viewable where the overlay image is the 
transparency color.

Syntax:
DrawTrBitmap(x1,y1,Image$,R,G,B)
DrawTrSizedBitmap(x1,y1,x2,y2,Image$,R,G,B)

Parameters:
x1,y1, x2,y2 The PiXCL client area co-ordinates for drawing the bitmap. 

Image$ The filename of the image to be drawn. If the image is already in memory, it is drawn from 
memory, otherwise it is read from the disk. All the supported bitmap file formats are available, 
and images can be 8 or 24 bits per pixel.

R,G,B The red, green, blue value that defines the transparency color. Values must be in the range 0-
255. If the overlay image is 8 bit, the pixel index value that defines R,G,B becomes the 
transparent value. If the bitmap is 24 bit, then the transparency pixels    are the R,G,B value.

Remarks:
Transparent overlays are often used for simple animation where the transparency color is known, and a sequence of images is 
to be displayed. The DrawZoomedBitmap command is also useful in this type of application.

Another use is to show a variety of overlays (perhaps vector information) on a base image, which could for example be a map. 
The base image and overlay images are loaded and the base image displayed. Each overlay can be displayed in sequence, or 
on top of each other if desired. The overlay is cleared by redrawing the base image or background.

See also the OverlayImage command, which works with the current bitmap stored in the PiXCL image list. The contents of this 
image list can be accessed with the ListLoadedBitmaps command.

Some supported image formats, for example PNG, provide for a transparency color to be defined within the file itself, but the 
majority do not. PiXCL 4.1 does not automatically support transparent colors, as the more general solution is to provide support 
for a transparent display color for any of the supported bitmap formats.

Example:
This code fragment loads two images the same size, and overlays the second image using black (0,0,0) as the transparency 
value.

LoadBitmap(BaseImage$, FULL)
LoadBitmap(OverlayImage$, FULL)
DrawBitmap(10,10,BaseImage$)
WaitInput(2000)
DrawTrBitmap(10,10,OverlayImage$,0,0,0)

Remarks:
You can draw into the foreground or background by using the SetDrawMode command.

Related Commands:
LoadBitmap , DrawZoomedBitmap , SetROPcode , ChooseColor 



DrawTriangle

Triangles can be drawn with the current pen and current brush.      DrawTriangle draws in the order that the vertices are specified.

Syntax: DrawTriangle(x1,y1,x2,y2,x3,y3)

Parameters:
x1,y1 The first vertex of the triangle.

x2,y2 The second vertex of the triangle.

x3,y3 The third vertex of the triangle.

Related Commands:

DrawPolygon, DrawRectangle, UsePen, UseBrush



DrawVecPoint, DrawVecLine, DrawVecPolygon and DrawVecLabel

These four commands read in an ASCII format VECtor file into a dynamically allocated memory buffer, and renders the contents 
into the client area region set in with the SetVECdrawParams command. 

Points are drawn as a box with a center dot. The current brush affects the fill color. Set the current brush to NULL to
draw an outline only.

Lines and polygon borders are drawn with the current pen setting defined by the UsePen command.

Polygons are filled with the current brush setting of the UseBrush or UsePatternBrush commands.

Label text is written with the font defined in the current setting of the UseFont command.

Syntax: DrawVEC[Point|Line|Polygon|Label] (VECFilename$,Result)

Parameters:
VECFilename$ The VECtor file to read into a buffer and render.
Result 1 if the operation succeeded otherwise 0.

VECtor files in PiXCL:
VEC files are used in PiXCL for the display and transfer of data that is not conveniently representable in raster form. The VEC 
file formats used in PiXCL are the same as those in the IDRISI™ v2 for Windows GIS, from Clark University in Massachusetts. 
Idrisi32, released in late 1999, has a slightly updated format, which is not yet supported. It will be supported in PiXCL 5.0, due 
around July 2000.

VEC files are ASCII files that contain identifiers and coordinates that describe vector features such as points, lines, polygons and
text.    Any individual VEC file can only contain one type of vector information. A raster image or image set can have any number 
of VEC files associated with it.    The following information is adapted with permission from the IDRISI user manual.

Structure
VEC files in PiXCL are stored as ASCII. While the IDRISI binary VEC format is not supported, IDRISI has a CONVERT module 
that provides the conversion between ASCII and binary.

In all VEC files, an individual feature (points, lines, polygons and text) is described completely before the next feature is 
described. Hece a feature is described by

1. a feature identifier;
2. A number of points that defined that feature; and 
3. the X and Y coordinates for each point.

A file can contain an arbitrary number of features, but must end with a pair of zeros. If, for example, a simple point file has the 
first point with an ID of 5 at location 34.5 in X and 76.3 in Y, and the second has an identifier of 3 at 57.3 in X and 12.8 in Y, the 
file would appear as

5 1
34.5 76.3
3 1
57.3 12.8
0 0

The next example contains two lines with identifiers 300 and 500, the first with 4 points and the second with 3 points.

300 4
21.5 18.1
22.3 21.5
34.1 24.6



45.9 29.8
500 3
34.5 76.3
64.3 52.1
22.0 12.0
0 0

Polygon VEC files are similar to line files, such that the points define the closed polygon, with the first and last entry being the 
same, which closes the polygon. Hence the example below is for a triangle.

110 4
12.2 14.6
56.5 15.3
62.4 85.9
12.2 14.6
0 0

IDRISI text files are the same as point files. The actual text labels are stored in an Atttribute Values file, another ASCII file, of 
format.

1 label
2 label
3 label

For PiXCL, this has been extended with a PiXCL label file, of format

ID#1 1 (point)
X Y    (coordinates)
"label Text string 1"
ID#2 1 (point)
X Y    (coordinates)
"label Text string 1"
0 0

VEC files can be read and displayed in the PiXCL client area in two ways.

The first is by reading the VEC file contents into a string variable, then using the DrawPoint, DrawLine, 
DrawPolygon and DrawText commands, loop through the coordinates and draw as necessary. While 
workable, this is also slow, and requires a significant effort in coding.

The alternative method is to use the DrawVecPoint, DrawVecLine, DrawVecPolygon and DrawVecLabel 
commands that read the file into a buffer, interpret and draw the VEC file contents into the client area.

In both cases, the current Pen, Brush and Font color and styles are used to draw the vectors and text. 
See the UsePen, UseBrush, UseBrushPattern and UseFont commands.

VEC files can also be rendered into a loaded image by making use of the SetDrawBitmap command.

VEC files points can be expressed as either floating point or integer, and to be rendered in the PiXCL client area or a bitmap in 
the PiXCL image list, the point coordinates have to be converted into client area integer coordinates. For example, if a 500 pixel 
by 406 line bitmap is displayed full size, starting at client area coordinate (100,80) then we would have to process all the VEC 
point data with an appropriate gain and offset in both the X and Y axes.

The X and Y gains and offsets, and the client area draw region coordinates are set by the SetVECdrawParams command, and 
are stored in the PiXCL executable in memory. The default values are gain=1 and offset=0, draw region is the whole client area. 
These values remain in force until changed by issuing another SetVECdrawParams command, in the same manner that the 
CustomColors or current font selections are stored.



How and where would VEC files be used?
VEC files are designed to add layered vector information on to an existing raster image, either in the PiXCL image list or directly 
on to the PiXCL application client area. For example, you can display a color composite, overlay some classification data, and 
then overlay VEC files that define roads and powerlines, railways, cadastral boundaries, text descriptions, and similar 
information.

Ascii VEC files can be created by digitizing direct from the client area, using any text editor, or within the IDRISI package.

Related Commands:
SetVECdrawParams    UsePen  UseBrush  UseBrushPattern 



DrawZoomedBitmap

A complete bit map can be displayed with the DrawBitmap or DrawSizedBitmap commands. In situations where you want to see 
just a portion of the bitmap, the DrawZoomedBitmap command is available. This might be used, for example, by creating a 
window the dimensions of the bitmap (this assuming that the bitmap is smaller than the screen), and drawing a zoomed region 
as required.    

DrawZoomedBitmap can also be used to create animated sequences. See the remarks below.

Syntax:
DrawZoomedBitmap(x1,y1,x2,y2,Filename$,pixel_x,pixel_y,ZoomFactor)

Parameters:
x1,y1,x2,y2 The client area coordinates into which the bitmap region is to drawn.

FileName$ The bitmap to be accessed for pixel data. This does not need to have been previously 
loaded.

pixel_x,pixel_y The image coordinates on which the zoom occurs.

ZoomFactor A number from 1 to 16.    Numbers below or above this range are automatically 
truncated to 1 or 16 respectively.

Remarks:
Don't forget that the complete bitmap is stored somewhere in memory, in the linked list that PiXCL keeps and updates 
with the DrawBitmap commands, and the display you see written to the client area is a copy of the bitmap, sized if 
necessary to fit the rectangle specified.

You can also use this command to roam across an image by creating a small window and keeping the zoom factor constant, 
then move the zoom coordinates along the image. The most useful effect is to choose a line through the horizontal axis.

This command also enables you to view a portion of a bitmap. You will need to use integer math code to set up the 
pixel_x,pixel_y coordinates for the selected client area display region at the desired zoom factor.

For example, you can create a large image with an animation sequence tiled in it e.g. like a strip of movie film. Say each tile is 
200 lines by 300 pixels, and there is eight frames, then the complete image will be 200 lines x 2400 pixels. The display window 
would be 200x300, and the zoom factor kept constant at 1. The pixel_x,pixel_y values are adjusted with a FOR-NEXT or WHILE 
loop and the effect is animation.

Remarks:
You can draw into the foreground or background by using the SetDrawMode command.

Related Commands:
DrawBitmap, FreeBitmap, LoadBitmap 



DropFileServer, DropFileServerExt

A PiXCL program can also function as a drop file server for applications that are drop file clients.    For example, the FileManager 
and Explorer are drop file servers, such that you can select a list of filenames, and while holding down the left mouse button, 
drag them over to a destination window.    Windows drop file clients include Write, WordPad, Pbrush, all modern large Microsoft 
packages that support Object Linking and Embedding, and just about every imaging or drawing program from other software 
developers.    The DropFileServer function is especially useful for Multiple Document Interface (MDI) applications where you 
need to load up several files at once, and the application supports opening each document sequentially. 

For example, a paint and draw program may support multiple image formats, but only lets you open one format file at a time. 
With the dropfile server function in PiXCL, you can select a variety of images in different formats, and drop them into the 
application. If it is a dropfile client, it will most likely load up the whole list of images.    This can be a substantial saving in time for 
you.

A program could make use of the FileRead_INI and FileWrite_INI commands as well, either with your own INI file for, say, file 
formats or filters for the FileGet command, or could even access other applications INI files for information or operating 
parameters.

The FileGet dialog also acts as a dropfile server: you can one file (or more files if one of the MULTI select tokens is used) and 
drag it over to and drop it into a suitable target application.

It’s very easy to tell if your application is a drop file client: from Explorer, select a file of the type the application can edit or 
produce, and try to drag it to and drop it into the application. If the file is automatically loaded, the application is a drop file client.

PiXCL is also a dropfile client, with the DragAcceptFile and GetDragList commands.

Syntax: DropFileServer(ENABLE | DISABLE,FileList$)
DropFileServerExt(ENABLE | DISABLE,IMAGES|FILES|CLIPS|MEDIA,FileList$)

Parameters:
ENABLE | DISABLE Token that enables or disables the drop file operation.

IMAGES Changes the PIXCL titlebar to “DropFiles – n image(s) to load.” This is the default 
for DropFileServer.

FILES Changes the PIXCL titlebar to “DropFiles – n files(s) to load.”
CLIPS Changes the PIXCL titlebar to “DropFiles – n clip(s) to load.”
MEDIA Changes the PIXCL titlebar to “DropFiles – n media(s) to load.”

FileList$ This is a list of at least one filename. It could be generated by a call to FileGet, or read
from a file, or synthesized from within the program itself. If the DISABLE token is used,
this string can be set to NULL (i.e. “”, or say Null$). A string variable MUST be 
included, but it is ignored in any case.

Remarks:

Enabling the drop file server will update the title bar of the PiXCL application with the number of files selected. It is your 
responsibility to keep track of the title bar string, and update it when needed. You can also draw a special icon on the client area 
to indicate that the drop file server has some files to process. This is ICON17, built into the PiXCL application. 

 

Dropfile server icons 
16 and 17 
which are built into 
PiXCL.

Once you try to drag and drop a 
filename list, the cursor changes to 
a monochrome representation of 
ICON17, and to a cursor when the 
mouse pointer is over a suitable 
drop file client.



If the drop file client has successfully loaded the files, the PiXCL title bar will be updated to tell you that there are no files to drop. 

If there are any SetMouse commands active, Drag and Drop enabled overrides it. This can be handy, because once you have 
completed the drag and drop operation, a SetMouse command becomes operational, and can be used to clear the drag and 
drop title.

The code fragment below shows how this might work.    An output file has been selected earlier in the program. Once the dropfile
server has been enabled, the window title is updated. This is acquired, the current client area coordinates are obtained, and the 
dropfile icon (ICON17) is drawn at a suitable location.    The SetMouse command is used to disable the DropFileServer, icon and 
SetMouse once the dropfile operation is complete.

Auto_Load_Image_1:
DropFileServer(ENABLE, OutFile$)
WinGetActive(Win$)
WinGetClientRect(Win$,cx1,cy1,cx2,cy2)
icx = cx2 - 34
DrawIcon(icx,1,0,0,ICON17)
SetMouse(cx1,cy1,cx2,cy2,ClearDFS,X,Y)
Goto Wait_for_Input

ClearDFS:
DropFileServer(DISABLE, "")
DrawBackGround
UseCaption(Title$)
SetMouse()
Goto Wait_for_Input

Related Commands:
FileGet, UseCaption, DrawIcon, DragAcceptFile , GetDragList 



DuplicateImage

When you want to make a copy of an image in memory, the DuplicateImage command is used. The new image is added to the 
PiXCL image list

Syntax: DuplicateImage(SourceImageName$, NewImageName$,Result)

Parameters:
SourceImageName$ The name of the source image in the PiXCL image list.
NewImageName$ The duplicated image name. This image is NOT saved to disk.
Result 1 if the operation is successful, otherwise 0.

Remarks:
NewImageName$ should include a full path, as this is how images are searched. Esspecially, if you expect to save the new 
image, you will have to fully identify it when using the SaveBitmap command.

Example:
This code fragment loads a predefined source bitmap, duplicates it with another predefined name, inverts the colors of the new 
image, then displays them both.

ImageDuplicate:
DrawBackground
LoadBitmap(Image8$,FULL)
DuplicateImage(Image8$,Image11$,Res)
InvertImage(Res)
DrawBitmap(30,38,Image11$)
DrawBitmap(230,238,Image8$)
Goto Wait_for_Input

Related Commands
EnlargeImage     EnlargeImageBox 





EmptyRecycleBin

For system with Internet Explorer 4.01 or later installed, the Recycle Bin(s) can be emptied under program control.

Syntax: EmptyRecycleBin(Drive$,mode_TOKEN,Result)

Parameters:
Drive$ The drive on which the Recycle Bin resides. If this is an empty string “”, all Recycle Bins on all 

drives are emptied.
Mode_TOKEN Depending on the mode specified, interaction dialogs are presented as the recycle bins are 

emptied.
ALL –    Confirm, Progress and sound are used.
NOCONFIRM – Disable the confirm dialog.
NOPROGRESS – Disable the progress dialog.
NOCONFIRMorPROGRESS – disable confirm and progress.
NOCONFIRMorSOUND - disables confirm and sound.
NONE – just do it with no interaction.

Result 1 if the operation was successful, otherwise 0.

Related Commands:

QueryRecycleBin    DrawShellIcon    



End

Terminates a PiXCL program. You can use End anywhere in a program, either in the main routine or in subroutine. If PiXCL 
encounters an End in a subroutine, it will terminate execution not only for the subroutine but for the entire PiXCL program as 
well. All memory assigned for strings, variables, toolbars, toolwindows, dialogs and bitmaps are freed and returned to Windows.

Syntax: End

Remark:
The keywords Quit and Stop are also accepted, and are synonyms for End. PiXCL also ends a program when it encounters an 
end-of-file or CTRL-Z character (1AH).



EnlargeImage    

When you need to make the size if a bitmap bigger, and place the existing image data at a particular point in the new, larger 
image, (i.e. add a border) use the EnlargeImage command.

Syntax: EnlargeImage(ImageFile$,NewLines,NewPixels,PLACEMENT_token,X,Y,Result)

Parameters:
ImageFile$ The image that has been previously loaded into the image list.
NewLines The new number of lines in the bitmap.
NewPixels The new number of pixels per line.
PLACEMENT_token Position for inserting the original image.

CENTER original image is centered in the new image.
TLC original image is set to TL corner in the new image.
TRC original image is set to TR corner in the new image.
BLC original image is set to BL corner in the new image.
BRC original image is set to BR corner in the new image.
USER TL corner of the original image is set to X,Y in the new image.

X,Y The TL corner placement coordinated for the USER token,otherwise values are ignored.
Result 1 if the operation succeeded otherwise 0.

Example:

EnlargeImageCmd:
If ImageFile$ <> ""
    GetListBitmapDim(ImageFile$,Lines,Pixels,Bits)
    NewLines = Lines + 20
    NewPixels = Pixels + 20
    EnlargeImage(ImageFile$,NewLines,NewPixels,CENTER,5,5,Res)
    If Res = 0 Then Beep
    DrawBitmap(30,38,ImageFile$)
    GetListBitmapDim(ImageFile$,NewLines,NewPixels,Bits)
    If NewLines = Lines Then DrawStatusWinText(0,"EnlargeImage failed")
Endif
Goto Wait_for_Input

Related Commands:
EnlargeImageBox 



EnlargeImageBox 

When you want to control the actual setting of an image enlargement operation, PiXCL 4.20 and later provides the 
EnlargeImageBox command. The dialog is shown below.

Syntax: EnlargeImageBox(Title$,ImageFile$,Result)

Parameters:
Title$ The title that appears in the dialog.
ImageFile$ The image in the list that is to be enlarged.
Result 1 if the operation succeeded, otherwise 0.

Example:

This code fragment starts the dialog 
box shown left with a user defined 
title. Once the OK button is pressed, 
the image is enlarged. If the Cancel 
button is pressed, no changed are 
made. You must issue a DrawBitmap 
command to view the enlarged 
image.

EnlargeImageDlg:
If ImageFile$ <> ""
    EnlargeImageBox("Set Larger Image Dimensions",ImageFile$,Res)
    If Res = 0
        MessageBox(OK,1,ICON01,"EnlargeImageBox failed or was cancelled.",
        "Error Message in user program",Res)
    Else
       DrawBitmap(30,38,ImageFile$)
    Endif
Endif
Goto Wait_for_Input

Related Commands:
EnlargeImage 



EnumDisplayMonitors

For Windows 98, 2000 and XP systems that have multiple monitors installed, you can list the names and virtual screen 
coordinates with the EnumDisplayMonitors command.

Syntax: EnumDisplayMonitors(m1x1,m1y1,m1x2,m1y2, Monitor_1_Name$,
m2x1,m2y1,m2x2,m2y2, Monitor_2_Name$)

Parameters:
m1x1,m1y1,m1x2,m1y2 The virtual screen coordinates of the primary display.

Monitor_1_Name$ The display name. This is usually \\.\Display1
m2x1,m2y1,m2x2,m2y2 The virtual screen coordinates of the secondary display. Note that if this not the primary 

display, the coordinates returned may be negative.
Monitor_2_Name$ The second display name, usually \\.\Display2

Remarks:
Many laptops have so-called dual head displays such that the primary display is called \\.\Display1\Unit0 and the secondary 
display is \\.\Display1\Unit1. Matrox G450/500 cards with the dual head option    report the primary display as \\.\Display1\U0 
and the secondary display as \\.\Display1\U1. The multi monitor support in Windows defines up to 9 possible displays. If you 
need to report more than two displays, please contact VYSOR Technical support and we will arrange to update PiXCL.

Related Commands:

MonitorFromPoint      MonitorFromRect      MonitorFromWindow    



EnumChildWindows

When you need to get the names of child windows of any parent window, use this command. It is similar to the EnumWindows 
command.

Syntax: EnumChildWindows(Parent$,Child$,VISIBLE | ALL, Delimiter$)

Parameters:
Parent$ The name of the parent window. If you use “”, this will find the names of any child 

windows of the PiXCL application.
Child$ The list of located child windows.

VISIBLE Token: get only the visible windows.
ALL Token: Get all child windows.

Delimiter$ The list delimiter character. 

Example:

GetChildWindows:
DrawBackground
EnumChildWindows("",Child$,VISIBLE,"|")
UseFont("Arial",0,15,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
ListBox("Child Windows",Child$,"|",Res$)
Goto Wait_for_Input

Related Commands:
EnumWindows 



EnumPrinters

Basic name information about Local and network / remote printers can be listed. The functionality varies slightly between 
Windows 95/98 and Windows NT.

Syntax: EnumPrinters(Type_TOKEN,Share_TOKEN,Name$,Level_TOKEN,
Delimiter$,PrinterNameList$,
PrinterDescList$,Result)

Parameters:
Type_TOKEN

LOCAL The function ignores the Name$ parameter which should be set to "", and enumerates the 
locally installed printers. Windows 95/98 only: The function will also enumerate network 
printers because they are handled by the local print provider.

NAME The function enumerates the printer identified by Name$. This can be a server, a domain, or a
print provider. If Name$ is NULL, the function enumerates available print providers.

DEFAULT Windows 95/98 only: The function returns information about the default printer.

CONNECTIONS Windows NT only: The function enumerates the list of printers to which the user has 
made previous connections.

NETWORK Windows NT only: The function enumerates network printers in the computer's domain. This value is 
valid only if Level_TOKEN is ONE.

REMOTE Windows NT only: The function enumerates network printers and print servers in the computer's domain. 
This value is valid only if Level_TOKEN is ONE.

Share_TOKEN SHARED or NONSHARED. Non-shared devices include local fax devices and some scanners, such as 
the Visioneer PaperPort series, which are considered by Windows to be print devices. Non-shared mode 
will also list available printers.

Name$ If Level_TOKEN is ONE, Type_TOKEN is NAME, and Name$ is non-NULL, Name$ specifies the name 
of the object to enumerate. This string can be the name of a server, a domain, or a print provider. 

If Level_TOKEN is ONE, Type_TOKEN is NAME, and Name$ is NULL, the function enumerates the available print providers. 

If Level_TOKEN is ONE, Type_TOKEN is REMOTE, and Name$ is NULL, the function enumerates the printers in the user's 
domain. 

If Level_TOKEN is TWO or FIVE (Windows 95 only), Name$ specifies the name of a server whose printers are to be 
enumerated. If this string is NULL, the function enumerates the printers installed on the local machine.

If Level_TOKEN is FOUR (Windows NT only), Name$ should be NULL. The function always queries on the local machine.

When Name$ is NULL, it enumerates printers that are installed on the local machine. These printers include those that are 
physically attached to the local machine as well as remote printers to which it has a network connection.

Level_TOKEN This returns slightly different information to the PiXCL application. The printer names and 
description or ports are returned.
ONE Windows 95/98 and NT
TWO Windows 95/98 and NT
FOUR Windows NT only



FIVE Windows 95/98 only

Delimiter$ The character that is used to delimit the returned List$ string. This can be any character, but "|" is 
recommended because printer names can include space, comma and semi-colon characters.

PrinterNameList$ The returned printer name list.
PrinterDescrList$ The returned printer description list.

Result 1 if the function succeeded, otherwise 0.

Remarks
The EnumPrinters function does not retrieve security information. 

Windows NT specific: 
Level_TOKEN set to ONE provides an easy and extremely fast way to retrieve the names of the printers installed on a local 
machine, as well as the remote connections that a user has established. When EnumPrinters is called with Level_TOKEN set to 
FOUR, the function queries the registry for the specified information, then returns immediately. This differs from the behavior of 
EnumPrinters when called with level ONE.

In particular, when EnumPrinters is called with a Level_TOKEN set to TWO, it performs an OpenPrinter library call on each 
remote connection. If a remote connection is down, or the remote server no longer exists, or the remote printer no longer exists, 
the function must wait for the call to time out and consequently fail the OpenPrinter call. This can take a while. Passing a 
Level_TOKEN set to TWO lets an application retrieve a bare minimum of required information.

Windows 95 specific:
To quickly enumerate local and network printers, use Level_TOKEN set to FIVE. This causes EnumPrinters to query the registry 
rather than make remote calls, and is similar to using Level_TOKEN set to FOUR on Windows NT as described in the preceding 
paragraph. 

Examples
The following table shows the EnumPrinters output with Level_TOKEN set to ONE. 

In Name$ you should substitute an appropriate name for Print Provider, Domain, and Machine. For example, for Print Provider, 
you could use the name of the Windows NT network print provider: "Windows NT Remote Printers", or the name of the Windows 
95 local print provider: "Windows 95 Local Print Provider". To get print provider names, call EnumPrinters with Name$ set to "". 
    
Type_TOKEN Name$ Result
LOCAL The Name$ parameter is 

ignored. Use "".
All local printers. Windows 95 only: 
Also enumerates network printers 
because they are installed locally

NAME "Print Provider" All domain names.
NAME Windows NT only: "Print 

Provider!Domain"
All printers and print servers in the 
computer's domain

NAME Windows NT only: "Print 
Provider!!\\Machine"

All printers shared at \\Machine

NAME Windows NT: Set Name$ 
to "" 

Windows 95: The name of 
the local machine or the 
local print provider.

All local printers. Windows 95 only: 
Also enumerates network printers 
because they are installed locally.

NAME Set Name$ to "" All print providers in the computer's
domain.

Windows NT only:



CONNECTIONS The Name$ parameter is 
ignored

All connected remote printers.

NETWORK The Name$ parameter is 
ignored

All printers in the computer's 
domain.

REMOTE Name$ = "" All printers and print servers in the 
computer's domain

REMOTE "Print Provider" Same as NAME above.
REMOTE "Print Provider!Domain" All printers and print servers in 

computer's domain, regardless of 
Domain specified.



EnumWindows

Creates a delimited list of parent window names. 

Syntax: EnumWindows(WindowList$,VISIBLE|ALL,Delimiter$)

Parameters:
WindowList$ The string variable to which PiXCL will copy the list of parent windows names.

VISIBLE Directs PiXCL to copy to WindowList$ only the names of visible parent windows (the 
same names that appear in the Task List).

ALL Directs PiXCL to copy to WindowList$ the names of all parent windows that are open 
on the Windows 95 and NT desktop, both visible and hidden.

Delimiter$ The delimiter character you want to separate the window names in the list. Many 
windows titles have spaces in them, so a different character is recommended, such as
“|” or “;”.

Remarks:

One of the best ways to display the list of window names created by this command is to use the ListBox command (see the 
example).

Example:

This example produces a list of parent window names and then uses the ListBox command allowing you to choose a window to 
activate.    

A sample list generated by EnumWindows

{Get the name of PiXCL window & hide it}
     WinGetActive(PiXCL$)
     WinShow(PiXCL$,HIDE,Ignore)
{Show all visible parent windows in a list box}
     Delimiter$ = ";"
     EnumWindows(WindowList$,VISIBLE,Delimiter$)
     Caption$ = "Choose a window to activate"
     ListBox(Caption$,WindowList$,Delimiter$,Result$)
{Activate the chosen window}



     If Result$ = "" Then End    {User mashed Cancel}
     WinSetActive(Result$,Result)

Related Command:
Listbox



EscCommFunction

This commands sends escape functions to the selected COM port. An escape function assists control of the data flow and will 
change the state of some of the comm port control signals. If a SetCommPort command has not been previously issued, 
EscCommFunction has no effect.

Syntax: EscCommFunction(COMx, ESC_token)

Parameters:
COMx Port, where x = 1 – 4 for standard PCs. PiXCL 5: If you have a multiple COM port board installed, ports 

5-13 are supported.

ESC_token Specifies the code of the extended function to perform. This parameter can be one of the 
following values: 

Value Meaning 
CLRDTR Clears the DTR (data-terminal-ready) signal.    

CLRRTS Clears the RTS (request-to-send) signal. 

SETDTR Sends the DTR (data-terminal-ready) signal. 

SETRTS Sends the RTS (request-to-send) signal. 

SETXOFF Causes transmission to act as if an XOFF character has been received. 

SETXON Causes transmission to act as if an XON character has been received. 

SETBREAK Suspends character transmission and places the transmission line in a break state until the 
CLRREAK extended function code). Note that this extended function does not flush data that 
has not been transmitted. 

CLRBREAK Restores character transmission and places the transmission line in a nonbreak state. The 
CLRBREAK extended function code is identical to the ClearCommPort function. 

Related Commands:
ClearCommPort    GetCommPort    ReadCommPort    SetCommPort    WaitCommEvent    WriteCommPort 



ExitWindows

This command is the equivalent of selecting the TaskBar Start:Shutdown button. It shuts down Windows by closing running 
applications and prepares the PC to be turned off.

Syntax: ExitWindows(LOGOFF | POWEROFF |    REBOOT | SHUTDOWN)

Parameters:
LOGOFF Shuts down all processes running in the security context of the process that called the 

ExitWindows function. Then it logs the user off.
POWEROFF Shuts down the system and turns off the power. The system must support the power-off feature. 

Windows NT/2000: The calling process must have suitable privilege.
REBOOT Shuts down the system and then restarts the system. The system must support the power-off 

feature. Windows NT/2000: The calling process must have suitable privilege.
SHUTDOWN Shuts down the system to a point at which it is safe to turn off the power. All file buffers have 

been flushed to disk, and all running processes have stopped. Windows NT/2000: The calling 
process must have suitable privilege.

Remarks:
Before shutting down, Windows polls all active applications to see if it's OK to close them. If you haven't saved your work, an 
application can interrupt the shutdown and show a message box like the one in below.

When ExitWindows is executed, active applications may ask you to save your work.

If you have Windows NT network administrator proviledge, you can shut down other PCs on a network by using the Shutdown 
command.

Example: 

The following program places a message box on the screen asking whether you want to shut down Windows. If you select Yes 
and have saved all your work, Windows shuts down and then displays a restart message.

MessageBox(YESNO,1,QUESTION,
           "Shutdown Windows ?","Goodbye",Button)
If Button = 1 Then ExitWindows(REBOOT)

Related Commands:

Logoff, Shutdown, AbortShutdown



Exp

Floating Point math library function. Calculate the exponent function e**x

Syntax: Exp(X&, Value&)

Parameters:
X& The exponent to use.
Value& The result of the function.

Related Commands:
Log10     LogE 



ExportHistogram

Image colour channel histogram details can be exported to an ASCII file with the ExportHistogram command. 

Syntax: ExportHistogram(ImageName$,Result)

Parameters:
ImageName$ An image on disk or loaded into the PiXCL image list.
Result 1 if the operation suceeded, oitherwise 0.

Remarks:
If ImageName$ exists in the PiXCL image list, the histogram is read from memory. If ImageName$ is not in memory, and it exists
on disk, it is read into memory, the histogram is calculated, then the image is deleted from the list. 

The ASCII histogram text file contains the following data, with a CR-LF terminating each line.

      Line#001: the image filename;
      Line#002: the number of lines in image;
      Line#003: the number of pixels per line;
      Line#004: the number of BINS (usually 256);
      Line#005: the max % of image of any pixel;
      Line#006: the max % pixel value;
      Line#007-262: the BIN values;
      Line#263: mean value;
      Line#264: standard deviation.

This file is automatically created, with filename      '<input_filename>.HST' for single channel images. For colour images, three 
files are created, <input_filename>R.HST', <input_filename>G.HST', and <input_filename>B.HST'.

If the histogram file already exists, it is overwritten.

Related Commands:
Histogram 



ExtractListImageRect

Images loaded in the PiXCL image list can have a rectangle copied into another smaller list bitmap, for example when a set if 
thumbnail images is to be saved, or to create an animation sequence.

Syntax: ExtractListImageRect(SourceImage $,DestImage$,x1,y1,x2,y2,Result)

Parameters:

SourceImage$ The (usually larger) source image in the list.
DestImage$ The smaller image, often created with the CreateBitmap command. If a bitmap of the same 

name already exists in the list, the contents are overwritten.
x1,y1,x2,y2 The extraction coordinates in SourceImage$.
Result 1 if the operation was successful, otherwise 0 if the source or destination image does not exist in

the list, or –1 if there is a problem with the coordinates.

Remarks:

The destination image can be saved with the SaveBitmap command in the desired format. Coordinate problems include x1 or y1 
being negative, or x2,y2 outside the boundaries of the source image, or the DestImage$ coordinates do not match the size of the
rectangle defined in x1,y1,x2,y2. It is your responsibility to ensure that the coordinates specified are correct.

Related Commands:

CreateBitmap    DuplicateImage    InsertListImageRect    SaveBitmap    



FileCopy

Copies one or more files from one directory to another.

Syntax: FileCopy(SourceName$,DestinationName$,Result) 

Parameters: 
SourceName$ The name of the file you want to copy. If the file is not located in the current directory, 

include a path preceding the filename.

DestinationName$ The name of the target file. If the target file is to be located outside the current 
directory, include a path preceding the filename.

Result An integer variable that indicates the number of files copied. 

Remarks: 

PiXCL's FileCopy command observes many of the same shortcuts as the Windows copy command:

· SourceName$ and DestinationName$ can contain wildcards (? and *).

· You can specify a directory (path with no filename) for SourceName$ or DestinationName$. (Unlike 
previous versions of PiXCL, a "\" doesn't need to be present at the end of the directory name for the 
operation to be successful.)

· You can use a relative path (for example, "..\temp") or a fully qualified path for SourceName$ or 
DestinationName$.

The Result  value indicates the number of files copied. If the target filename already exists, the copy command will fail, and 
Result will return 0. Hence, your code should check if the file already exists, and if so either delete it or ask the user for advice.

Example: 

This program copies all files with a .TXT extension in the C:\BUDGET directory to the D:\BACKUP directory. If no files are 
copied, the program beeps and ends. If at least one file is copied, a message box appears signaling success. 

FileCopy("C:\BUDGET\*.TXT","D:\BACKUP\",Copy_OK)
If Copy_OK=0 Then Beep | End
MessageBox(OK,1,INFORMATION,"File(s) successfully copied",
           "",Temp)

Another example to copy a set of files from one directory to another directory.

FileCopy("D:\SOURCE\*.C","E:\BACKUP\*.*",Res)

If there is, say, ten files in the source directory, Res will return a value of 10, and any of the named files existing in the target 
directory will be overwritten. 

FileCopy("D:\SOURCE\*.C","E:\BACKUP",Res)

The above command will copy the first *.C file only to the target directory, and Res returns 1.



Related Commands:

DiskChange, FileMove, FileRename



FileDecrypt

Windows 2000 only. The FileDecrypt command decrypts a file or directory that was previously encrypted. All data streams in a 
file are decrypted. All new files created in a decrypted directory are decrypted. 

Syntax: FileDecrypt(FileName$,Result)
Parameters:
FileName$ The file or directory that is to be decrypted.
Result 1 if the operation was successful, otherwise 0. If this command is used under Windows 9x or NT,

it returns 0, and has no effect.

Related Commands:
FileEncrypt    



FileDelete

Deletes one or more files. 

Syntax: FileDelete(Filename$,Result)

Parameters: 
Filename$ The name of the file you want to delete. If the file is located outside the current 

directory or on a different drive, precede the filename with a path.
 
Result An integer variable that indicates the number of files deleted.

Remarks: 

PiXCL's FileDelete command observes many of the same shortcuts as Windows del command:

· Filename$ can contain wildcards (? and *).

· You can specify a directory (path with no filename) for Filename$. (Unlike previous versions of 
PiXCL, a "\" doesn't need to be present at the end of the directory name for the operation to be 
successful.)

· You can use a relative path (for example, "..\temp") or a fully qualified path for Filename$.

Example:

This program deletes all the files in the C:\WINDOWS\TEMP directory. If at least one file is deleted, the program displays a 
success message.
 
False=0
FileDelete("C:\WINDOWS\TEMP\",Munched)
If Munched=False Then Beep | End
MessageBox(OK,1,INFORMATION,"File(s) successfully deleted",
           "",Temp)

Related Commands: 

DiskChange, FileMove, FileRename



FileEncrypt

Windows 2000 only. The FileEncrypt command encrypts a file or directory. All data streams in a file are encrypted. All new files 
created in an encrypted directory are encrypted. 

Syntax: FileEncrypt(FileName$,Result)
Parameters:
FileName$ The file or directory that is to be encrypted.
Result 1 if the operation was successful, otherwise 0. If this command is used under Windows 9x or NT,

it returns 0, and has no effect.

Related Commands:
FileDecrypt    



FileExist

Determines whether a file or directory exists on disk.

Syntax: FileExist(Filename$,Result)

Parameters:
Filename$ The name of the file or directory whose existence you want to verify. 

Result An integer variable that indicates the number of files/directories found.

Remarks: 

Filename$ can use a relative path or a fully qualified path. It can also contain wildcards (? and *).

This function works with directories as well as files. 

Example: 

This program tests for the presence of CONFIG.BAK in the root directory of drive C. If the file exists, the variable There is set to 
1 and the Test_Overwrite subroutine is called to verify whether to overwrite the existing copy of CONFIG.BAK. If you select Yes 
in response to the message box, Munch is set to 1 and the subroutine ends; the FileCopy command then copies CONFIG.SYS 
to CONFIG.BAK, overwriting the previous copy of CONFIG.BAK in the process. If you select No, the program ends without 
performing the copy operation. 

FileExist("C:\CONFIG.BAK",There)
If There>0 Then Gosub Test_Overwrite
FileCopy("C:\CONFIG.SYS","C:\CONFIG.BAK",Ignore)
End

Test_Overwrite:
MessageBox(YESNO,1,QUESTION,"Overwrite current CONFIG.BAK?",
           "",Munch)
If Munch=Yes Then Return
End

Related Commands: 

DiskChange, FileMove, FileRename



FileExtension, FileName, FilePath

From a given full filename, extract either the extension, rootname or path.

Syntax
FileExtension(FileName$,Extension$,Result)
FileName(FileName$,RootName$,Result)
FilePath(FileName$,Path$,Result)

Parameters

FileName$ A complete filename string. This will usually be obtained from a FileGet or similar 
command, but can also be entered as a string. It must have the form    [disk:\
path\]rootfilename[.][extension] with maximum length is 256 characters

No check is made if the file actually exists. This can be done if you use one of the 
"*EXIST" tokens in the FileGet command, or the FileExist command before this 
command.

Extension$ The returned file extension string. The "." is not included. If the file has no extension, 
this value returns a NULL string.

RootName$ The returned rootname of the file. If there is no rootname, that is a poorly construct 
name string like c:\temp\.obj , RootName$ returns a NULL string, and Result returns 0.

Path$ The returned path of the file.

Result If the string operation is successful, Result is 1, otherwise it returns 0.    

If the file does not have an extension (e.g. c:\temp\imagefile.) Result returns 0. If 
FileName$ is a NULL string, Result returns 0.

Example
For a FileName$ string of "c:\pixcl\test\imagefile.format"

Path$ returns c:\pixcl\test
Name$ returns imagefile
Extension$ returns    format
Result returns 1

Here is a code fragment that demonstrates the various types of command and the response.

Split_name:
DirGet(SourceDir$)
Filter$ = "All Files(*.*),*.*"
InitFile$ = "*.*"
InitDir$ = SourceDir$
Caption$ = "Select any file"
FileGet(Filter$, InitFile$, InitDir$, Caption$,
    CHANGEDIR_EXIST,FileName$)
If FileName$ = "" Then End

   FilePath(FileName$,Path$,Rsl) 



FileName(FileName$,RootName$,Res)
FileExtension(FileName$,Extension$,Rsl)

Split$ = Path$ + " "
Split$ = Split$ + RootName$
Split$ = Split$ + " "
Split$ = Split$ + Extension$

Label$ = "Split " + FileName$
Res$ = RootName$
ListBox(Label$,Split$," ",Res$)

Goto Wait_for_input

Run_Leave:
End

Related Commands

FileExist, FileGet



FileGet

Gets a filename using the same FileOpen common dialog box that appears in most Windows applications.

Syntax:    FileGet(Filter$,InitialFile$,InitialDir$,Caption$,
    FileGet_TOKEN,ChosenFile$ [ ,HelpTitle$, HelpMsg$ ] )

Parameters: 
Filter$ A string containing pairs of comma-delimited filter elements. The first element in each 

pair is text describing the filter (for example, "Write Files"), and the second element 
specifies the filter pattern (for example, "*.wri"). You can specify multiple patterns for 
an element by separating them with a semicolon (for example, "*.txt;*.asc;*.pxl"). If you
use a null string (" ") for Filter$, the dialog box will not display any filters.

InitialFile$ A string containing the filename you want to use to initialize the File Name edit control.
If you don't want an initial file to appear, specify a null string.

InitialDir$ A string containing the initial directory you want to look at. If you want the current 
directory to be the initial directory, specify a null string.

Caption$ The text you want to appear in the title bar of the dialog box. If you specify a null 
string, PiXCL uses "Select a file".

FileGet_TOKEN Determines what happens to the current directory setting on leaving the dialog box 
and must be one of the following tokens:

CHANGEDIR On exit of the command, change 
the current disk\directory to the 
selected directory from the initial 
directory specified. This will affect 
the result of a DirGet() command.

CHANGEDIRMULTI Enables file multi-select operations.

CHANGEDIR_EXIST Checks if the file and path exists. 
An error dialog appears if the file 
cannot be located.

CHANGEDIRMULTI_EXI Combination of the above.

NOCHANGEDIR If a new disk\directory was 
selected,    do not change the 
current directory setting.

NOCHANGEDIRMULTI Enables file multi-select operations.
NOCHANGEDIR_EXIST Checks if the file and path exists. 

An error dialog appears if the file 
cannot be located. 

NOCHANGEDIRMULTI_E
XI
S
T

Combination of the above.

Any of the above + _HLP Displays the dialog with a Help 
button that displays a Messagebox 
with custom text and title supplied 
in HelpTitle$ and HelpMsg$ .

PiXCL 5 command. Any of the above + 
_PREV or _APREV e.g.
NOCHANGEDIR_HLP_PREV

Displays the dialog with a Preview 
and information window. This is 
useful only if you are previewing 
supported image formats. _APREV
enables the preview mode 



automatically.

ChosenFile$ A string variable that will contain the chosen filename, including its path. If the user 
selects Cancel to leave the dialog, this variable is assigned a null string (" ").

HelpTitle$ The title of the Help Messagebox.
HelpMsg$ The help message that is displayed in the MessageBox.

Example: 

This program uses the FileGet command to prompt you for the name of a word processing file. After you specify a filename and 
choose OK, the program checks the filename's extension. If it's .PXL, a command line is built to launch Windows Write (for 
example, WRITE C:\WINDOWS\EXAMPE.WRI). For all other extensions, a command is built to launch Word for Windows.

The FileGet dialog box

Filt$ = "PiXCL Files(*.PXL),*.pxl,Write Files(*.WRI),*.wri"
FileGet(Filt$,"","\windows","",CHANGEDIR,ChosenFile$)
If ChosenFile$ = "" Then End
Right(ChosenFile$,3,Ext$) {Get file extension}
UCase(Ext$) {Convert to uppercase}
If Ext$ = "WRI" Then CmdLine$ = "write " + ChosenFile$ | Goto Run
CmdLine$ = "\winword\winword " + ChosenFile$

Run:
Run(CmdLine$)

Related Commands: 

DirGetSystem      FileSaveAs      ListBox



FileGetDate

Reads the date stamp in a file's directory entry.

Syntax: FileGetDate(Filename$,Year,Month,Day,Result)

Parameters: 
Filename$ The name of the file whose date you want to read. If the file is located outside the 

current directory or on a different drive, include a path preceding the filename. 

Year A 4 digit integer variable that will contain the year the file was last written.

Month An integer variable that will contain the month the file was last written (1 through 12).

Day An integer variable that will contain the day the filew was last written (1 through 31).

Result An integer variable that indicates the outcome of the operation. If the file was found 
and its date read, this variable is assigned a value of 1. Otherwise, it is assigned a 
value of 0.

Remarks: 

This command is handy when you are using PiXCL to create an install program and you need to check a file's date before 
overwriting it with a newer version.

Year, Month, and Day are returned in the format used in the directory display, but without any preceeding zeros.

Example: 

This program uses the FileGetDate command to check the date of CMD.EXE file in the Windows system directory. It then 
displays a message box showing the date in a form similar to 3-5-96.

{Get Windows system directory}
    DirGetSystem(SystemDir$)

{Add \CMD.EXE to end of it}
    Cmd$ = SystemDir$ + "\CMD.EXE"

{Get CMD.EXE's date}
    FileGetDate(Cmd$,Year,Month,Day,Result)

{Show date in message box}
    If Result = 1
        TextOut$ = "The file's date is "
        Str(Month,Month$)
        TextOut$ = TextOut$ + Month$
        TextOut$ = TextOut$ + "-"
        Str(Day,Day$)
        TextOut$ = TextOut$ + Day$
        TextOut$ = TextOut$ + "-"
        Str(Year,Year$)
        TextOut$ = TextOut$ + Year$

 Else
     TextOut$ = "File not found"



 Endif

Message:
    MessageBox(OK,1,INFORMATION,TextOut$,"File date",Ignore)

Related Commands:

FileGetDateExt, FileGetTime, FileGetTimeExt



FileGetDateExt

This function gets a file's date, returning all the day-related statistics offered by the file system.

Syntax:
 FileGetDateExt(Filename$,CREATION/LASTACCESS/LASTWRITE,
                              Year,Month,DayOfWeek,Day,Result)

Parameters: 
Filename$ The name of the file whose date you want to read. If the file is located outside the 

current directory or on a different drive, include a path preceding the filename. 

CREATION Causes PiXCL to return statistics relating to a file's day of creation.

LASTACCESS Causes PiXCL to return statistics relating to the day a file was last accessed.

LASTWRITE Causes PiXCL to return statistics relating to the day a file was last written.

Year An integer variable that will contain the file's year.

Month An integer variable that will contain the file's month    (1 through 12).

DayOfWeek An integer variable that will contain the file's day of the week; Sunday = 0, Monday = 
1, and similar.

Day An integer variable that will contain the file's day number in the month (1 through 31).

Result An integer variable that indicates the outcome of the operation. If the file was found 
and its date read, this variable is assigned a value of 1. Otherwise, it is assigned a 
value of 0.

Remarks: 

In Windows,    dates are measured from January 1st, 1601. Statistics are available for the creation date, last-access date, and 
last-write date. The FAT file system does not record the creation or last-access dates, but both the high-performance file system 
(HPFS) and the New Technology file system (NTFS) do.

If the file system doesn't record a particular form of date, it is returned as January 1, 1601.

Writing to a file changes the last-write date. Writing to or reading from the file (including running an executable file) changes the 
last-access date. 

Use the GetVolumeType command to determine the file system used by a drive.

Example:

This example reports the last-write, creation, and last-access dates for a chosen file. The figure below shows the results when 
the FAT file system is being used for the volume. You would see more extensive statistics for an HPFS or NTFS volume.



FileGetDateExt statistics for a FAT-system file

{Get a filename using common dialog}
    Set Filt$="All Files(*.*),*.*"
    FileGet(Filt$,"","","Choose a file",CHANGEDIR,ChosenFile$)
    If ChosenFile$="" Then End

{Show LASTWRITE date info on screen}
    FileGetDateExt(ChosenFile$,LASTWRITE,Year,Month,DayOfWeek,
                   Day,Result)

 UseFont("Arial",7,15,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
    DrawText(10,10,"CREATION")
    DrawText(10,20,"Year")
    DrawNumber(65,20,Year)
    DrawText(10,30,"Month")
    DrawNumber(65,30,Month)
    DrawText(10,40,"Day of Week")
    DrawNumber(65,40,DayOfWeek)
    DrawText(10,50,"Day")
    DrawNumber(65,50,Day)

{If file system is FAT, quit drawing now}
    Substr(ChosenFile$,3,1,RootDir$)
    GetVolumeType(RootDir$,VolumeType$,Ignore)
    If VolumeType$ = "FAT" Then Goto Wait_for_input

{Show LASTACCESS date info on screen}
    FileGetDateExt(ChosenFile$,LASTACCESS,Year,Month,DayOfWeek,
                   Day,Result)
    DrawText(90,10,"LASTACCESS")
    DrawText(90,20,"Year")
    DrawNumber(135,20,Year)
    DrawText(90,30,"Month")
    DrawNumber(135,30,Month)
    DrawText(90,40,"Day of Week")
    DrawNumber(135,40,DayOfWeek)
    DrawText(90,50,"Day")
    DrawNumber(135,50,Day)

{Show CREATION date info on screen}
    FileGetDateExt(ChosenFile$,CREATION,Year,Month,DayOfWeek,
                   Day,Result)
    DrawText(180,10,"LASTWRITE")
    DrawText(180,20,"Year")
    DrawNumber(225,20,Year)
    DrawText(180,30,"Month")
    DrawNumber(225,30,Month)
    DrawText(180,40,"Day of Week")



    DrawNumber(225,40,DayOfWeek)
    DrawText(180,50,"Day")
    DrawNumber(225,50,Day)

Wait_for_input:
    WaitInput()

Related Commands:

FileGetDate, FileGetTime, FileGetTimeExt, GetVolumeType



FileGetExpandedName

This command returns the name of a file that was compressed with the Microsoft utility compress.exe with the –r flag specified.

Syntax: FileGetExpandedName(CompressedName$, RealName$)

Parameters:
CompressedName$ The compressed file name ending in an underscore.
RealName$ The output file. If the input file is not a compressed file, RealName$ returns an empty string.

Related Commands:
FileLZExpand    



FileGetSize

Reads the file entry and returns the size of the file in bytes.

Syntax: FileGetSize(Filename$,Size)

Parameters: 
Filename$ The name of the file whose size you want to read. If the file is located outside the 

current directory or on a different drive, include a path preceding the filename. 

Size An integer variable that indicates the outcome of the operation. If the file was found, 
this variable is assigned its size in bytes. Otherwise, it is assigned a value of 0.

Remark: 

This command is handy when you are using PiXCL to create a backup program and you need to check on the size of the file.

Example: 

This program asks for a file, gets the size, then writes the name and size on to the client area. A destination disk is queried for 
available space, and if the file is smaller than the available space, it is copied to the destination disk. This example also gets the 
disk free space.

Initialize:
Set NewCaption$ = "Getting File Size"
UseCoordinates(PIXEL)
WinGetActive(OldCaption$)
WinTitle(OldCaption$,NewCaption$) 
WinLocate(NewCaption$,200,100,580,310, Res)  

SetMenu("Exit!",Run_Leave,
ENDPOPUP,
"Get File",Get_file,
ENDPOPUP)

Wait_for_input:
WaitInput()

Get_file:
Filter$ = “All Files(*.*),*.*”
InitDir$ = “C:\”
InitFile$ = “*.*”

   Label$ = “Select a file”
FileGet(Filter$,InitDir$,InitFile$,Label$,
      CHANGEDIR_EXIST, File$)
FileGetSize(File$,Size)
DrawBackGround
DrawText(10,10,File$)
DrawNumber(10,30,Size)

   Disk$ = “D:\”
GetDiskSpace(Disk$,Type$,Total,Free)
NewFile$ = Disk$ + File$
If Size < Free Then FileCopy(File$,NewFile$,Res)
Goto Wait_for_input

Run_Leave:



End

Related Commands:
FileGetSize64    GetDiskSpace



FileGetSize64

PiXCL 5.1 command. Reads the file entry and returns the size of the file in bytes. This command supports files larger than 2GB.
Note that 64 bit integer support in PiXCL 5 is limited. If there is a specific 64 bit command you need, please contact VYSOR 
Integration Inc. technical support with the details.

Syntax: FileGetSize64(Filename$,Size64#)

Parameters: 
Filename$ The name of the file whose size you want to read. If the file is located outside the 

current directory or on a different drive, include a path preceding the filename. 

Size64# A 64-bit integer variable that indicates the outcome of the operation. If the file was 
found, this variable is assigned its size in bytes. Otherwise, it is assigned a value of 0.

Related Commands:
DrawNumber64      Str64      Val64 
FileGetSize    GetDiskSpace



FileGetTempName 

It is often necessary to create a temporary filename while an application is running. The FileGetTempName command provides a
simple means to generate a unique temporary name, and a zero length file on your hard disk. PiXCL does not keep a record of 
these temporary files, nor does Windows. It is your responsibility to delete these temporary files when the application terminates,
with the FileDelete command.

Syntax: FileGetTempName(Directory$,Prefix$,Unique,TempFile$)

Parameters:
Directory$ The directory path for the filename. This string must consist of characters in the ANSI character 

set. Applications typically specify a period (.) i.e. the current directory, or the result of the 
GetTempPath command for this parameter. If this parameter is NULL, the command fails. 

Prefix$ A prefix string. The first three characters of this string are used as the prefix of the filename. This
string must consist of characters in the ANSI character set. 

Unique Specifies a positive integer that the function converts to a hexadecimal string for use in creating 
the temporary filename. 

If Unique is zero, the function uses a hexadecimal string derived from the current system time. In
this case, the function uses different values until it finds a unique filename, and then it creates 
the file in Directory$. 

If Unique is nonzero, the function appends the hexadecimal string to Prefix$ to form the 
temporary filename. In this case, the function does not create the specified file, and does not test
whether the filename is unique. 

TempFile$ The variable that receives the temporary filename. This string consists of characters in the ANSI 
character set. 

Related Commands:
GetTempPath    FileDelete 



FileGetTime

Reads the time stamp in a file's directory entry.

Syntax: FileGetTime(Filename$,Hours,Minutes,Seconds,Result)

Parameters: 
Filename$ The name of the file whose time you want to read. If the file is located outside the 

current directory or on a different drive, include a path preceding the filename. 

Hours An integer variable that will contain the hour the file was last written (0 to 23).

Minutes An integer variable that will contain the minute the file was last written (0 through 59).

Seconds An integer variable that will contain the second the file was last written (0 through 59).

Result An integer variable that indicates the outcome of the operation. If the file was found 
and its time read, this variable is assigned a value of 1. Otherwise, it is assigned a 
value of 0.

Remark: 

This command is handy when you are using PiXCL to create an install program and you need to check a file's time of creation 
before overwriting it with a newer version.

Example: 

This program is a variation of the one used for FileGetDate. It uses the FileGetTime command to check the time of the CMD.EXE
file in the Windows 95 or NT system directory, and then displays a message box showing the time in a form similar to 15:24:32.

{Get Windows NT system directory}
    DirGetSystem(SystemDir$)

{Add \CMD.EXE to end of it}
    Cmd$ = SystemDir$ + "\CMD.EXE"

{Get CMD.EXE's time}
    FileGetTime(Cmd$,Hours,Minutes,Seconds,Result)

{Show time in message box in the form HH:MM:SS}
    If Result = 1
    TextOut$ = "The file's time is "
    Str(Hours,Hours$)
    TextOut$ = TextOut$ + Hours$
    TextOut$ = TextOut$ + ":"
    Str(Minutes,Minutes$)
    TextOut$ = TextOut$ + Minutes$
    TextOut$ = TextOut$ + ":"
    Str(Seconds,Seconds$)
    TextOut$ = TextOut$ + Seconds$

 Else
 TextOut$ = "File not found"
 Endif

Message:



    MessageBox(OK,1,INFORMATION,TextOut$,"File time",Ignore)

The resulting MessageBox from the above script looks something like

Related Commands:

FileGetTimeExt, FileGetDate, FileGetDateExt



FileGetTimeExt

This function gets a file's time, returning all the time-related statistics offered by the file system.

Syntax:  FileGetTimeExt(Filename$,CREATION/LASTACCESS/LASTWRITE,
Hours,Minutes,Seconds,Milliseconds,Result)

Parameters: 
Filename$ The name of the file whose time you want to read. If the file is located outside the 

current directory, include a path preceding the filename. 

CREATION Statistics returned will relate to the file's time of creation.

LASTACCESS Statistics returned will relate to the time the file was last accessed.

LASTWRITE Statistics returned will relate to the time the file was last written.

Hours An integer variable that will contain the file's hour setting.

Minutes An integer variable that will contain the file's minute setting.

Seconds An integer variable that will contain the file's seconds setting.

Milliseconds An integer variable that will contain the file's milliseconds setting. (This setting is not 
offered in FAT-file systems.)

Result An integer variable that indicates the outcome of the operation. If the file was found 
and its time read, this variable is assigned a value of 1. Otherwise, it is assigned a 
value of 0.

Remarks:

Statistics are available for the creation time, last-access time, and last-write time. The FAT file system does not record the 
creation or last-access times, but both the high-performance file system (HPFS) and the New Technology file system (NTFS) do. 

If the file system doesn't record a particular form of time, the statistics returned by FileGetTimeExt are unpredictable. To guard 
against this, use the GetVolumeType command to determine the file system used by the drive before using FileGetTimeExt.

Writing to a file changes the last write time. Writing to or reading from the file (including running an executable file) changes the 
last access time. 

Example:

This example is a variation of the one shown for FileGetDateExt. It reports the last-write, last-access, and creation dates for a 
chosen file. In the case of a FAT-system file, only the last-write statistics are reported.

{Get a filename using common dialog}
    Set Filt$=

"All Files(*.*),*.*,Write Files(*.WRI),*.wri"
    FileGet(Filt$,"","","Choose a file",

CHANGEDIR,ChosenFile$)
    If ChosenFile$="" Then End



{Show LASTWRITE time info on screen}
    FileGetTimeExt(ChosenFile$,LASTWRITE,

Hours,Minutes,Seconds,Millisecs,Result)
    DrawText(10,10,"CREATION")
    DrawText(10,20,"Hours")
    DrawNumber(50,20,Hours)
    DrawText(10,30,"Minutes")
    DrawNumber(50,30,Minutes)
    DrawText(10,40,"Seconds")
    DrawNumber(50,40,Seconds)
    DrawText(10,50,"Millisec.")
    DrawNumber(50,50,Millisecs)

{If file system is FAT, quit drawing now}
    Substr(ChosenFile$,3,1,RootDir$)
    GetVolumeType(RootDir$,VolumeType$,Ignore)
    If VolumeType$ = "FAT" Then Goto Wait_for_input

{Show LASTACCESS timee info on screen}
    FileGetTimeExt(ChosenFile$,LASTACCESS,

Hours,Minutes,Seconds,Millisecs,Result)
    DrawText(90,10,"LASTACCESS")
    DrawText(90,20,"Hours")
    DrawNumber(130,20,Hours)
    DrawText(90,30,"Minutes")
    DrawNumber(130,30,Minutes)
    DrawText(90,40,"Seconds")
    DrawNumber(130,40,Seconds)
    DrawText(90,50,"Millisec.")
    DrawNumber(130,50,Millisecs)

{Show CREATION date info on screen}
    FileGetTimeExt(ChosenFile$,CREATION,

Hours,Minutes,Seconds,Millisecs,Result)
    DrawText(180,10,"LASTWRITE")
    DrawText(180,20,"Hours")
    DrawNumber(220,20,Hours)
    DrawText(180,30,"Minutes")
    DrawNumber(220,30,Minutes)
    DrawText(180,40,"Seconds")
    DrawNumber(220,40,Seconds)
    DrawText(180,50,"Millisec.")
    DrawNumber(220,50,Millisecs)

Wait_for_input:
    WaitInput()

Related Commands:

FileGetTime, FileGetDate, FileGetDateExt, GetVolumeType



FileLZExpand

Uncompresses a file that was compressed with the Microsoft utility compress.exe with the –r flag specified.

Syntax: FileLZExpand(CompressedName$, RealName$,Result)

Parameters:
CompressedName$ The compressed file name ending in an underscore.
RealName$ The output file. If the file exists it is overwritten.
Result 1 if the operation was a success, otherwise 0.

Related Commands:
FileGetExpandedName    



FileMove

Moves files from one directory to another. You can also move files across drives. 

Syntax: FileMove(SourceName$,DestinationName$,Result) 

Parameters: 
SourceName$ The name of the file you want to move. If the file is located outside the current 

directory or on a different drive, include a path preceding the filename. 

DestinationName$ The name of the target file. If the target file is to be located outside the current 
directory or on a different drive, include a path preceding the filename.

Result An integer variable that indicates the number of files moved, or 0 if the move operation
failed.

Remarks:

PiXCL's FileMove command observes many of the same shortcuts as Windows move command:

SourceName$ and DestinationName$ can contain wildcards (? and *).

You can specify a directory (path with no filename) for SourceName$ or DestinationName$. (Unlike previous versions of PiXCL, 
a "\" doesn't need to be present at the end of the directory name for the operation to be successful.)

* You can use a relative path (for example, "..\temp") or a fully qualified path for SourceName$ or DestinationName$.

The Result value indicates the number of files moved.    If the target filename already exists, the move command will fail, and 
Result will return 0. Hence it is always a good idea to check if the target filename already exists, and if necessary delete the old 
file before issuing the move command. Note that this is the same operating mode as the FileManager / Explorer.
 
You can use FileMove to move files to another drive.

Examples: 

This example shows how a way to deal with a target file that already exists.

Source$ = "C:\BACKUP\NEW_DATA.TXT" 
Dest$ = "C:\BACKUP\OLD_DATA.TXT"
FileExist(Dest$,Result)
If Result = 1 Then FileDelete(Dest$,Res)
FileMove(Source$,Dest$,Res)

Another example moves the file BUDGET.TXT from C:\BACKUP to D:\BACKUP: 

FileMove("C:\BACKUP\BUDGET.TXT","D:\BACKUP",Move_OK)
If Move_OK=0 Then Beep | End
MessageBox(OK,1,INFORMATION,"File(s) successfully moved",
           "",Temp)

If you change the FileMove command in the previous example as follows, PiXCL will move all the files in C:\BACKUP to    D:\
BACKUP:



FileMove("C:\BACKUP","D:\BACKUP",Move_OK)

Related Commands: 

FileRename, DirChange, DiskChange



FileRead_ASCII

With this command you can read arbitrary length records from anywhere in an ascii text file, such as image header metadata, or 
specific fields in formatted text files.

Syntax:  FileRead_ASCII(FileName$, Offset, FieldLength, Field$,Result)

Parameters:
FileName$ The name of the text file to be read.

Offset Zero based positive offset from the start of the text file where Field$ is to be read.

FieldLength Length of the field to be read. 

Field$ The actual data to be read. If Field$ does not exist it is created. If the operation fails, Field$ is set to a 
NULL string.

Result 1 if the operation succeeds, otherwise 0. This may be because the file does not exist.

Remarks:
Windows has the annoying habit of setting the current disk and directory when a file is accessed. If the file you are accessing is 
NOT in your application directory, you may need to use the DirChange command to reset the current disk and directory. 

Related Commands:

FileWrite_ASCII, Space



FileRead_ASCIIgrid

PiXCL 5 and geoPIXCL command. ASCII Grid Format: is a simple text-based format consisting of 5 lines of header information 
followed by rows of space delimited float point values. There can more than one space delimiter character between grid entries. 
Each line of ncols entries is terminated by a cr-lf pair. Due to the simple and relatively compact nature of this format, users who 
wish to import their own grid data into PiXCL and geoPiXCL should consider writing their data in this format and then importing it.

The following is a sample grid file to illustrate the manner in which an ASCII grid file can easily be constructed (do not include 
comments). The header names are lowercase.

ncols 10                        // number of columns
nrows 10                        // number of rows
xllcenter 1520000.0            //X Pos. of the center of the lower left node
yllcenter 6490000.0            //Y Pos. of the center of the lower left node
cellsize    50.0      //Cell spacing
42.7    41.4    39.7    41.3    38.3    38.6    39.9    38.1    37.8    37.2
41.4    39.7    41.3    38.3    38.6    39.9    38.1    37.8    37.2    36.6
41.3    38.3    42.7    41.4    39.7    38.6    37.8    37.2    39.9    38.1
39.9    38.1    37.8    37.2    42.7    41.4    39.7    41.3    38.3    38.6
42.7    38.6    39.9    38.1    41.4    39.7    41.3    38.3    37.8    37.2
42.7    41.4    39.7    41.3    38.3    38.6    39.9    38.1    37.8    37.2
41.4    39.7    41.3    38.3    38.6    39.9    38.1    37.8    37.2    36.6
41.3    38.3    42.7    41.4    39.7    38.6    37.8    37.2    39.9    38.1
39.9    38.1    37.8    37.2    42.7    41.4    39.7    41.3    38.3    38.6
42.7    38.6    39.9    38.1    41.4    39.7    41.3    38.3    37.8    37.2

Syntax: FileRead_ASCIIgrid(GridFile$,GridArray&[Size],Result)

Parameters:
GridFile$ The name of the file to be read into the array.
GridArray&[Size] The floating point array that is to be filled with the header information and grid data. Size is the 

number of elements in the array. The first five entries in the array are used to store the header 
values. The array has to have been previously created.

Result 1 of the array was filled, otherwise 0.

Example:
DirGet(SourceDir$)
GridFile2$ = SourceDir$ + "\ascii2.grid"
GridFile3$ = SourceDir$ + "\ascii3.grid"
GetASCIIgridDim(GridFile2$,nCols,nRows)
Size = nCols * nRows
Size += 5
Array(GridData&[Size],Size)
FileRead_ASCIIgrid(GridFile2$,GridData&[0],Res)
If Res = 1
    DebugMsgBox(GridData&[60] )
Else
    DebugMsgBox("Array size incorrect")
Endif
FileWrite_ASCIIgrid(GridFile3$,GridData&[0],1,Res)



Remarks:
Windows has the annoying habit of setting the current disk and directory when a file is accessed. If the file you are accessing is 
NOT in your application directory, you may need to use the DirChange command to reset the current disk and directory. 

Related Commands:
FileWrite_ASCIIgrid    GetASCIIgridDim 



FileRead_Binary

With this command you can read arbitrary length records from anywhere in an binary file. 

Syntax:  FileRead_Binary(FileName$,Offset,IntegerField,FWD|REV,Result)

Parameters:
FileName$ The name of the binary file to be read.

Offset Zero based positive offset from the start of the binary file where IntegerField is to be read.

IntegerField The actual data to be read. One 32 bit integer value is read. 

FWD|REV Read bytes in foreward or reverse direction into IntegerField. Most image file headers would use the 
FWD to extract accurate header values.

Result 1 if the operation succeeds, otherwise 0. This may be because the file does not exist, or you tried to read
an offset larger than the file length.

Remarks:
This command reads a single 32 bit integer value, with bytes in foreward or reverse order as they are written on the disk file i.e. 
REV order reads byte0-byte1-byte2-byte3. The integer value created is in the form byte3-byte2-byte1-byte0. Hence, if you 
read the first four bytes in a BMP file, in hex notation, 42 4d d6 e6, the integer returned will be    e6 d6 4d 42.

You can convert the integer to a hex string and back with the NumToHex and HexToNum commands, respectively.

Windows has the annoying habit of setting the current disk and directory when a file is accessed. If the file you are accessing is 
NOT in your application directory, you may need to use the DirChange command to reset the current disk and directory. 

Related Commands:

FileWrite_Binary  HexToNum    NumToHex    



FileRead_INI

With this command you can read any Win 3.1, Win 95/98 or Win NT system or private initialization file. The function is provided 
for Win 3.1 compatibility, as most new 32 bit applications use the Windows Registration Database. There are times however that 
you will want to create your own PiXCL application parameters, and keep them locally with the program.      You can also read the
INI files of other applications and extract useful information from them. For example, many applications keep a record of the 
window position, or the set of last files accessed. It can be very useful to have a PiXCL control or helper application access these
records.

A section in an initialization file must have the following form: 
[section]
key=string
      .
      .
      .

Syntax: FileRead_INI(FileName$, Section$, Key$, Return$)

Parameters: 

FileName$ String that names the initialization file. If this parameter does not contain a full path to 
the file, Windows searches for the file in the Windows directory. 

Section$ String that specifies the section containing the key name. Section$ is not case 
sensitive. If this parameter is NULL, the FileRead_INI(...) command copies all section 
names in the file to the Return$ string, separated by a "space". The ListBox function 
can be used to view or select these section names. If the section does not exist in the 
specified file, the Return$ value is "No section or key of that name!".

Key$ String containing the key name whose associated string is to be retrieved. If this 
parameter is NULL, the FileRead_INI(...) command copies all key names in the file to 
the Return$ string, separated by a "space". The ListBox function can be used to view 
or select these section names. If the key does not exist in the specified file, the 
Return$ value is "No section or key of that name!". If the key does exist, but has no 
entry, the Return$Return$ value is "No String".

Return$ The string that contains the returned INI file information. If Return$ = "" (i.e. a NULL 
string) the INI file read operation failed. A Return$ string cannot exceed 256 
characters, and longer strings will be truncated. Generally an INI string is a few 
characters on one line.

Remarks

If the string associated with Key$ is enclosed in single or double quotation marks, the marks are discarded when the 
FileRead_INI function retrieves the string. 

The FileExist command should ideally be used before the FileRead_INI command, just to make sure it really exists.    
FileRead_INI can also be used to read the WIN.INI file.

Windows has the annoying habit of setting the current disk and directory when a file is accessed. If the file you are accessing is 
NOT in your application directory, you may need to use the DirChange command to reset the current disk and directory. 

Example



The FileRead_INI command can be used to enumerate the Sections and Keys in any INI file, including those in the Windows 
directory. Here is a code fragment that gets an INI file, lists all sections, asks you to select a section then a key, and returns the 
located key string.

read_INI:
DirGet(SourceDir$)
Filter$ = "INI Files(*.ini),*.ini"
InitFile$ = "*.ini"
InitDir$ = SourceDir$
Caption$ = "Select an INI file to read"
FileGet(Filter$, InitFile$, InitDir$, Caption$,
    CHANGEDIR_EXIST,Ini_File$)
If Ini_File$ = "" Then Goto Wait_for_input

Section$ = ""
Key$ = ""

FileRead_INI(Ini_File$,Section$,Key$,Res$)
ListBox("All Sections requested",Res$," ",Rsl$)
If Rsl$ = "" Then Goto Wait_for_Input
Section$ = Rsl$

FileRead_INI(Ini_File$,Section$,Key$,Res$)
ListBox("All Keys requested",Res$," ",Rsl$)
If Rsl$ = "" Then Goto Wait_for_Input
Key$ = Rsl$
FileRead_INI(Ini_File$,Section$,Key$,Res$)
Label$ = "Requested Key String for ' " + Key$
Label$ = Label$ + "= '"
MessageBox(OK,1,INFORMATION,Res$,Label$,Res)
Goto Wait_for_input

Related Commands: 

FileWrite_INI, FileExist



FileRecycle

PiXCL 5 command. You can delete a file by sending it to the Recycle Bin rather than permanently deleting it from you disk.

Syntax: FileRecycle(Filename$,Result)

Parameters:
Filename$ The name of the file or files to be moved to the Recycle Bin.
Result 1 if the operation was sucessful, otherwise 0.

Releted Commands:
FileDelete 



FileRename

Changes the name of one or more files.

Syntax: FileRename(SourceName$,DestinationName$,Result) 

Parameters: 
SourceName$ The name of the file you want to rename. If the file is located outside the current 

directory or on a different drive, include a path preceding the filename.

DestinationName$ The new name for the file. If the target file is to be located outside the current 
directory or on a different drive, include the path preceding the filename.

Result An integer variable that indicates the number of files renamed, or 0 if the rename
operation fails.

Remarks: 

The FileRename command is identical to the FileMove command in all respects. See the section on FileMove for additional 
information. 

· If a file already exists under the new name in the destination location, FileRename will NOT overwrite it. You would 
need to delete the target file first.

· FileRename lets you rename files between paths and drives. 

Example:

This example shows how a way to deal with a target file that already exists.

Source$ = "C:\BACKUP\NEW_DATA.TXT" 
Dest$ = "C:\BACKUP\OLD_DATA.TXT"
FileExist(Dest$,Result)
If Result = 1 Then FileDelete(Dest$,Res)
FileRename(Source$,Dest$,Res)

This example renames the file WINNOTES.TXT in the C:\WINDOWS directory to WINNOTES.BAK:

FileRename("C:\WINDOWS\WINNOTES.TXT",
"C:\WINDOWS\WINNOTES.BAK", Renamed)

If Renamed=0 Then Beep | End
MessageBox(OK,1,INFORMATION,

"WINNOTES successfully renamed","",Temp)

Related Commands: 

FileMove, DirChange, DiskChange



FileSaveAs

Gets a filename for a Save operation using the same FileSave common dialog box that appears in most Windows applications. 
This uses the same syntax as FileGet, and is actually the same common dialog with slight changes in text. This command does 
NOT actually save a file, but gets the desired name for a save operation, perhaps with FileWrite_INI, FileWrite_ASCII or 
SaveBitmap.

Syntax:    FileSaveAs(Filter$,InitialFile$,InitialDir$,Caption$,
    FileSaveAs_TOKEN,ChosenFile$ [, HelpTitle$, HelpMsg$ ] )

Parameters: 
Filter$ A string containing pairs of comma-delimited filter elements. The first element in 

each pair is text describing the filter (for example, "Write Files"), and the second 
element specifies the filter pattern (for example, "*.wri"). You can specify multiple
patterns for an element by separating them with a semicolon (for example, 
"*.txt;*.asc;*.pxl"). If you use a null string (" ") for Filter$, the dialog box will not 
display any filters.

InitialFile$ A string containing the filename you want to use to initialize the File Name edit 
control. If you don't want an initial file to appear, specify a null string.

InitialDir$ A string containing the initial directory you want to look at. If you want the current
directory to be the initial directory, specify a null string.

Caption$ The text you want to appear in the title bar of the dialog box. If you specify a null 
string, PiXCL uses "Select a file".

FileSaveAs_TOKEN Determines what happens to the current directory setting on leaving the dialog 
box and must be one of the following tokens:

CHANGEDIR On exit of the command, change the current 
disk\directory to the selected directory from 
the initial directory specified. This will affect 
the result of a DirGet() command.

CHANGEDIRMULTI Enables file multi-select operations.

CHANGEDIR_EXIST Checks if the file and path exists. An error 
dialog appears if the file cannot be located.

CHANGEDIRMULTI_EXIST Combination of the above.
NOCHANGEDIR If a new disk\directory was selected,    do not 

change the current directory setting.
NOCHANGEDIRMULTI Enables file multi-select operations.
NOCHANGEDIR_EXIST Checks if the file and path exists. An error 

dialog appears if the file cannot be located. 
NOCHANGEDIRMULTI_EXIST Combination of the above.
Any of the above + _HLP
PiXCL 5: Any of the above + 
_PROMPT e.g.
CHANGEDIR_HLP_PROMPT

Displays the dialog with a Help button that 
displays a Messagebox with custom text and 
title supplied in HelpTitle$ and HelpMsg$ .
_PROMPT displays a dialog if the filename 
entered or selected to be saved already 
exists.

ChosenFile$ A string variable that will contain the chosen filename, including its path. If the 
user selects Cancel to leave the dialog, this variable is assigned a null string 
(" ").

HelpTitle$ The title of the Help Messagebox.



HelpMsg$ The help message that is displayed in the MessageBox.

Related Commands: 

DirGetSystem, ListBox



FileWrite_ASCII

With this command you can write arbitrary length records to anywhere in an ascii text file, such as image header metadata, or 
specific fields in formatted text files. You can also create ‘space’ filled string variables with the Space() command, then write the 
file to disk.

Syntax: FileWrite_ASCII(FileName$, Offset, FieldLength, 
Field$,Result)

Parameters:
FileName$ The name of the text file to be written. If    FileName$ does not exist, it is created.

Offset Zero based positive offset into the text file from the beginning of the file where Field$ is to 
be written.

FieldLength Length of the field to be written. This will usually be the same as the length of Field$.

Field$ The actual data to be written.

Result 1 if the operation succeeds, otherwise 0. 

Remarks:
If the offset into the file is before the EOF (end-of-file) marker, the Field$ data overwrites the field in the text file.    If the offset is 
past the EOF, the region between the EOF (which is replaced), and the offset is filled with ‘space’ characters. Field$ is then 
appended to the file.

Windows has the annoying habit of setting the current disk and directory when a file is accessed. If the file you are accessing is 
NOT in your application directory, you may need to use the DirChange command to reset the current disk and directory. 

Related Commands:

FileRead_ASCII, Space



FileWrite_ASCIIgrid

PiXCL 5 and geoPIXCL command. ASCII Grid Format: is a simple text-based format consisting of 5 lines of header information 
followed by rows of space delimited float point values. There can more than one space delimiter character between grid entries. 
Each line of ncols entries is terminated by a cr-lf pair. Due to the simple and relatively compact nature of this format, users who 
wish to import their own grid data into PiXCL and geoPiXCL should consider writing their data in this format and then importing it.

The following is a sample grid file to illustrate the manner in which an ASCII grid file can easily be constructed (do not include 
comments). The header names are lowercase.

ncols 10                        // number of columns
nrows 10                        // number of rows
xllcenter 1520000.0            //X Pos. of the center of the lower left node
yllcenter 6490000.0            //Y Pos. of the center of the lower left node
cellsize    50.0      //Cell spacing
42.7    41.4    39.7    41.3    38.3    38.6    39.9    38.1    37.8    37.2
41.4    39.7    41.3    38.3    38.6    39.9    38.1    37.8    37.2    36.6
41.3    38.3    42.7    41.4    39.7    38.6    37.8    37.2    39.9    38.1
39.9    38.1    37.8    37.2    42.7    41.4    39.7    41.3    38.3    38.6
42.7    38.6    39.9    38.1    41.4    39.7    41.3    38.3    37.8    37.2
42.7    41.4    39.7    41.3    38.3    38.6    39.9    38.1    37.8    37.2
41.4    39.7    41.3    38.3    38.6    39.9    38.1    37.8    37.2    36.6
41.3    38.3    42.7    41.4    39.7    38.6    37.8    37.2    39.9    38.1
39.9    38.1    37.8    37.2    42.7    41.4    39.7    41.3    38.3    38.6
42.7    38.6    39.9    38.1    41.4    39.7    41.3    38.3    37.8    37.2

Syntax: FileWrite_ASCIIgrid(GridFile$,GridArray&[Size],DecimalPlaces,Result)

Parameters:
GridFile$ The name of the grid file to be create from the array. Existing files of the same name are 

overwritten.
GridArray&[Size] The floating point array that is to used to write the header information and grid data. Size is the 

number of elements in the array. The first five entries in the array are used to store the header 
values. 

DecimalPlaces The number of decimal places that grid data is to be written into GridFile$.
Result 1 of the file was written, otherwise 0.

Example:
DirGet(SourceDir$)
GridFile2$ = SourceDir$ + "\ascii2.grid"
GridFile3$ = SourceDir$ + "\ascii3.grid"
GetASCIIgridDim(GridFile2$,nCols,nRows)
Size = nCols * nRows
Size += 5
Array(GridData&[Size],Size)
FileRead_ASCIIgrid(GridFile2$,GridData&[0],Res)
If Res = 1
    DebugMsgBox(GridData&[60] )
Else
    DebugMsgBox("Array size incorrect")
Endif



FileWrite_ASCIIgrid(GridFile3$,GridData&[0],1,Res)

Remarks:
Windows has the annoying habit of setting the current disk and directory when a file is accessed. If the file you are accessing is 
NOT in your application directory, you may need to use the DirChange command to reset the current disk and directory. 

Related Commands:
FileRead_ASCIIgrid    GetASCIIgridDim 



FileWrite_Binary

With this command you can write 32 bit integer records to anywhere in a binary file, such as image headers, or specific fields in 
binary files. 

Syntax: FileWrite_Binary(FileName$,Offset,IntegerField, FWD|REV,Result)

Parameters:
FileName$ The name of the binary file to be written. If FileName$ does not exist, it is created

Offset Zero based positive byte offset into the binary file from the beginning of the file where the 
IntegerField    is to be written. If Offset    is past the EOF, the file is zero-filled past the EOF 
to the offset point, where IntegerField    is written.

IntegerField The actual data to be written. Note that IntegerField is a variable, not a static field. Using a 
static number will result in a syntax error.

FWD|REV Write bytes in foreward or reverse direction from IntegerField.

Result The number of bytes written if the operation succeeds, otherwise 0. The usual value is 4 
(for integers) except when a new file has been created, when the value is Offset + 4.

Remarks:
This command writes to the disk file a single 32 bit integer value, with bytes in the selected order as they are stored in the integer
i.e. in reverse order byte3-byte2-byte1-byte0. The disk file entries written are in the form byte0-byte1-byte2-byte3. Hence, if 
the integer stored in memory is, in hex notation,    e6 d6 4d 42, the file will be written 42 4d d6 e6.

You can convert the integer to a hex string and back with the NumToHex and HexToNum commands, respectively.

This command is not designed to be used for large binary edit operations, as it allows one integer value to written per call. PiXCL
does not currently support integer arrays, so writing large integer files is not possible, except by zero-filling, as shown below. If 
binary editting is needed, there are many products available on the Internet that do this, ot the MS-DOS Debug utility can be 
used.

Windows has the annoying habit of setting the current disk and directory when a file is accessed. If the file you are accessing is 
NOT in your application directory, you may need to use the DirChange command to reset the current disk and directory. 

Examples:
It is possible to create an arbitary sized zero filled binary file by specifiying a suitable offset, as shown in this code fragment. The 
resulting file will be 1024 bytes long, filled with zeros, and hex value F6B2003A at offset 128.
MakeBinaryFile:

Value = 0
FileWrite_Binary(Filename$,1020,Value,FWD,Res)
FileGetSize(Filename$,Size)
DrawNumber(10,10,Size)
HexToNum("F6B2003A",Value)
FileWrite_Binary(Filename$,128,Value,FWD,Res)
Goto Wait_for_Input

Related Commands:
    
FileRead_Binary    HexToNum    NumToHex        





FileWrite_INI

PiXCL provides you with the ability to write any system or application INI file, as well as creating or updating your own INI 
parameter files.    A PiXCL application or helper utility for a graphics program may need to first access an INI file to set the 
working image directory, or window frame coordinates.

WARNING: Writing other application INI files, and esspecially system INI files, can cause problems if the data written is 
incorrect. It is quite possible to make severe enough errors to require re-installation of software. Please, be sure you fully 
understand the effects of your changes. The best approach is to make copy of the target INI file while you are experimenting. If 
you make a mistake, all you need do is copy the backup file to the target filename.

Syntax: FileWrite_INI(INI_file$, Section$, Key$,String$,NOWARN|WARN,Return)

Parameter: 

INI_file$ String that names the initialization file. If this parameter does not contain a full 
path to the file, Windows searches for the file in the Windows directory. 

Section$ String that specifies the section containing the key name. Section$ is not case 
sensitive. If the section does not exist, it is created. The name of the section is 
case-independent;    the string can be any combination of uppercase and 
lowercase letters. 

Key$ String containing the name of the key to be associated with a string. If the key 
does not exist in the specified section, it is created. If Key$ is NULL, the entire 
section, including all entries within the section, is deleted. 

String$ The string to be written to the file. If this parameter is NULL, the key pointed to 
by the Key$ parameter is deleted.    A String$ variable cannot exceed 256 
characters. Generally an INI string is a few characters on one line.

NOWARN|WARN Disables or enables the display of a messagebox when INI data is to be deleted. 
See Remarks below. In most cases you will use the NOWARN token. WARN 
should be used when system INI files are being written.

Result 0 if the write operation failed, otherwise is 1.

Remarks: 
If the Key$ or String$ parameter is NULL, and the WARN token is used, a messagebox automatically appears warning you that 
you are about to delete INI file data, and that system instability is possible if you are accessing the Windows INI files such as 
SYSTEM.INI and WIN.INI.      The messagebox provides an OK button and a Cancel button. Pressing the Cancel button will abort
the FileWrite_INI operation, and the Result variable is set to 0.

Example:
write_INI:

DirGet(SourceDir$)
Filter$ = "INI Files(*.ini),*.ini"
InitFile$ = "*.ini"
InitDir$ = SourceDir$
Caption$ = "Select an INI file to write"
FileGet(Filter$, InitFile$, InitDir$, Caption$,
    CHANGEDIR_EXIST,Ini_File$)
If Ini_File$ = "" Then Goto Wait_for_input

Section$ = "V-image"
Key$ = "NewKey"



String$ = ""

FileWrite_INI(Ini_File$,Section$,Key$,String$,NOWARN,Res)
If Res = 0 Then Beep
Goto Wait_for_input

Remarks:
Windows has the annoying habit of setting the current disk and directory when a file is accessed. If the file you are accessing is 
NOT in your application directory, you may need to use the DirChange command to reset the current disk and directory. 

Related Commands:

FileRead_INI 



FillArray

PiXCL 5 command. An array can be filled or partially filled with an initial value or string.

Syntax: FillArray(ArrayVariable[Start_Index],Value$|Value|Value&,Filled)

Parameters:
ArrayVariable The array variable to be filled.
Start_Index The element index from which the fill operation starts.
Value$|Value|Value& The initialization value. It’s type must match the array type.
Filled Numeric variable. On entry, the number of elements to fill, and on exit the number of elements 

filled.

Related Commands:
CopyArray    



FindExecutable

Windows keeps track of file associations for a standard list of file types, and those files that you add yourself. For example, .TXT 
files are generally associated with the NotePad utility. Hence, if you double click a .TXT file, NotePad is automatically started by 
Windows.    The FindExecutable command provides you with a method of identifying the associated EXE file.

Syntax: FindExecutable(File$,Path$,EXE_File$,Result)

Parameters:
File$ The specific file for which you want the associated EXE. The full path and name is 

required.
Path$ The path from which the search is to be started. This can be left as NULL string if 

required.
EXE_File$ The full path and name of the associated EXE if one has been defined. If the file or the

association does not exist,    EXE_File$ returns a NULL string.
Result 1 if the command is successful, or 2 if the file cannot be found, or 3 if the Path cannot 

be found.

Example:
This code fragment returns the associated EXE Files.

FindingEXEfiles:
DrawBackground
FindExecutable("f:\html\netboxes.pxl","",EXE_File$,Res)
DrawText(10,10,EXE_File$)
FindExecutable("i:\p40toolr\mmm.wav","",EXE_File$,Res)
DrawText(10,35,EXE_File$)
Goto Wait_for_Input

Related Commands:
Run , RunExt , FileExist 



FindFile

The FindFile command provides you with a method of quickly locating any file on your system, for those times when you know 
the file is somewhere on a disk, but you can’t recall where.

Syntax: FindFile(File$,Path$, FoundFile$,Result)

Parameters:
File$ The specific filename, with extension.
Path$ The path from which the search is to be started. This can be left as NULL string if 

required.
FoundFile$ The full path and name of the file. If the file does not exist, FoundFile$ returns a NULL 

string.
Result 1 if the command is successful, or 2 if the file cannot be found, or 3 if the Path cannot 

be found.

Example:
This code fragment returns the associated EXE Files.

FindingEXEfiles:
DrawBackground
FindFile("f:\html\netboxes.pxl","",File$,Res)
DrawText(10,10,File$)
Goto Wait_for_Input

Related Commands:
Run , RunExt , FileExist    FindExecutable 



FlashBMWindow

Bitmap windows are child windows within the PiXCL client area, and the created state of the title bar is inactive. If you left or right
click on any bitmap window, its titlebar will be highlighted. If you want to highlight the titlebar under program control, for example, 
to indicate to the user that this bitmap window should be considered the active one, the FlashBMWindow command is used.

You can also use the FlashBMWindow command to set group of bitmap windows to active state.

Syntax: FlashBMWindow(WindowID, TOGGLE | RESET)

Parameters:
WindowID The bitmap window ID returned from a DrawBitmapWindow command.
TOGGLE Change the state of the bitmap window title bar e.g. inactive becomes active.
RESET Reset the state of the bitmap window title bar.

Related Commands:
CloseBitmapWindow , DrawBitmapWindow , SetBMWMouse 



Float

Convert an Integer value into a floating point point variable.

Syntax: Float(Number,FpNumber&)

Parameters:
Number The integer value.
FpNumber& The resulting floating point number.

Related Commands:
Int    Double        



For-Next Loops

PiXCL supports the structured FOR loop, as follows.

Syntax: For variable=n|variable To m|variable [By p|variable]
       ... commands
        If <condition> Then Break {optional}
        ... commands
Next

Example:
See the sample program ForWhile.pxl for a detailed example.

Remarks:
PiXCL commands within a For-Next loop do not need to be indented, but we recommend that that you do for clarity.

If the By keyword and variable are omitted, the By value defaults to 1. Inserting a Break command within a For-Next loop will 
break out of the loop. If a Break command is located outside of a For-Next or While loop, it is ignored.

Related commands:
If-Then    While Loops



FpAbs

Returns the absolute value of a floating point number.

Syntax: FpAbs(FpNumber&,AbsNumber&)

Parameters:
FpNumber& The floating point number to convert.
AbsNumber& The resulting absolute value.

Related Commands:
Negate 



FpStr

Converts a floating point number into a string.

Syntax: FpStr(FpNumber&,Number$)

Parameters:
FpNumber& The floating point number to convert.
Number$ The resulting string.

Related Commands:
Float  FpVal  Int  Str  Val 



FpStr64

Converts a double number into a string.

Syntax: FpStr64(FpNumber#&,Number$)

Parameters:
FpNumber#& The double number to convert.
Number$ The resulting string.

Related Commands:
Float  FpVal  Int  Str  Val 



FpVal

Converts a floating-point string into a floating-point variable. If the string cannot be converted to a valid value, the operation fails.

Syntax: FpVal(FpNumber$,FpNumber&,Result)

Parameters:
FpNumber$ The floating point string to convert.
FpNumber& The resulting floating point variable.
Result 1 if the operation was successful, otherwise 0, and FpNumber& is set to 0.0.

Related Commands:
Float  FpVal  Int  Str  Val 



FpVal64

PiXCL 5.1 command. Converts a floating-point string into a floating-point variable. If the string cannot be converted to a valid 
value, the operation fails.

Syntax: FpVal64(FpNumber$,FpNumber#&,Result)

Parameters:
FpNumber$ The floating point string to convert.
FpNumber#& The resulting double variable.
Result 1 if the operation was successful, otherwise 0, and FpNumber#& is set to 0.0.

Related Commands:
Float  FpVal  Int  Str  Val 



FreeArrayVar    FreeArrayVarAll

PiXCL 5 command. If an array is no longer required, it should be freed and the memory returned to Windows. When a PIXCL 
application exits, it automatically frees all array memory. All array variables can be removed from memory if needed.

Syntax: FreeArrayVarAll
Syntax: FreeArrayVar(ArrayVariableName[0])

Parameter:
ArrayVariableName[0] The name of the array created by the Array command. The [0] is required, or a syntax error will 

be caused.

Remarks:
The command FreeVar is used to remove a string variable record from the internal list and return the memory to Windows. Using
FreeVar on a string array element has no effect. You can set a string array element to an empty (" ") string. 

Related Commands:
Array    FreeVar FreeVarAll FreeBitmap    FreeBitmapAll 



FreeBitmap

Removes a bitmap (both FULL and PREVIEW modes) from memory and recovers the memory it occupied. 

Syntax: FreeBitmap(Filename$)

Parameter: 
Filename$ The filename of the bitmap file you want to free. (The same name used with DrawBitmap.)

Remarks: 

When you use the DrawBitmap command to place a bitmap in an PiXCL window, PiXCL stores the bitmap image in Windows 
global memory, as well as in the application memory and display contexts. These contexts are, in effect, the actual PiXCL 
window as you see it, one stored somewhere in global memory (the memory context), and the other on your video card memory 
(the display context). When your script ends, PiXCL removes the bitmap(s) from memory and recovers the space it occupies. 

In most cases,    we advise you to remove a bitmap from memory once you have loaded the image file. In most cases, this will 
not have an undesirable effects. What this approach does is free up the image file global memory, while leaving the memory and 
display contexts alone.

If you are retrieving the same bitmap from disk and the disk bitmap has changed from the bitmap in program memory, you MUST
use FreeBitMap before you reload with DrawBitmap, or else the original bitmap in the memory context will be displayed.
e.g.

BitMap$ = "C:\images\bitmap.bmp"
DrawBitMap(10,10,BitMap$) {line#1)
... bitmap on disk is replaced ...
DrawBitMap(10,10,BitMap$) {line#2}

will result in the original bitmap in line#1 being redrawn at line#2. The correct code is

BitMap$ = "C:\images\bitmap.bmp"
DrawBitMap(10,10,BitMap$) {line#1)
... bitmap on disk is replaced ...
FreeBitMap(BitMap$) {extra line}
DrawBitMap(10,10,BitMap$) {line#2}

The only time you might not want to use the FreeBitmap command is when you are drawing a bitmap repeatedly within an PiXCL
window. In this case, using FreeBitmap will require PiXCL to retrieve the bitmap from disk again, which depending on the 
bitmap's size may cause a visible delay.

Example:

This example draws the 256COLOR located in the Windows directory starting at the point (5,5) in the PiXCL window. It then 
pauses for three seconds and removes the bitmap from memory. When you run this program, you'll notice that the bitmap does 
not disappear from the window when the FreeBitmap command is executed. Instead it remains in view until you close the PiXCL 
window.

DirGetWindows(WindowsDir$)
Bitmap$ = WindowsDir$ + "\256color.bmp"
DrawBitmap(5,5,Bitmap$)
WaitInput(3000)        {Pause for 3 seconds}
FreeBitmap(Bitmap$)    {Recover memory}



WaitInput()

Related Commands:

FreeBitmapAll, DrawBitmap, DrawSizedBitmap, SetColorPalette



FreeBitmapAll

Removes all bitmaps from memory and reclaims the memory they occupied.

Syntax: FreeBitmapAll

Remark:

See the FreeBitmap command for the rationale behind this command.

Related Commands:

FreeBitmap, DrawBitmap, DrawSizedBitmap



FreeConsole

PiXCL 5 Command. Use this command to close an existing console window.

Syntax: FreeConsole(Result)

Parameter:
Result 1 if the operation was successful, otherwise 0.

Related Command
ShowConsole    



FreeVar

Removes a string variable from the string variable list and recovers the memory it occupied.

Syntax: FreeVar(String$)

Parameter: 
String$ The name of the string variable you want to free.

Remarks: 

PiXCL stores string variables in Windows global memory. If you are working with a great many string variables and memory is 
getting low, you may find it useful to free string variables when they are no longer needed so that the memory can be reused 
elsewhere. Once a PiXCL program exits, all string memory assigned during operation is freed.

Example:

This program creates a string variable and immediately frees it.

Street$ = "10921 Reed Hartman Highway"
FreeVar(Street$)

Related Commands: 

FreeVarAll, FreeBitmap, FreeBitmapAll 



FreeVarAll

Removes all string variables from the string variable list and reclaims the memory they occupied.

Syntax: FreeVarAll

Remark:

See FreeVar for a description of how PiXCL stores string variables.

Related Commands: 

FreeVar, FreeBitmap, FreeBitmapAll 



GeoPiXCLDLLAbout

GeoPIXCL command. This command is used to display the About box from a geoPiXCL DLL as a version check.

Syntax: GeoPiXCLDLLAbout(DLLName$,Result)

Parameter:
DLLName$ One of PXLgeofn.dll or PXLgeofm.dll or PXLshape.dll or PXLgeotif.dll or PXLblobs.dll.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
None



GetASCIIgridDim

PiXCL 5 and geoPiXCL command. You can get the number of entries in an ASCII grid file, so an an array of the correct size 
can be created.

Syntax: GetASCIIgridDim(GridFile$,nCols,nRows)

Parameters:
GridFile$ The name of the file to be read into the array.
nCols, nRows The values read from the grid file. If an error occurs, these return 0.

Related Commands:
FileRead_ASCIIgrid    FileWrite_ASCIIgrid    



GetArraySize

PiXCL 5 command. Check the size of an array.

Syntax: GetArraySize(ArrayVariable[0],Size)

Parameters:
ArrayVariable[0] The array to check.
Size The number of elements in the array.

Related Commands:
Array    CopyArray    FreeArrayVar FreeArrayVarAll    



GetBackground

You can retrieve the current background color, either the default color which is set when PiXCL starts, or the color set by the 
previous UseBackground command. The RGB values can be used as needed in other commands that specify colors.

Syntax: GetBackground(Red,Green,Blue)

Parameters:
Red The red value, in the range 0 - 255.
Green The green value, in the range 0 - 255.
Blue The blue value, in the range 0 - 255.

Example:
The following program fragment retrieves the current backrgound colors, then adjusts the colors, before issuing the 
Usebackground and DrawBackground commands.

Backgrounds:
GetBackground(Red, Green, Blue)
Red += 23
Green += 44
Blue += 11
UseBackground(TRANSPARENT, Red, Green, Blue)

  DrawBackground
Goto Wait_for_Input

Related Commands
UseBackground, ChooseColor, ChooseFont, DrawBackground , UsePen, UseBrush 



GetBitMapDim

These two commands get the dimensions of a bitmap from the disk, or from an image loaded into the PiXCL image list.

Syntax: GetBitMapDim(Filename$,Lines,Pixels,BitsPerPixel)
GetListBitMapDim(Filename$,Lines,Pixels,BitsPerPixel)

Parameters:

Filename$ The name of the bitmap to be read. You should check that the file exists before using 
this command.

Lines The number of lines in the bitmap. Lines returns 0 if the file cannot be read or and 
invalid image format.

Pixels The number of pixels per line. Pixels returns 0 if the file cannot be read or is an invalid 
format.

BitsPerPixel The number of bits per pixel: this will be either 1, 4, 8,    24 or 32. Any other number is 
considered an error condition. 

Example:

The following program fragment requests a bitmap file, accesses the header, then writes the return data to the client area. Note 
how the CHANGEDIR_EXIST token is used to ensure that the file actually exists. An alternative is to use the FileExist command 
before the GetBitMapDim command.

File_Open:
Filter$ = "All files(*.bmp),*.bmp"
InitFile$ = "*.bmp"
InitDir$ = SourceDir$
Label$ = "Test of GetBitMapDim"
FileGet(Filter$,InitFile$,InitDir$,Label$,

     CHANGEDIR_EXIST,Chosen$)
If Chosen$ = "" Then Goto Wait_for_Input

GetBitMapDim(Chosen$,Lines,Pixels,Bits)

DrawBackground
DrawNumber(10,10,Lines)
DrawNumber(10,30,Pixels)
DrawNumber(10,50,Bits)

Goto Wait_for_Input
Remarks:
GetListBitmapDim sets the internel PiXCL pointer to the current bitmap, as do the LoadBitmap and DrawBitmap commands. If 
you load multiple bitmaps, get the dimensions of one of the loaded images, then want to, for example, perform an image 
processing operation of the last loaded image, you must use the SetCurrentBitmap command or DrawImage first.
Related Commands: 

DrawBitMap, DrawSizedBitMap, FreeBitmap, FreeBitmapAll 





GetBitmapResolution

An image loaded into or created in the PiXCL image list can have a print resolution value in dots per inch (DPI) set. The default 
setting is 0, that is, no resolution information is used. This is only relevent when the image is saved to a format that supports a 
resolution value in the file header (e.g. BMP and TIF).

The relationship between DPI and image size is intrinsic to the term – Dots Per Inch--- (really pixels per inch). If you scan 
something at 400 DPI the resulting file literally has 400 dots (pixels) per linear inch of the scanned dimensions. If the dimensions 
of the image are 4x6 inches it means you have 4x 400 pixels by 6x400 pixels of image data. The DPI of your monitor however is 
=constant= at only 72 to 100 DPI . You cannot squeeze these screen pixels into a higher density to view a 400dpi image. The 
result has to be that the pixels in your scanned image must be spread out over a wider area... ie 4x400=1600 pixels, divided by 
72 pixels per inch equals an on screen size of 22 inches at 72dpi instead of the 4 inches it would be at 400dpi.

Note that with the current version of the PXLimage library, any resolution information in a read disk bitmap (BMP or TIF) is not 
copied to the loaded bitmap. Use the SetBitmapResolution command to do this.

Syntax: GetBitmapResolution(Xdpi, Ydpi)

Parameters:
Xdpi, Ydpi The dots per inch in the X and Y axes.

Related Commands:
SetBitmapResolution 



GetBMWZoom

Use this command to get the current zoom factor string from a bitmap window.

Syntax: GetBMWZoom(WindowID,Zoom$)

Parameters:
WindowID The ID returned from a DrawBitmapWindow command.
Zoom$ The zoom factor returned as a string e.g. “ [2.50:1]“

Example:
This code fragment gets the current zoom factor string and updates the bitmap window titlebar string.
BMWzoomer:

GetBMWZoom(WinID_1,Zoom$)
Msg$ = ImageFile1$ + Zoom$
BMWinTitle(WinID_1,Msg$)
Goto Wait_for_Input

Related Commands:
BMWinTitle    DrawBitmapWindow    ZoomBitmapWindow 



GetClipCursor

PiXCL 5 command. The GetClipCursor function returns the virtual screen coordinates of the rectangular area in which the 
cursor is active. 

Syntax: GetClipCursor(sx1,sy1,sx2,sy2)

Parameters:
sx1,sy1,sx2,sy2 The screen coordinates of the active region. 

Remarks:

The cursor is a GLOBAL resource, so unless you want to leave the clip region active for all other applications, your PiXCL 
application must include ClipCursor(0,0,0,0) to reset the default.

Related Commands:

ClipCursor    



GetCmdLine

It is possible to pass any number of command line arguments to any PiXCL program. These arguments are typically filenames 
and program control parameters. 

Syntax: GetCmdLine(CommandLine$)

Parameters:
CommandLine$) The complete command line including the path and the application name is returned in

this string variable. e.g. 
”C:\APPS\PXL_APP.EXE” arg#1 arg#2 arg#3.

The various arguments can be separated into their own string variables using the string commands available in PiXCL.

Remarks:
The path and name of the executable is returned surrounded with quotes (”) while the arguments are separated by one or more 
space characters, as shown above.    If you are intending to use a filename argument for some purpose, you will need to ensure 
that any leading or trailing spaces are deleted with the Trim and StrRev commands, because the command line is exactly what 
was passed to the EXE file: this can include multiple spaces between arguments, so you must not assume that there will be one 
space delimiter only.    

Example:
GetCmdLine(CommandLine$)
Instr(CommandLine$), ”.EXE”,Location)
Location = Location + 4   {move to next space delimiter}
Len(CommandLine$,Long)
Long = Long - Location
Right(CommandLine$, Long, ArgList$ )
{or use the RightOf command}
Trim(ArgList$)
StrRev(ArgList$) {remove leading spaces, reverse string}
Trim(ArgList$)
StrRev(ArgList$) {remove trailing spaces, restore string}
FreeVar(CommandLine$)

ArgList$ now contains the three commandline arguments without any leading or trailing spaces.

Related Commands:
All the String commands    CountCmdLineArgs    



GetCommPort

Gets the current baud rate, parity etc from the selected port.

Syntax: GetCommPort(COMx,Baud,DataBits,Parity,StopBits,XonXoff)

Parameters:
COMx Port, where x = 1 – 4 for standard PCs. PiXCL 5: If you have a multiple COM port board installed, ports 

5-13 are supported.
Baud The current baud rate.
DataBits The current number of data bits.
Parity 0 - 4 = none, odd, even, mark, space.
StopBits 0 = 1 bit, 1 = 1.5 bits, 2 = 2 bits.
XonXoff Data stream flow control. XOFF =0, XON = 1.

Related Commands:
EscCommFunction ClearCommPort ReadCommPort    SetCommPort    WaitCommEvent    WriteCommPort 



GetComputerName

This command returns the current name of the computer on which the PiXCL application is running. This will be a string not 
longer than 15 characters, in the standard character set including letters, numbers, and the following symbols: 

! @ # $ % ^ & ‘ ) ( . - _ { } ~    

Syntax: GetComputerName(Name$)

Parameters:

Name$ The returned computer name.

Related Commands:

SetComputerName 



GetCopyDataMsg

To make communication with other Windows programs written in PiXCL, Visual Basic, C or C++ easier, a PiXCL program can be 
sent a block of ASCII data that might be a command, filename or other desired text, using the Windows WM_COPYDATA 
message. The GetCopyDataMsg command is used to retrieve this string.

Syntax: GetCopyDataMsg(Message$)

Parameter:
Message$ The message string that was sent from the other application. This might be a NULL string if all 

the message is requesting is that the PiXCL application starts executing at the specific label.    
Note that the label is NOT included in the retrieved message.

Remarks:
Functionally, GetCopyDataMsg is similar to the PXLResumeAt command, in that it will jump to a Label that must exist in the 
receiving application. That is, the sending application must know the explicit Label name for this command to work. 

Hence, the receiving application that expects to receive WM_COPYDATA messages will have at least one defined function to 
process the message. If a PiXCL application receives a message and there is no handler for it, it is ignored.

You may also want to send a message back to the sending window that the message was received. Since Windows uses some 
global shared memory for the passed message, your receiving PiXCL application needs to let Windows have the time to clear 
the message memory. PiXCL makes an internal copy for itself. Hence

GetCopyDataMsg(Message$)
SendCopyDataMsg(SendWindow$,ReturnMessage$)

may behave unpredictably, possibly shutting down the receiving application. It is best to use the following method.
GetCopyDataMsg(Message$)
WaitInput(1)  {let Windows catch up}
SendCopyDataMsg(SendWindow$,ReturnMessage$)

So long as there is a WaitInput somewhere in the code before the SendCopyDataMsg is issued, your programs will should 
always work reliably.

See the comms1.pxl and comms2.pxl programs for a simple example of using SendCopyDataMsg and GetCopyDataMsg 
commands.

Related Commands:
SendCopyDataMsg    PXLresumeAt 



GetCPUInfo

Report the CPU type and number of CPUs in the system.

Syntax: GetCPUInfo(CPUtype,NumberOfCPUs,Speed, SerialNumberLo, SerialNumberHi)
Parameters:
CPUtype 386, 486 or 586 = Pentium class, including P-II, P-III and P-IV
NumberOfCPUs At least 1.
Speed The identified processor raw speed in MHz. This may be slightly different to the rated speed of your 

system. For example, a “500 MHz” system may report 497 or 498. This is normal.
SerialNumberLo | Hi If the Pentium III and later serial number reporting is enabled in BIOS, returns the serial number, 

otherwise both are 0. These numbers are base 10. The Intel serial number utility reports the 
serial number as, say,    00000681 0001A740 19D060A9. PiXCL reports the serial number as HI:
108352    LO: 433086633. If you convert these numbers to hexadecimal i.e. 0001A740 
19D060A9    which is the same. The leading 00000681 is not related to the actual serial number, 
and should be ignored.

Related Commands:
HexToNum    NumToHex 



GetDialogUnits

The GetDialogUnits command returns the dialog box base units used by Windows to create dialog boxes. Both Windows and 
applications use these units to convert the width and height of dialog boxes and controls from dialog units, as given in dialog box 
templates, to pixels, and vice versa. 

Syntax: GetDialogUnits(BaseUnitX, BaseUnitY)

Parameters:
BaseUnitX The horizontal base unit is equal to the average width, in pixels, of the characters in the system 

font,

BaseUnitY The vertical base unit is equal to the height, in pixels, of the system font. 

Furthermore, each horizontal base unit is equal to 4 horizontal dialog units; each vertical base unit is equal to 8 vertical dialog 
units. Therefore, to convert dialog units to pixels, an application applies the following formulas: 

pixelX = (DialogUnitX * BaseUnitX) / 4 
pixelY = (DialogUnitY * BaseUnitY) / 8 
 
Similarly, to convert from pixels to dialog units, an application applies the following formulas: 

DialogUnitX = (pixelX * 4) / BaseUnitX 
DialogUnitY = (pixelY * 8) / BaseUnitY 
 
The multiplication is performed before the division to avoid rounding problems if base units are not divisible by 4 or 8. 

Related Commands:
PixelsToDlgUnits DlgUnitsToPixels



GetDiskSpace

This function gets the specified disk type, total space and free space in kilobytes.

Syntax: GetDiskSpace(Disk$,Type$,TotalSpace,FreeSpace)

Parameters:
Disk$ The pop-up menu item to be queried. Item$ must be the root directory of a disk, i.e. C:\

or D:\.

Type$ The type of disk located is returned. It is one of the following: FIXED    REMOVABLE    
REMOTE    CD-ROM    RAMDISK    UNKNOWN. If the disk cannot be found, Type$ 
returns a NULL string.

TotalSpace The total disk space in kilobytes. If the disk is not found, TotalSpace returns 0.

FreeSpace The available free space in kilobytes. If the disk is not found, FreeSpace returns 0. If 
Type$ is CD-ROM, FreeSpace reports a value of 0, because a CD-ROM is not a 
writeable device.

Remarks:

You can format a floppy disk using a Windows Shell command, as follows.
FormatFloppy:

Cmd$ = WinDir$ + "\rundll32.exe shell32.dll,SHFormatDrive"
Run(Cmd$)
Goto Wait_for_Input

For more details on Shell functions and control panel applets, see    Using the Windows Shell functions with PiXCL 

Example:

The following program presents a ListBox with the available drives indicated. Selecting a drive will get the information, and then it
is written to the client area.

Initialize:
NewCaption$ = "Disk Type, Total and Free Space"
UseCoordinates(PIXEL)
WinGetActive(OldCaption$)
WinTitle(OldCaption$,NewCaption$) 
WinLocate(NewCaption$,200,100,580,310, Res)  

SetMenu("Exit!",Run_Leave,
ENDPOPUP,
"Get Disk",Get_disk,
ENDPOPUP)

Wait_for_input:
WaitInput()

Get_file:
Label$ = "Select a disk from the list"
List$ = "A:\;B:\;C:\;D:\;E:\;F:\;G:\"
Delimiter$ = ";"



Disk$ = "C:\"
ListBox(Label$,List$,Delimiter$,Disk$)
If Disk$ = "" Then Goto Wait_for_input

GetDiskSpace(Disk$,Type$,Total,Free)
DrawBackGround
DrawText(10,10,Type$)
DrawNumber(10,30,Total)
DrawNumber(10,50,Free)

Goto Wait_for_input
Run_Leave:

End

Related Commands:

FileGetSize



GetDragList

If your program includes a DragAcceptFile(ENABLE,label) command, you will have to use this command to retrieve the file list 
that is dragged and dropped into the PiXCL client area.

Syntax: GetDragList(List$)

Parameters:
List$ The returned string variable that contains the list of files. If there are multiple files, they are 

“space” delimited. 
Remarks:
List$ should not be a null string, because at least one file should have been selected. It may be a NULL string if your list is 
created by another program, or with DropFileServer. Once you have List$, what you do with it is up to you. This might be loading
an image, processing it, and then displaying the result. See the code fragment below.

You can create a draglist from Explorer, a FileGet dialog, or assemble the list programatically. For example, selecting multiple 
files with a FileGet dialog returns a string with the selected path as the first entry, followed by each filename. Windows then 
automatically assembles the filenames into fully defined names with attached path before supplying them to the target 
application.

The maximum length of the drag list buffer is 16384 bytes.

Example:
DragAcceptFile(ENABLE,AcceptFile)
. . . 

AcceptFile:
GetDragList(ImageList$)
LoadBitmap(ImageList$,PREVIEW)
DrawBitmap(10,10,ImageList$)
DragAcceptFile(DISABLE,AcceptFile)
Goto Wait_for_Input

Related Commands:
DropFileServer    DragAcceptFile 



GetEnvString 

Get the current list of the current process environment variables, with a selected delimiter.

Syntax: GetEnvString(Delimiter$,EnvString$)

Parameters:
Delimiter$ Character to delimit the variables. “|” is often used.

EnvString$ The current process environment string.

Related Commands:
GetEnvVariable    SetEnvVariable 



GetEnvVariable 

Use this command to get the current value of an environment variable.

Syntax: GetEnvVariable(Variable$, Value$)

Parameters:
Variable$ The name of the environment variable.

Value$ The current value of Variable$.

Related Commands:
SetEnvVariable



GetFontFace

Get the name of the current selected font for text display.

Syntax: GetFontFace(Face$)

Parameter:
Face$ Either “System”, or the face set by the last UseFont command.

Related Commands:
AddFont ChooseFont    RemoveFont     UseFont    UseFontExt 



GetICMProfile

PiXCL 5 command. The GetICMProfile command retrieves the file name of the current output color profile for the display 
monitor. 

Syntax: GetICMProfile(ProfileName$, Result)

Parameters:
ProfileName$ The name of the current colour profile. If a profile has not been installed, this returns an empty 

string.
Result 1 if the operation succeeded, otherwise 0.

Related Commands:
InstallColorProfile    UninstallColorProfile    



GetIPAddress

When an Internet IP address A.B.C.D    (e.g. 192.72.14.1) rather than a Web page URL has to be entered, the IPAddressBox 
simplifies the process. The current address in the control is obtained with the GetIPAddress command.

Syntax: GetIPAddress(Packed,A,B,C,D)

Parameters:
Packed The packed address.
A,B,C,D The individual address fields. If the comtrol does not exist, these fields return 0.

Related Command:
IPAddressBox 



GetLocalTime, GetSystemTime

System time, actually Greenwich Mean Time or GMT, and Local system time, based on the time zone to which your PC is set 
can be accessed and if desired, reset. Both commands have the same arguments. The only difference is in the time that is 
returned. For example, in North American Eastern Standard Time, Local time may be 10:00 am, and System time will be 3:00 
pm, because there is 5 hours difference from GMT. The values returned are all integers.

Syntax: GetLocalTime(Year,Month,DayOfWeek,DayOfMonth,Hour,Minutes)
GetSystemTime(Year,Month,DayOfWeek,DayOfMonth,Hour,Minutes)

PiXCL 5
GetLocalTime(Year,Month,DayOfWeek,DayOfMonth,Hour,Minutes,Seconds)
GetSystemTime(Year,Month,DayOfWeek,DayOfMonth,Hour,Minutes, Seconds)

Parameters:
Year Four digit integer, e.g. 1997
Month Range is 1 to 12
DayOfWeek Range is 0=Sunday to 6=Saturday
DayOfMonth Range is 1 to 31
Hour Range 1 to 23
Minutes Range 0 to 59
Seconds Range 0 to 59

Related Commands:
SetLocalTime, SetSystemTime    GetTimeZone, TimeToASCII    
See also Using the Windows Shell functions with PiXCL 



GetJPGOptions

PiXCL 5 command. When you load a JPEG image from disk, the options data in the file, if any, are also loaded and stored with 
the image in the PiXCL image list. These fields can be set or updated as well. If the disk image type is not JPEG, the command 
has no effect, and all values return null or 0.

Syntax: GetJPGOptions(Filename$, Comments$, ResType, XRes, YRes)

Parameters:
Filename$ The name of a loaded file in the image list.
Comments$ The contents of the field. This may be an empty string.
ResType The resolution indicator. 0 = no unit of measurement specified, 1 = dots per inch, 2 = pixels per 

meter.
XRes, YRes The X and Y axis resolution.

Related Commands:
GetPNGOptions    GetTIFOptions    SetJPGOptions    SetPNGOptions    SetTIFOptions    



GetListBitmapPixel

 
The GetPixel command retrieves a pixel coordinate RGB value from the client area, which is not necessarily a 24-bit color mode 
in the video driver settings. The GetListBitmapPixel command gets pixel RGB value from a coordinate in a bitmap loaded into the
PiXCL image list.

Syntax: GetListBitmapPixel(Handle,Line,Pixel,Index,R,G,B)

Parameters:
Handle The handle of a loaded bitmap, as returned by SetCurrentBitmap, TuneImage and others.
Line, Pixel The coordinate of the pixel to get the RGB values.
Index The pixel index value for paletted bitmaps. Returns -1 for a 24-bit image pixel.
R,G,B The Red, Green and Blue colour values.

Related Commands:
GetListBitmapPixelRegion    SetListBitmapPixel    GetPixel     SetCurrentBitmap    



GetListBitmapPixelRegion

PiXCL 5 command. The GetListBitmapPixel command retrieves a pixel coordinate RGB value from the target image, while the 
GetListBitmapPixelRegion command gets pixel index and RGB values from a odd-numbered nxn region centered on the 
specified image coordinate.

Syntax: GetListBitmapPixel(Handle,Line,Pixel,PixelDataArray[Size], RegionSize)

Parameters:
Handle The handle of a loaded bitmap, as returned by SetCurrentBitmap, TuneImage and others.
Line, Pixel The coordinate of the pixel to get the RGB values. Once the region size is calculated, Line and 

Pixel will be adjusted to allow for regions adjacent to the image edges.
PixelDataArray[Size] An integer array containing the pixel index values for paletted bitmaps (returns -1 for a 24-bit 

image pixel), followed by the Red, Green and Blue values. Size defines the number of array 
entries, from which the maximum possible region is calculated. For example, a 3x3 region 
requires 4*3*3 = 36 entries, and a 5x5 region requires 4*5*5 = 100. PixelDataArray&[Size] is 
also acceptable if you want to use floating point numbers imediately.

RegionSize The size of the RegionSize x RegionSize  region returned. RegionSize is generally used as an 
index into the array to extract or process the data.

Remarks:
GetListBitmapPixel(Handle,Line,Pixel,Index,R,G,B) is equivalent to
GetListBitmapPixelRegion(Handle,Line,Pixel,PixelDataArray[4],RegionSize)

Related Commands;
GetListBitmapPixel    SetListBitmapPixel    GetPixel     SetCurrentBitmap    



GetMapMode

Get the current client area mapping mode.

Syntax: GetMapMode(Mode)

Parameter:
Mode Returns the mode value, where 

1 = TEXT mode (the default)
7 = ISOTROPIC (0,0 is top left “corner”)
8 = ANISOTROPIC (0,0 is bottom left “corner”)

Related Commands:
GetWindowExtent  GetWindowOrigin GetViewportExtent  GetViewportOrigin  SetMapMode SetWindowExtent  SetWindowOrigin 
SetViewportExtent  SetViewportOrigin 



GetMenuStatus

This function lets you determine whether an PiXCL menu item is grayed or checked.

Syntax: GetMenuStatus(Item$,CHECKED/GRAYED,Result)

Parameters:
Item$ The pop-up menu item to be queried. Item$ must exactly correspond to the name of 

the menu item as it was defined by the SetMenu command. If the menu item has an 
underlined letter, be sure to place an & in front of the letter when specifying Item$.

CHECKED Causes the function to query whether Item$ is checked.

GRAYED Causes the function to query whether Item$ is grayed.

Result An integer variable that will indicate the outcome of the query. It will be either of the 
following values based on whether you used CHECKED or GRAYED for the previous 
argument:

0 Menu item is not grayed/checked
1 Menu item is grayed/checked

Example:

The following program sets up a menu with two options: Choice and Exit!. Beneath the Choice option is a pop-up menu with 
three items: Video, Toggle 'Video' option, and Check/Uncheck 'Video' option. Depending on the pop-up menu item you select, 
PiXCL will    gray, enable, check, or uncheck the Video option within the pop-up menu.

{Set up the menu}
    SetMenu("&Choice",IGNORE,
              "&Video",Wait_for_input,
              "&Toggle 'Video' option",Enable,
              "&Check/Uncheck 'Video' option",Check,
              ENDPOPUP,
            "&Exit!",Shut_down,
              ENDPOPUP)

Wait_for_input:
    WaitInput()

Enable:
    GetMenuStatus("&Video",GRAYED,Result)
    If Result = 0 Then Goto Gray
    ChangeMenuItem("&Video",ENABLE,Temp)
    Goto Wait_for_input

Gray:
    ChangeMenuItem("&Video",GRAY,Temp)
    Goto Wait_for_input

Check:
    GetMenuStatus("&Video",CHECKED,Result)
    If Result = 1 Then Goto Uncheck
    ChangeMenuItem("&Video",CHECK,Temp)
    Goto Wait_for_input



Uncheck:
    ChangeMenuItem("&Video",UNCHECK,Temp)
    Goto Wait_for_input

Shut_down:
    End

Related Commands: 

SetMenu, ChangeMenuItem



GetPixel

Get the pixel color value as a Red / Green / Blue integer triplet.    This command is useful to see the value of a pixel of a 
displayed image. Note that the values returned are the video memory values, not the values from the image in main memory or 
the original file on disk.    

For example, for the same image displayed on an 8-bit, 16-bit and 24-bit per pixel video card, the returned RGB values will be 
different.

Syntax: GetPixel(X, Y, r, g, b, Result )

Parameters:
X, Y Specifies the type of X-Y co-ordinate for the pixel 

that you want to know the RGB value.

r, g, b The red / green / blue value at the indicated co-
ordinate, in the range from 0 - 255.

Result If the function is successful, is set to 1, and if not is 
set to 0. 

Examples:

The GetPixel command lets you examine displayed pixel values. In the example, a bitmap is loaded, the mouse is set up and the
mouse click co-ordinates are passed to the GetPixel command, which then gets the RGB values and writes them as text to the 
client area.

File$ = "frog16.bmp"
DrawSizedBitmap(1,1,600,800,File$)
SetMouse(1,1,600,800,Pixel_RGB,X,Y)
WaitInput()
GetPixel(X,Y,Red,Green,Blue,Result)
DrawNumber(10,10,Red)
DrawNumber(10,30,Green)
DrawNumber(10,50,Blue)

Related Commands:

All the SetMouse commands.



GetScreenCaps

This function returns information about the screen display--for example, its height and width in pixels or the number of colors it is 
capable of displaying.

Syntax: GetScreenCaps(Capacity,Result)

Parameters:
Capacity Specifies the type of screen information you want to retrieve. It must be one of 

the tokens below.

HORZSIZE / VERTSIZE get the horizontal or vertical size in millimeters (METRIC mode)
HORZRES / VERTRES get the horizontal or vertical size in pixels (PIXEL mode)
NUMCOLORS get the number of colors in the static color map. 
BITSPIXEL The number of bits per pixel of the display. This will one of 8, 15,16,24, or 32.

For 8 bit displays, this returns a number (typically 20), and for displays with more than 256 colors, 
returns the value -1.      For 24 bit displays, the static color map has 4096 entries.

DESKTOPHORZRES For NT only.
DESKTOPVERTRES Get the virtual horizontal or vertical size in pixels (PIXEL mode)

NUMBRUSHES Get the number of active brushes.
NUMPENS Get the number of active pens.
NUMFONTS Get the number of available fonts.
SIZEPALETTE Get the size of the current palette.
COLORRES Get the screen color resolution.
NUMRESERVED Get number of reserved colors.

Result An integer variable that will contain the value of the desired item.

Examples:

The GetScreenCaps command can let you tailor an PiXCL program to the type of display device being used. For example, the 
following program loads a 256-color bitmap if the display driver supports 256 colors. Otherwise, it loads a less spectacular (but 
more broadly supported) 16-color bitmap. Without this test, loading the 256-color bitmap into a 16-color device would result in 
many areas of the bitmap being displayed in dull shades of gray when they should actually appear in color.

GetScreenCaps(NUMCOLORS,Colors)
If Colors = 256 Then File$ = "frog256.bmp" | Goto Draw
File$ = "frog16.bmp"
Draw:
DrawBitmap(1,1,File$)
WaitInput()

This next example determines the pixel resolution of the display driver. It then shows a message box indicating what was found, 
as shown below.

WinGetActive(Windowname$)
WinShow(Windowname$,HIDE,Result) {Hide PiXCL window}
GetScreenCaps(HORZRES,x)



GetScreenCaps(VERTRES,y)
Str(x,x$)
Str(y,y$)
Out$ = "Screen is " + x$
Out$ = Out$ + " x "
Out$ = Out$ + y$
Out$ = Out$ + " pixels"
MessageBox(OK,1,INFORMATION,Out$,"Resolution",Ignore)

Related Commands:
All the Draw commands, UseCoordinates



GetPNGOptions

PiXCL 5 command. When you load a PNG image from disk, the options data in the file, if any, are also loaded and stored with 
the image in the PiXCL image list. These fields can be set or updated as well. If the disk image type is not PNG, the command 
has no effect, and all values return empty strings.

Syntax: GetPNGOptions(Filename$, Title$, Author$, Copyright$, Description$, 
Software$, Warning$, Disclaimer$, Source$, Comment$)

Parameters:
Filename$ The name of a loaded file in the image list.
Title$ The contents of the field. This may be an empty string.
Author$ The contents of the field. This may be an empty string.
Copyright$ The contents of the field. This may be an empty string.
Description$ The contents of the field. This may be an empty string.
Software$ The contents of the field. This may be an empty string.
Warning$ The contents of the field. This may be an empty string.
Disclaimer$ The contents of the field. This may be an empty string.
Source$ The contents of the field. This may be an empty string.
Comment$ The contents of the field. This may be an empty string.

Related Commands:
GetJPGOptions    GetTIFOptions    SetJPGOptions    SetPNGOptions    SetTIFOptions    



GetScreenWorkArea

Windows 95 /98 / NT4 / 2000 provide the movable taskbar (also known as the system tray) that is usually located at the bottom 
of your screen. The taskbar can be moved to the top or either side of your screen, and can be set to multiple lines of application 
icons.    Third party applications may also create taskbar like windows as well, for example the Visioneer ScanDirect™ iconbar.

The remaining screen space is called the work area. The GetScreenWorkArea command is provided so that you can easily 
maximize the area of your PiXCL or other application windows.

Syntax: GetScreenWorkArea(wx1,wy1,wx2,wy2)

Parameters:
wx1,wy1,wx2,wy2 The screen coordinates of the available work area. These change with position of the Windows 

taskbar and other taskbar-like application windows.

Related Commands:
TaskBarIcon 



GetSpecialFolder

This command displays a dialog box from the Windows shell, and provides the means to browse for a folder, whereas the 
FileGet command will return a filename. The set of Windows special folders are supported as the starting point, or you can set a 
specific defined directory.    Once you have a new directory, most programs would then soon invoke the DirChange command.

Syntax: GetSpecialFolder(Info$,Search_TOKEN,Start_TOKEN,Folder$)

Parameters:

Info$ The string that appears under the titlebar of the dialog.

Search_TOKEN One of the following:
ALTSTARTUP File system directory that corresponds to the user's nonlocalized 

Startup program group.
APPDATA File system directory that serves as a common repository for 

application-specific data.
BITBUCKET File system directory containing file objects in the user's Recycle 

Bin. The location of this directory is not in the registry; it is marked 
with the hidden and system attributes to prevent the user from 
moving or deleting it.

COMMON_ALTSTARTUP File system directory that corresponds to the nonlocalized Startup 
program group for all users.

COMMON_DESKTOPDIRECTORY File system directory that contains files and folders that appear on 
the desktop for all users.

COMMON_FAVORITES File system directory that serves as a common repository for all 
users' favorite items.

COMMON_PROGRAMS File system directory that contains the directories for the common 
program groups that appear on the Start menu for all users.

COMMON_STARTMENU File system directory that contains the programs and folders that 
appear on the Start menu for all users.

COMMON_STARTUP File system directory that contains the programs that appear in the 
Startup folder for all users. 

CONTROLS Virtual folder containing icons for the Control Panel applications.
COOKIES File system directory that serves as a common repository for 

Internet cookies.
DESKTOP Windows Desktop—virtual folder at the root of the namespace.
DESKTOPDIRECTORY File system directory used to physically store file objects on the 

desktop (not to be confused with the desktop folder itself).
DRIVES My Computer—virtual folder containing everything on the local 

computer: storage devices, printers, and Control Panel. The folder 
may also contain mapped network drives.

FAVORITES File system directory that serves as a common repository for the 
user's favorite items.

FONTS Virtual folder containing fonts.
HISTORY File system directory that serves as a common repository for 

Internet history items.
INTERNET Virtual folder representing the Internet.
INTERNET_CACHE File system directory that serves as a common repository for 

temporary Internet files.
NETHOOD File system directory containing objects that appear in the network 

neighborhood.
NETWORK Network Neighborhood Folder—virtual folder representing the top 

level of the network hierarchy.
PERSONAL File system directory that serves as a common repository for 

documents.
PRINTERS Virtual folder containing installed printers.
PRINTHOOD File system directory that serves as a common repository for printer



links.
PROGRAMS File system directory that contains the user's program groups 

(which are also file system directories).
RECENT File system directory that contains the user's most recently used 

documents.
SENDTO File system directory that contains Send To menu items.
STARTMENU File system directory containing Start menu items.
STARTUP File system directory that corresponds to the user's Startup 

program group. The system starts these programs whenever any 
user logs onto Windows NT or starts Windows 95.

TEMPLATES File system directory that serves as a common repository for 
document templates.

USERDEFINED Folder$ becomes the start path for the browse action. If Folder$ is 
an empty string, the search starts at the DeskTop special folder.

Start_TOKEN One of the following:
BROWSEFORCOMPUTER
BROWSEFORPRINTER
BROWSEINCLUDEFILES
BROWSEFORCOMPUTER_EDIT
BROWSEFORPRINTER_EDIT
BROWSEINCLUDEFILES_EDIT

Folder$ A string containing the search result. If USERDEFINED is specified with a start string, and the 
cancel button is pressed, the current value is unchanged.

Example:
Here’s a code fragment that searches for a folder starting at C:\Temp.
CreatingFile:

WaitInput(1)
Folder$ = "C:\Temp"
DlgTitle$ = "Looking for a folder, starting at " + Folder$
GetSpecialFolder(DlgTitle$,USERDEFINED ,BROWSEINCLUDEFILES, Folder$)
DebugMsgBox(Folder$)
Goto Wait_for_Input

Related Commands:

DirChange    FileGet    FileSaveAs 



GetSysPowerStatus

The GetSysPowerStatus function retrieves the power status of your laptop PC or internal DC power supply, if fitted. The status 
indicates whether the system is running on AC or DC power, whether the battery is currently charging, and how much battery life 
currently remains. If a DC power system is not fitted, all return values are 0.

Syntax: GetSysPowerStatus(ACLineStatus, BatteryFlag, BatteryLifePercent, 
BatteryLifeTime, BatteryFullLifeTime)

Parameters:
ACLineStatus AC power status. This parameter can be one of the following values:

Value                   Meaning  
0 Offline
1 Online
255 Unknown status.
All other values are reserved.

BatteryFlag Battery charge status. This parameter can be a combination of the following values:
Value                     Meaning  
1 High
2 Low
4 Critical
8 Charging
128 No system battery
255 Unknown status
All other values are reserved.

BatteryLifePercent Percentage of full battery charge remaining. This member can be a value in the range 
0 to 100, or 255 if status is unknown. All other values are reserved.

BatteryLifeTime Number of seconds of battery life remaining, or -1 if remaining seconds are unknown.

BatteryFullLifeTime Number of seconds of battery life when at full charge, or -1 if full lifetime is unknown.
 
Remarks
Windows 95 is only capable of estimating BatteryFullLifeTime based on calculations on BatteryLifeTime and BatteryLifePercent. 
Without smart battery subsystems, this value may not be accurate enough to be useful.



GetSystemMetrics

There are a number of system values, or metrics that are often of use in programs. These mostly relate to the size of various 
window components. The most generally useful can be returned with this command. Values are in pixels unless otherwise 
specified, and "CX" values are widths, "CY" values are heights.

Syntax: GetSystemMetrics(TOKEN,Value)

Parameters:
TOKEN
BOOTMODE Value that specifies how the system was started:

0 Normal boot
1 Fail-safe boot
2 Fail-safe with network boot Fail-safe boot (also called SafeBoot) bypasses the 

user's startup files.

MOUSEBUTTONS Number of buttons on mouse, or zero if no mouse is installed. This will normally be 2 for most 
systems. If the Microsoft Intellimouse™ or similar is installed, this will report 3 mouse buttons. 
Microsoft Intellisense™ has the same wheel mouse as Intellimouse, but a different driver that 
reports 2 buttons, even though the wheel button works properly with the SetMidMouse 
commands.

CXBORDER Dimensions of a single border, in pixels.
CYBORDER Dimensions of a single border, in pixels.
CXEDGE Dimensions of a 3D border, in pixels. These are the 
CYEDGE counterparts of CXBORDER and CYBORDER.

CXCURSOR Dimensions of standard cursor bitmaps, in pixels.
CYCURSOR Dimensions of standard cursor bitmaps, in pixels.

CXFIXEDFRAME Width and height of window frame for a window that can
CYFIXEDFRAME be resized.

CXFULLSCREEN Width and height of the client area for a full-screen window.
CYFULLSCREEN

MENUBARSIZE Height of single-line menu bar. Changes with small or large fonts, and the setting in the screen 
appearance dialog. Useful to find the size of title and menubars when positioning windows with 
WinLocate().

SAMEDISPLAYFORMAT For Windows 98 and 2000 only, 1 if all the display monitors have the same color format, 
0 otherwise. Note that two displays can have the same bit depth, but different color formats. For
example, the red, green, and blue pixels can be encoded with different numbers of bits, or 
those bits can be located in different places in a pixel's color value.

Value The value for the selected system metric.
Related Commands:



GetTempPath

The GetTempPath function gets the temporary file path as follows: 
1. The path specified by the TMP environment variable. 
2. The path specified by the TEMP environment variable, if TMP is not defined. 
3. The current directory, if both TMP and TEMP are not defined. 

Syntax: GetTempPath(TempPath$)

Parameter:
TempPath$ The currently defined temporary path for the PiXCL process.

Related Commands:
FileGetTempName    GetEnvString    GetEnvVariable    SetEnvVariable 



GetTextSpacing

The GetTextSpacing command retrieves the current intercharacter spacing.

Syntax: GetTextSpacing(Spacing)

Parameter:
Spacing The current spacing between characters.

Remarks:
Text spacing can be different if required in the foreground and background. Use the SetDrawMode command before 
GetTextSpacing and SetTextSpacing.

Releted Commands:
DrawText DrawTextExt    DrawNumber SetDrawMode    SetTextSpacing 



GetTimeZone

Syntax: GetTimeZone(Zone$)

Parameters: 
Zone$ The time zone string. e.g. Eastern Standard Time. In the unusual situation that time 

zone has not been defined, this returns "Unknown".

Remarks:
You can also display the Windows time zone selection dialog using a Shell command, as follows
Run(“c:\windows\rundll32.exe shell32.dll,Control_RunDLL 
     c:\windows\system\timedate.cpl,@0,1”)

For more details on Shell functions and control panel applets, see    Using the Windows Shell functions with PiXCL 

Related Commands:
GetLocalTime, SetLocalTime, TimeToASCII 



GetTIFOptions

PiXCL 5 command. When you load a TIF image from disk, the options data in the file, if any, are also loaded and stored with the
image in the PiXCL image list. These fields can be set or updated as well. If the disk image type is not TIF, the command has no 
effect, and all values return an empty string.

Syntax: GetTIFOptions(Filename$,Artist$,Description$,Software$,HostComputer$,DocName$)

Parameters:
Filename$ The name of a loaded file in the image list.
Artist$ The contents of the field. This may be an empty string.
Description$ The contents of the field. This may be an empty string.
Software$ The contents of the field. This may be an empty string.
HostComputer$ The contents of the field. This may be an empty string.
DocName$ The contents of the field. This may be an empty string.

Related Commands:
GetJPGOptions    GetPNGOptions SetJPGOptions    SetPNGOptions    SetTIFOptions    



GetToolBarBtnStatus

You can check the current status of a ToolBar or ToolWindow    button in the same manner as the GetMenuStatus 
command does with menu items.

Syntax:    
GetToolBarBtnStatus(Name$, BtnIndex, state_TOKEN,Result)

Parameters:

Name$ If NULL (""), refers to the current ToolBar command, if present. Otherwise, Name$ refers to 
a current ToolWindow title. If the toolbar or toolwindow is not present, the command is 
ignored. Result returns 0.

BtnIndex Button index, starting from 1, as defined in the Toolbar command in effect.    SEPARATOR 
regions are counted as buttons.

state_TOKEN ENABLED | CHECKED | PRESSED | DISABLED

Result 1 if the button is changed to the selected state, otherwise 0.

Remarks:
If you send a change state message to a SEPARATOR region, it is ignored and Result returns 1.

Example:
See the sample program    toolbars.pxl.

Related Commands:
ChangeToolBarBtn    ToolBar    ToolWindow 



GetUserName

PiXCL 5 command. Returns the name of the currently logged on user.

Syntax: GetUserName(Username$)

Parameter:
UserName$ Either the name of the user or often “default”

Related Commands:
GetComputerName 





GetViewportExtent    

Get the X and Y extent of the current viewport. The default viewport is the whole client area.

Syntax: GetViewPortExtent(Xextent, Yextent)

Parameters:
Xextent The viewport extent in the X-axis. This number can be negative.
Yextent The viewport extent in the Y-axis. This number can be negative.

Related Commands:
GetMapMode  GetWindowExtent  GetWindowOrigin    GetViewportOrigin  SetMapMode SetWindowExtent  SetWindowOrigin  
SetViewportExtent  SetViewportOrigin 



GetViewportOrigin    

Get the X and Y origin of the viewport in the client area.

Syntax: GetViewportOrigin(Xorigin,Yorigin)

Parameters:
Xorigin The viewport origin in the X-axis. 
Yorigin The viewport origin in the Y-axis. 

Related Commands:
GetMapMode  GetWindowExtent  GetWindowOrigin GetViewportExtent  SetMapMode SetWindowExtent  SetWindowOrigin  
SetViewportExtent  SetViewportOrigin 



GetVirtualScreenSize

PiXCL 5 command. Windows 98 / ME /2000 / XP all support multiple display monitors. This is implemented either with additional
video cards (they don’t have to be from the same manufacturer) or as dual-head single cards such as the excellent Matrox 
G400/450/550 series. While additional monitors are usually set to the same dimensions and adjacent to each other, they don’t 
have to be. Windows refers to this as the virtual screen, and the GetVirtualScreenSize command returns the width and height of 
the bounding rectangle of all the displays. If ony one display is installed or enabled, the returned values are the size of the 
screen, in pixels. 

Syntax: GetVirtualScreenSize(Width, Height)

Parameters:
Width The width of the virtual screen.
Height The height of the virtual screen.

See Also:
The Coordinate System.

Related Commands:
None



GetVolumeInfo

This command extends the GetVolumeType command and returns more information on a specific local or network disk volume.

Syntax: GetVolumeInfo(RootDirectory$,VolumeName$, FileSystemType$, SerialNumber, Result)

Parameters:
RootDirectory$ The root directory of the volume you want to check.

VolumeName$ The name of the specific volume. This returns a null string if the volume is 
unnamed or the operation fails.

FileSystemType$ A string variable that will contain the name of the file system--FAT, NTFS, or 
HPFS for fixed disks, and CDFS for CD-ROM disks. Returns a null string if the 
operation fails.

SerialNumber The disk serial number created when the disk is formatted. Microsoft claim that 
this serial number can be considered to be unique.

Result An integer variable that indicates the outcome of the operation. If the operation 
was successful, this variable is assigned a value of 1. Otherwise, it is assigned a
value of 0. Result also returns 0 if the specified drive does not exist.

Remarks:
If RootDirectory$ is incomplete (for example, it’s in the form "C:" or "C" instead of "C:\"), GetVolumeType won't recognize it and 
will return a Result of 0.    You can access network disks as well e.g. "\\NetworkName\D:\ ".

Disk serial numbers are a popular and simple method of ensuring that applications run on a single system. The serial number, 
perhaps used in conjunction with some other system parameter like cpu type (see GetCPUInfo command) or disk capacity, can 
be used to calculate a unique integer that is stored somewhere in the Registry. This number provides a validation check. The 
downside of this method is that when a user reformats or replaces his disk, the serial number changes.

Example:
VolumeInfo:

WaitInput(1)
DrawBackground
GetVolumeInfo("d:\",Name$,VolType$,SerialNumber,Res)
DrawText(10,40,Name$)
DrawText(10,60,VolType$)
DrawNumber(10,80,SerialNumber)
Goto Wait_for_Input

Related Command:
GetVolumeType  



GetVolumeType

Gets the file system of the named root directory.

Syntax: GetVolumeType(RootDirectory$,FileSystemType$,Result)

Parameters:
RootDirectory$ The root directory of the volume you want to check.

FileSystemType$ A string variable that will contain the name of the file system--FAT, NTFS, or 
HPFS for fixed disks, and CDFS for CD-ROM disks.

Result An integer variable that indicates the outcome of the operation. If the operation 
was successful, this variable is assigned a value of 1. Otherwise, it is assigned a
value of 0.

Remarks:

If RootDirectory$ is incomplete (for example, it’s in the form "C:" or "C" instead of "C:\"), GetVolumeType won't recognize it and 
will return a Result of 0. Result also returns 0 if the specified drive does not exist.

You can also format a floppy disk using a Windows Shell command, as follows.
FormatFloppy:

Cmd$ = WinDir$ + "\rundll32.exe shell32.dll,SHFormatDrive"
Run(Cmd$)
Goto Wait_for_Input

For more details on Shell functions and control panel applets, see    Using the Windows Shell functions with PiXCL 

Example:

This example determines the file system used by C:\ and draws it at the point (10,10) in the PiXCL window.

GetVolumeType("c:\",VolType$,Result)
If Result = 0 Then Beep | End
DrawText(10,10,VolType$)
WaitInput()  

Related Commands:
FileGetTimeExt    FileGetDateExt GetVolumeInfo



GetWindowExtent    

Get the X and Y extent of the client area.

Syntax: GetWindowExtent(Xextent,Yextent)

Parameters:
Xextent The extent in the X-axis. This number can be negative.
Yextent The extent in the Y-axis. This number can be negative.

Related Commands:
GetMapMode  GetWindowOrigin GetViewportExtent  GetViewportOrigin  SetMapMode SetWindowExtent  SetWindowOrigin  
SetViewportExtent  SetViewportOrigin 



GetWindowOrigin 

Get the X and Y origin of the viewport in the client area.

Syntax: GetWindowOrigin(Xorigin,Yorigin)

Parameters:
Xorigin The window origin in the X-axis. 
Yorigin The window origin in the Y-axis. 

Related Commands:
GetMapMode  GetWindowExtent  GetViewportExtent  GetViewportOrigin  SetMapMode SetWindowExtent  SetWindowOrigin  
SetViewportExtent  SetViewportOrigin 



GlobalMemStatus

The current global memory status can be accessed at any time. This will report a variety of fixed and dynamic values related to 
physical and virtual memory. Memory usage and free memory (physical and virtual) are very dynamic, and will often change with 
consecutive calls to the function. A common use of this command is to check when, for example, images loaded in the image list 
should be deleted.

Note that if a PiXCL application grabs a large amount of memory, once the application is terminated, all this memory is returned 
to Windows.

Syntax: GlobalMemStatus(MemoryLoading, PhysicalMemory, 
PhysicalMemAvailable, PagingBytes, FreePagingBytes, 
VirtualMemTotal, VirtualMemAvailable)

Parameters:
MemoryLoading The approximate percentage of memory is use. It is possible that this may reach 100, and the 

system will still function. Some other applications will need to be shut down for better system 
performance.

PhysicalMemory The amount of physical memory installed, in bytes.
PhysicalMemAvailable The amount of physical memory currently available for applications.
PagingBytes The size of the paging file, in bytes.
FreePagingBytes The number of free space in the paging file, in bytes.
VirtualMemTotal The total of virtual memory address space available to the process, in bytes.
VirtualMemAvailable The amount of virtual memory address space remaining to the process, in bytes.

Example:
Note here that byte values are converted to KB by dividing by 1024.
MemoryStatus: {subroutine}

GlobalMemStatus(MemLoad,PTotal, PAvail, PageBytes, FreePageBytes, VTotal, VAvail)
PTotal = PTotal / 1024
PAvail = PAvail  / 1024
PageBytes = PageBytes  / 1024
FreePageBytes = FreePageBytes  / 1024
VTotal = VTotal  / 1024
VAvail = VAvail  / 1024
DrawBackGround
UseFont("Arial",9,17,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(10,50,"MemoryLoad") DrawNumber(180,50,MemLoad)
DrawText(10,70,"Physical RAM KB") DrawNumber(180,70,PTotal)
DrawText(10,90,"Available RAM KB") DrawNumber(180,90,PAvail)
DrawText(10,110,"Page KB") DrawNumber(180,110,PageBytes)
DrawText(10,130,"Free Page KB") DrawNumber(180,130,FreePageBytes)

Return

Related Commands:
None.



Gosub

Executes a block of code as a subroutine. When the subroutine is completed--that is, a Return command is encountered--control
returns to the command following the Gosub. 

Syntax: Gosub Label / Return

Parameter:
Label The label in the current text file where the subroutine begins.

Remarks:
When the program returns to the calling routine, the command immediately following Gosub is executed, even if it is on the same
line. This allows Gosub to be placed in the middle of a multi-command If statement.

Two common progamming errors:
· If the Return statement is omitted from the called subroutine, control will not return to the original program.
· Jumping out of a subroutine without executing the Return.

You can use a WaitInput command within a subroutine. The application will wait for approximately the specified time, then 
continue executing the script. While the program is within a subroutine or nested subroutine, all other event processing for 
mouse, menu, toolbar and system messages is disabled. This avoids the problem of an event causing a subroutine to terminate 
without executing the Return. Bugs of this nature are hard to track down as they don’t always appear immediately.

Example:

This example uses a simple subroutine to draw text in different point sizes. The subroutine uses the Count variable to set the 
width of the font as well as the Y-coordinate for each line that is drawn. The figure below shows the results for an 1024x768, 256-
color video driver; your results should be similar.

 
Using a subroutine to draw different font sizes.

{Initialize counter}
    Count=6
Next:
    If Count > 25 Then Goto Wait_for_Input
    Gosub Put_Line
    Count=Count+3
    Goto Next

Goto Wait_for_Input

Put_Line:      {Subroutine}
Width = Count + 2

    UseFont("Arial",Count,Width,NOBOLD,
         NOITALIC,NOUNDERLINE,0,0,0)



    y=Count*5
    DrawNumber(10,y,Count)

Xpos = 55 + Count
    DrawText(Xpos,y,"PiXCL Tools 4.2")
    Return
Wait_for_Input:
    WaitInput()

Related Commands:
Goto, Run, RunExt



Goto

Transfers control unconditionally to a label.

Syntax: Goto Label

Parameter:
Label A label in the current PiXCL script file.

Remark:

You can use a : (colon) following Label if you want. For example, PiXCL treats the following two commands identically: 

Goto Next
Goto Next:

Example:

The following example launches Notepad and/or Calculator based on your responses to message boxes. The first message box 
asks whether you want to run Notepad and displays Yes and No buttons. If you select Yes (Button is set to 1), the program 
issues the Run command to launch Notepad. If you select No, the Button variable is set to 2 and the program uses a Goto to 
transfer control to the label Run_Calc; a similar message box then asks whether you want to run Calculator. 

{Get PiXCL window title}
     WinGetActive(OurName$)
        
{Program to launch Notepad and/or Calculator}
     MessageBox(YESNO,1,QUESTION,"Run Notepad?",
                "Notepad?",Button)
     If Button=2 Then Goto Run_Calc
     Run("NOTEPAD.EXE")
     WinSetActive(OurName$,Ignore)  {Bring PiXCL back to front}
Run_Calc:
     MessageBox(YESNO,1,QUESTION,"Run Calculator?",
                "Calculator?",Button)
     If Button=1 Then Run("CALC.EXE")
     End

Related Commands:
Gosub If...Then If...Else...Endif    



GradientFillRect

A colour gradient can be generated with this command. This uses the Windows 98 supplied msimg32.dll. If you are running 
Windows 95 or NT4, you will have to get a copy of this DLL (from our Web site) and write it to the system directory. If the DLL is 
not present, this command does nothing.

Syntax: GradientFillRect(x1,y1,x2,y2, VERT|HORZ, sr,sg,sb, er,eg,eb)

Parameters:
x1,y1,x2,y2 The client area coordinates of the rectangle.
VERT|HORZ Draw the gradient vertically or horizontally.
sr,sg,sb, er,eg,eb Start end End RGB colour values.

Related Commands:
DrawShadeRectangle    



HexToNum

An eight character hexadecimal string can be converted to the equivalent positive or negative 32 bit integer. If the hex string is 
invalid, the conversion fails.

Syntax:  HexToNum(HexString$,Number,Result)

Parameters:
HexString$ An eight character string. A leading “0x” is not required.
Number The integer returned. If the conversion fails, Number returns 0.
Result 1 if the conversion succeeds, otherwise 0.

Example:
Convert:

Hex$ = “0034afde”
HexToNum(Hex$,Number,Res)
If Res = 1 Then DrawNumber(10,10,Number)

Related Commands:
NumToHex    Str    Val 



Histogram

You can display multiple histograms of any loaded image or images using the Histogram command. Histograms provide you with 
a graphical representation of the distribution of the pixel values in the image, in either non-cumulative mode (the most commonly 
seen), or cumulative mode. The mean and standard deviation are also plotted on the histogram.

The Histogram command draws histogram windows as popup windows, which can float anywhere on the screen.    The syntax is 
similar to other variable argument list commands in PiXCL, such as ToolWindow, ToolBar, Button, SetMenu and SetMouse 
commands.
Histogram data is plotted in dark green, with the mean shown in red, and plus/minus one standard deviation in blue.

Syntax: Histogram() Remove all histogram windows and free associated memory.
Histogram(x1,y1,POPUP,ImageName$,BitmapHandle,CUM|NONCUM, ExtraTitleData$,Histogram_ID)

Parameters:
x1,y1 The top left corner coordinates of the histogram window in screen coordinates.
POPUP Display mode of the histogram window. CHILD mode is not supported.
ImageName$ An image loaded into the PiXCL image list.
BitmapHandle The identifier of the current bitmap for which histogram data will be calculated.
CUM|NONCUM Display mode of the histogram data.
ExtraTitleData$ Add extra title data with this arbitrary length string. This can be null.
Histogram_ID The window identifier if the command is successful, otherwise zero.

Remarks:
If you pass a 24 bit BitmapHandle    to Histogram, it will display the RED channel data only. This is normal. If you want to display 
the RGB channel histograms, Use the GetChannel command. Also, if the BitmapHandle is zero, or ImageName$ has not been 
loaded into the list or is null, no histogram window or record is created, and Histogram_ID will return 0.

Example:
Load a single channel image and display the histogram.
Make_Histograms:

ImageName1$ = SourceDir$ + "\brsfbnd7.bmp"
DrawSizedBitmap(10,10,250,220,ImageName1$)
TuneImage(0,0,0,0,0,0,BitmapHandle)
Histogram(600,10,POPUP,ImageName1$,BitmapHandle,NONCUM,”Gray”,HistNumber1,

 100,100,POPUP,ImageName1$,BitmapHandle,CUM,”Gray”,HistNumber2)
Goto Wait_for_Input

Another example showing RGB channel histograms of a 24 bit image.

GetRGBchannels: {shows the HANDLE of each channel in an image.}
DrawSizedBitmap(10,10,250,220,ImageName1$)
GetChannel(RED,RedHandle)
GetChannel(GREEN,GreenHandle)
GetChannel(BLUE,BlueHandle)
{now create the channel histograms}
Histogram(530,100,POPUP,ImageName1$,RedHandle,NONCUM,"Red",Histogram1,
   530,260,POPUP,ImageName1$,GreenHandle,NONCUM,"Green",Histogram2,
   530,420,POPUP,ImageName1$,BlueHandle,NONCUM,"Blue", Histogram3)

Goto Wait_for_Input



Related Commands:
UpdateHistogram    GetChannel    ReportHistogramStats    ShowHistogram



HTMLControl

A dialog that renders any HTML/JavaScript file or Web URL can be created with the HTMLControl command. Any HTML file or 
URL content that will render in Internet Explorer will render in the dialog. The title and dialog dimensions are defined in the HTML
file, and the dialog is screen centered. Note that Internet Explorer 4.01 or later with Active Desktop must be installed. Internet 
Explorer 5 is recommended, as there are updates in the IE5 DLLs that fix bugs under NT4.

Syntax: HTMLControl(x,y,(NO)CENTER, HTMLFilename$, Arguments$, Selection$, Result)

Parameters:
x,y The screen coordinates of the top left corner of the dialog for NOCENTER mode. Ignored for 

CENTER mode.
NOCENTER Position the dialog according to x,y and the width and height values in the HTMLFilename$.
CENTER Ignore x,y and position the dialog in the center of the PiXCL application client area.
HTMLFilename$ The file or URL containing the HTML and almost always JavaScript that processes the 

arguments passed to the dialog controls.
Arguments$ A string with “;” delimited arguments that are used to initialize the dialog controls.
Selection$ A string selection in the dialog. This can be returned as an empty string.
Result -1 or 0 if the dialog is cancelled, or 1 if an “OK” button or equivalent is pressed. 

Example:
See the sample file HTMLdlg.pxl and the associated sample.htm files.

Related Commands:
WinHTMLHelp    



Hypot

Floating Point math library function. Returns the hypotenuse of a right triangle with sides X and Y.

Syntax: Hypot(X&,Y&,Hypotenuse&)

Parameters:
X&, Y& The sides of the triangle that form the right angle.
Hypotenuse& The size of the hypotenuse of the triangle.

Related Commands:
All the floating point math functions.



 IDR_Add_Legend 

To be released in a maintenance update.
This function allows the user to build or edit a legend within an IDRISI image or documentation file. 

Syntax: IDR_Add_Legend(FileName$,Result)

Parameters:
FileName$ The file type variable specifies image or values file.
Result 1 if the function was successful, otherwise 0.

Related Commands:
IDR_Read_Legend  



    IDR_CloseIdrisi 

If IDRISI is running, this function can be used to close the IDRISI window.

Syntax: IDR_CloseIdrisi(Result)

Parameter:
Result The function returns 1 if the IDRISI window was successfully closed, and 0 if IDRISI was 

not closed (or not present).
Remarks:
You could also use WinClose to terminate the IDRISI window, by specifiying the exact window title. The IDR_CloseIdrisi function 
knows what window to close.    In both cases, when IDRISI receives the close message, all child windows and related Help will 
also be closed.

Related Commands:
WinClose 



    IDR_DisplayComposition 

To be released in a maintenance update.
IDR_DisplayComposition is used to launch the display of either an image, a vector layer, or a map composition within the IDRISI 
client area. It requires a Client ID as the first parameter (see IDR_RegisterClient), and will need to indicate the type of display to 
produce as the second parameter using one of the DISPLAY_TYPE tokens listed below. 

Syntax: IDR_DisplayComposition(ClientId,DISPLAY_TYPE,FileName$,PalName$,Result)

Parameters:
ClientID The Idrisi ClientID returned from IDR_RegisterClient.
DISPLAY_TYPE IMAGE, VECTOR or COMP
FileName$ the name of the image, vector file or map composition to display. The file’s path and extension 

should not be used.
PalName$ In the case of an image, PalName$ is used to specify the name of the color palette to be used to

display the image. However, in the case of a vector file, it is used to specify the name of the 
symbol file that should be applied, whereas for a composition, it is not used and should be set to 
a null string.

Result 1 if the operation succeeded, otherwise 0.

Related Commands:
None



    IDR_GetDataDir 

Determines the path of the working data directory that IDRISI uses for access to data and output of all results. (This path 
information is stored    in the IDRISI.ENV file in the user’s IDRISI directory.) 

Syntax: IDR_GetDataDir(IdrisiDataDir$)

Parameter:
IdrisiDataDir$ The current working data directory. IDRISI appends a trailing backslash (“\”). To make this 

command compatible with DIrGet, the trailing backslash is removed.

Related Commands:
IDR_GetDir     IDR_SetDataDir       DirGet 



    IDR_GetDir 

This function determines the path of the subdirectory in which the IDRISI program modules can be found i.e. the installation 
directory

Syntax: IDR_GetDir(IdrisiDir$)

Parameter:
IdrisiDir$ A directory string. IDRISI appends a trailing backslash (“\”). To make this command compatible 

with DirGet, the trailing backslash is removed.

Related Commands:
IDR_GetDataDir  DirGet



    IDR_GetExtensions 

This function reads the Idrisi initialization file (idrisiw.env) and returns the names of the default extensions for image, vector, and 
values files. 

Syntax: IDR_GetIdrisiExtensions(Img$,ImgDoc$,Vec$,VecDoc$,Value$,ValueDoc$)

Parameters:
Img$ image file extension. Installation default is .img
ImgDoc$ image document extension. Installation default is .doc
Vec$ vector file extension. Installation default is .vec
VecDoc$ vector document file extension. Installation default is .dvc
Value$ value file extension. Installation default is .val
ValueDoc$ value document extension. Installation default is .dvl
Result 1 if the operation was sucessful, otherwise 0.

Remarks:
Since IDRISI is a 16-bit application, file extensions are limited to three characters. If a longer extension is used, the additional 
characters are ignored. Idrisi.env can also be editted with Notepad or similar.

Related Commands
IDR_SetExtensions 



    IDR_GetLanguage 

Determines the name of the language in use with IDRISI (e.g., English, French, Spanish, etc.). 

Syntax: IDR_GetLanguage(Language$)

Parameter:
Language$ Returns a string e.g., English, French, Spanish.

Related Commands:
None



    IDR_GetProgress 

IDR_GetProgress gets the current values in the progress structure maintained by IDRISI for a launched module. 

Syntax: IDR_GetProgress(ClientID,ProcessID,Status,ReportType,
ErrorFile$, ErrorNumber,ErrorMessage$,SubstString1$,
SubstString2$,Result_1, Result_2)

Parameters:
ClientID The ID returned by IDR_RegisterClient.
ProcessID An ID from IDR_Launch or IDR_LaunchModule.

Status Integer variable. The status field indicates whether the process is active or has terminated. Possible 
values are 0: ACTIVE,    1: NORMAL_TERMINATE or 2: ERROR_TERMINATE. 
Most client applications do not handle IDRISI error messages. However, if you do wish to report 
on errors that occur in the running of IDRISI modules, or know of their character from a program 
perspective, you can make use of the ErrorCode, ErrorFile$, ErrorMessage$ and the 
SubstString1$ and SubstString2$ fields below. In all cases, if you are handling errors, check the 
ErrorCode field first.
 

ReportType Integer variable. IDRISI allows several reporting types, and returns the following values.
1: WORKING simply indicates that the module is working. If this is the indicated report type, Result_1 and 

Result_2 are set to 0.
2: PERCENTDONE is the most commonly used method of reporting, and is preferred. If this type is indicated, 

you can access the percentage of the module's work that has been completed by examining the 
value in Result_1.

3: PASS_X_OF_N provides information on the pass in progress and the total number of passes the module 
will require. X is in Result_1 and N is in Result_2.

4: PASS_TOTALUNKNOWN  is used for cases where the report indicates the pass number in progress, but 
the total number of passes that will be required is unknown. In this case, only Result_1 has a 
valid number.

5: COMPLEXPASS is the most complex of all reporting types. In this case the total number of expected passes 
is reported in Result_1 and the percentage done of the current pass is reported in Result_2..
 

ErrorCode When the monitoring mode (from IDR_LaunchModule) is FROM_IDRISI mode, IDRISI reports 
on the progress of all active processes and any errors that occur. Thus there is no need to report
run-time errors that occur -- IDRISI will do this for you. However, in some instances, one may 
wish to act upon a specific error. Furthermore, if the monitoring mode is set to FROM_CLIENT, it
is the client that is responsible for acting upon and reporting the error. 
As the name suggests, the ErrorCode field contains a numeric error code for the run-time error 
that has occurred, and should always be checked first before any further action is taken. 
If the value is a positive integer (of 1 or greater), the error message has been generated from a 
non-IDRISI client process (either an independent module created by yourself, or one created by 
another user that you have chosen to use). In addition, the error message will need to be 
retrieved from an error file. 
However, if the code is a negative integer, the error is a standard IDRISI run-time error, and can 
be found in the ErrorMessage$ field. You do not need to retrieve this yourself. 
Finally, if it is zero, it is understood that the error message has been supplied directly by the 
client application, and that its content can be found in the ErrorMessage field. 
 

ErrorFile$ This field contains useful information only if the ErrorCode is a positive number of 1 or greater. In
this case, the error condition has been generated by a non-IDRISI client module that is 
requesting that you retrieve the appropriate message from an error file. In this context, the 
ErrorFile field contains the complete name and path of the file from which the error message can
be retrieved. 

If ErrorCode is negative or zero, the contents of the ErrorFile$ field are meaningless and should 
be ignored. 



IDRISI-compatible error files follow the convention of Windows ".ini" files and can be accessed 
using the FileRead_INI command. In IDRISI, all error files have an ".err" extension, and a main 
file name that corresponds to the language in use (e.g., ENGLISH.ERR, ESPANOL.ERR, etc.). 
In addition, they contain a single section with the same name as the langauge. using the error 
code as a key and the language name as the section. Thus, for example, the key named "-101" 
in the section named "English" corresponds to a condition identified as "Disk Full". The error files
included with IDRISI can be examined with a text editor to appreciate their structure; but they 
should not be altered. 

In the case of user-defined error files, the use of an ".err" extension is recommended, but not 
required. Therefore you can expect that ErrorFile$ will contain the complete name and path to 
that file. Also, the file will contain only a single section, using the same name as the main name 
of the file itself. Thus if you receive reference to a file named "MYAPP.ERR", the single section 
heading will read "[myapp]". 

In some cases, the error message strings listed in an error file will contain references to string 
substitutions using character sequences of "##1##" or "##2##". In these cases, the "##1##" and 
"##2##" character sequences can be found in the ErrorString1 and ErrorString2 fields, 
respectively. Thus, for example, the IDRISI error code -1013 corresponds to the key entry "Disk 
File ##1## not found". The name of the file in question is thus in the ErrorString1 field. It is 
important to recognize, however, that the ErrorMessage field will contain the complete error 
message, with all substitutions already inserted. The information in the ErrorString1 and 
ErrorString2 fields is supplied only for cases where you need to act upon the information 
provided. 
 

ErrorMessage$ This field contains the complete error message including all string substitutions in cases where 
the ErrorCode was zero or negative. In these cases it can be used directly in reporting an error 
condition. 
 

SubstString1$ A substitution string to be used in the reporting of error messages (see the section on the 
ErrorFile field above). Replace the "##1##" character sequence in the error message retrieved 
with this substitution string. 
 

SubstString2$ A substitution string to be used in the reporting of error messages (see the section on the 
ErrorFile field above). Replace the "##2##" character sequence in the error message retrieved 
with this substitution string. 

Result_1 Most return values are written here. Default value is 0.
Result_2 Pass N of PASS_X_OF_N is written here. Default value is 0.

Related Commands:
IDR_SetProgress FileRead_INI FileWrite_INI



    IDR_IsPresent 

This function determines whether IDRISI is currently running on the host system. 

Syntax: IDR_IsPresent(Result)    

Parameter:
Result 1 if the IDRISI window can be located, otherwise 0.

Related Commands:
WinExist    



    IDR_InitProgressTracking 

The IDR_InitProgressTracking function is somewhat similar to an IDR_LaunchModule function in that it returns a Process ID. 
However, in this case it is used to notify IDRISI that a client module has been launched and that it should begin monitoring the 
progress of that module. The client application is then responsible for updating the progress of that module using the 
IDR_SetProgress function. IDRISI will then display the progress of the module in the lower-right panel of the main IDRISI 
window, as well as report on any error conditions that occur. See the description of IDR_GetProgress and IDR_SetProgress for 
details on how this done. 

Syntax: IDR_InitProgressTracking(ClientId,ProcName$,ProcessID)

Parameters:
ClientId The Client ID required in order to initiate progress tracking (see IDR_RegisterClient).
ProcName$ This can be any name, but is typically a module name, of 8 characters or less, that is reported 

next to the IDRISI progress gauge.
ProcessID The return value of this function is the Process ID that is used as the second parameter of either 

the IDR_SetProgress or IDR_GetProgress functions.

Related Commands:
IDR_GetProgress     IDR_SetProgess  



    IDR_Launch 

If IDRISI is not presently running, this function can be used to launch IDRISI. The TOKEN is    used to specify how it should 
appear once    launched. If successful, a value will not be returned until IDRISI has completed the entire launch process. Only 
one    instance of IDRISI can be running.

Syntax: IDR_Launch(TOKEN,Result)

Parameters:
TOKEN HIDE, NORMAL, MINIMIZE, MAXIMIZE. 
Result 1 when IDRISI has successfully launched, otherwise 0.

Related Commands
Run    RunExt    WinShow 



    IDR_LaunchModule 

Launches an IDRISI module using a command line to specify the operation that should be performed. Launching a module 
requires a Client    ID (see IDR_RegisterClient). In addition, it is necessary to specify how the launched module will be monitored. 
In most cases, the FROM_IDRISI option will be used. In this case, the progress of the module is available to both IDRISI and the 
client application. IDRISI will display the progress of the module as it usually does in the lower right-hand panel of the main 
IDRISI window. 

In addition, IDRISI will report on any error conditions or warnings that occur. However, if monitoring mode FROM_CLIENT is 
chosen, IDRISI does not monitor the progress, nor does it report on any error conditions -- it is expected that the client 
application will do this (see IDR_GetProgress ). 

The name of the module to run, its command line, and the title and units of the resulting operation are all specified in this 
command.

The syntax of the command line is identical to that used in IDRISI macro operations except that the "x" character that normally 
begins each command line is not included. Thus, whereas a macro file might contain a call to OVERLAY as follows: 

          overlay x 5 landsat4 landsat3 ndvi 

 the command line that would be passed in the CmdLine$ parameter of an IDR_LaunchModule command would simply be: 

          5 landsat4 landsat3 ndvi 

and the name of the module would be specified in the ModName$ string variable. Note that the OutputTitle$ and string 
parameters must be specified, but may be passed as null strings if you don’t    wish to record values for these documentation file 
entries.

Syntax: IDR_LaunchModule(ClientId,CLIENT_OPTIONS,ModName$,Cmdln$,OutputTitle$,OutputUnits$,ProcessID)

Parameters:
ClientId The Client ID returned from IDR_RegisterClient.
CLIENT_OPTIONS Monitoring mode: “FROM_CLIENT” or “FROM_IDRISI”
ModName$ A valid IDRISI module name.    
Cmdln$ Module command line.
OutputTitle$ File title, if relevent, otherwise a null string (“”).    
OutputUnits$ Output units, if relevent, otherwise a null string (“”).
ProcessID The return value of the IDR_LaunchModule function is a Process ID. A Process ID is an identifier

that can be used to reference a process that has been launched by a client application. This ID 
can then be used to monitor the progress of that process (see IDR_GetProgress). ProcessID 
returns 0 if the module cannot be launched.

Related Commands:
IDR_Launch  Run 



    IDR_Read_DocFile 

To be released in a maintenance update.
This function reads the documentation file for a specified image, and places the results into a record structure. The record 
structure, ImageDoc, needs to be passed by the user and will be modified by the function. Legends must be read separately, 
using the IDR_Read_Legend function. The return value of the function indicates whether it has been successful (1) or not (0).

Syntax: IDR_Read_DocFile(to be decided)

Parameters:

Related Commands:



    IDR_Read_Legend 

To be released in a maintenance update.
This function returns a specified legend category found within an image or values documentation file. The return value of the 
function indicates whether it has been successful (1) or not (0).

Syntax: IDR_Read_Legend(Filename$,Index,LegendText$,Result) 

Parameters:
Filename$ Legend filename.
Index index into the file.
LegendText$ Legend entry read.
Result 1 if the operation was sucessful, otherwise 0.

Related Commands:
IDR_Add_Legend  



    IDR_Read_Val_DocFile 

To be released in a maintenance update.
This function reads the documentation file for a specified values file, and places the results into a record structure. The record 
structure, ValuesDoc, needs to be passed by the user and will be modified by the function. Legends must be read seperately, 
using the IDR_Read_Legend function. The return value of the function indicates whether it has been successful (1) or not (0).

Syntax: IDR_Read_Val_DocFile(to be decided)

Parameters:

Related Commands:



    IDR_Read_Vec_DocFile 

To be released in a maintenance update.
This function reads the documentation file for a specified vector file, and places the results into a record structure. The record 
structure, VectorDoc, needs to be passed by the user and will be modified by the function. The return value of the function 
indicates whether it has been successful (1) or not (0).

Syntax:    IDR_Read_Vec_DocFile(to be decided)

Parameters:

Related Commands:



    IDR_RegisterClient 

The main IDRISI program (idrisiw.exe) is actually a server program that can serve many clients at any time. As a result, it is 
necessary for a client application to register itself and obtain a Client ID. This Client ID is then used to identify your specific 
application in all operations that initiate processes within the IDRISI system (such as launching a module, or tracking the 
progress of a user-defined module).

IDR_RegisterClient is the first step involved in initiating or monitoring a process. This function returns a Client ID, which may then
be used in functions such as    IDR_LaunchModule or IDR_SetProgress. Note that a return of 0 signifies that the request    has 
been refused (most likely because there are no further Client ID's available - a maximum of 16 clients can be tracked 
simultaneously). Clients that have received a Client ID should free up that ID as soon as they have finished needing    to 
communicate with IDRISI by making a call to the IDR_UnRegisterClient function. 

Syntax: IDR_RegisterClient(Client_ID)

Parameter:
Client_ID A value in the range 0 -16.

Related Commands:
IDR_UnRegisterClient  IDR_LaunchModule  IDR_SetProgess  



    IDR_SetDataDir 

Specifies the path of the working data directory that IDRISI should use for access to data and output of all results. 

Syntax: IDR_SetDataDirectory(IdrisiDataDir$,Result)

Parameters:
IdrisiDataDir$ The new data directory. IDRISI requires a trailing backslash. If one is not present it is 

automatically added before the command is executed.
Result 1 if the operation succeeded, otherwise 0.    

Related Commands:
IDR_GetDataDir 



    IDR_SetDebugMode 

The IDR_SetDebugMode function indicates how the Idrisi API should handle internal exceptions. These should rarely, if ever, 
occur. However, if DEBUG mode is ON (the default) the presence of an exception (run-time error) will cause the program to halt 
with an dialog box expressing the nature of the error. On the other hand, if DEBUG mode is set to OFF, the module will continue 
to run in the presence of an exception and will not cause an error dialog to be displayed. 

Syntax: IDR_SetDebugMode(ON | OFF,PreviousMode)

Parameters:
ON Turn DEBUG mode on.
OFF Turn DEBUG mode off.
PreviousMode 0 if the previous mode was OFF, 1 if the previous mode was ON.

Related Commands: 
None.



    IDR_SetExtensions 

This function sets the default extensions for image, vector, and values files. If any of the parameters are left blank, 
IDR_SetExtensions maintains the previous values for those parameters. 

Syntax: IDR_SetExtensions(Img$,ImgDoc$,Vec$,VecDoc$,Value$,ValueDoc$,Result)

Parameters:
Img$ image file extension. Installation default is .img
ImgDoc$ image document extension. Installation default is .doc
Vec$ vector file extension. Installation default is .vec
VecDoc$ vector document file extension. Installation default is .dvc
Value$ value file extension. Installation default is .val
ValueDoc$ value document extension. Installation default is .dvl
Result 1 if the operation was sucessful, otherwise 0.

Related Commands:
IDR_GetExtensions 



    IDR_SetProgress

IDR_SetProgress is used to specify the progress of a client module that is being monitored by IDRISI (as established by a call to 
IDR_InitProgressTracking). It requires three parameters. The first is a Client ID (see IDR_RegisterClient) and the second is the 
handle of the process owned by that client (see IDR_InitProgressTracking). 

Syntax: IDR_SetProgress(ClientID, ProcessID, Status, ReportType,
ErrorFile$,ErrorCode, ErrorMsg$,Subst1$,Subst2$,
Result_1, Result_2)

Parameters:
ClientID The ID returned by a previous call to IDR_RegisterClient.
ProcessID The ID returned by either IDR_InitProgressTracking or IDR_LaunchModule.
Status The status field indicates whether the process is active or has terminated. Token values are ACTIVE,    

NORMAL_TERMINATE or ERROR_TERMINATE. 
Most client applications do not handle IDRISI error messages. However, if you do wish to report 
on errors that occur in the running of IDRISI modules, or know of their character from a program 
perspective, you can make use of the ErrorCode, ErrorFile$, ErrorMessage$ and the 
SubstString1$ and SubstString2$ fields below. In all cases, if you are handling errors, check the 
ErrorCode field first.
 

ReportType IDRISI allows several reporting types, and accepts the following TOKEN values.
WORKING simply indicates that the module is working. If this is the indicated report type, Result_1 and 

Result_2 are set to 0.
PERCENTDONE is the most commonly used method of reporting, and is preferred. If this type is indicated, you 

can set the percentage of the module's work that has been completed by setting a 0 - 100 value 
in Result_1.

PASS_X_OF_N sets the pass in progress and the total number of passes the module will require. X is in 
Result_1 and N is in Result_2.

PASS_TOTALUNKNOWN    is used for cases where the report sets the pass number in progress, but the total 
number of passes that will be required is unknown. In this case, only Result_1 requires a valid 
number.

COMPLEXPASS is the most complex of all reporting types. In this case the total number of expected passes is set
in Result_1 and the percentage done (0 - 100) of the current pass is set in Result_2..
 

ErrorCode Three conventions are used in the reporting of an error in an IDRISI client module. If a negative 
number is used, this will be understood to refer to an IDRISI standard error, which will be 
accessed from the ".ERR" file of the language in effect (e.g., ENGLISH.ERR, FRENCH.ERR, 
etc.). This is not normally used by client applications and should generally be avoided (since 
they may change with later versions). 
If a positive error code (of 1 or greater) is specified, it is understood that this represents a key in 
a user-defined error file (see the section on ErrorFile$ below). 
If an error code of 0 is specified, it is understood that no error file is in use and that the error is 
being reported directly from the client application code. Specifying an error of 0 will cause IDRISI
to ignore the contents of the ErrorFile$    field, and retrieve the message directly from the 
ErrorMessage$ field. 
Note : It is essential that the Status token be set to ERROR_TERMINATE to indicate that an 
error has occurred. Otherwise, the error code information will not be used! 
 

ErrorFile$ The ErrorFile$ field contains the complete name and path of the file from which the error 
message should be retrieved. If the error code is negative (signifying an IDRISI error message) 
or zero (signifying that a direct error message is being used), this field will be ignored by IDRISI. 

IDRISI-compatible error files follow the convention of Windows ".ini" files and can be accessed 
using the FileRead_INI command. In IDRISI, all error files have an ".err" extension, and a main 
file name that corresponds to the language in use (e.g., ENGLISH.ERR, ESPANOL.ERR, etc.). 
In addition, they contain a single section with the same name as the langauge. using the error 
code as a key and the language name as the section. Thus, for example, the key named "-101" 



in the section named "English" corresponds to a condition identified as "Disk Full". The error files
included with IDRISI can be examined with a text editor to appreciate their structure; but they 
should not be altered. 

In the case of user-defined error files, the use of an ".err" extension is recommended, but not 
required. Therefore you can expect that ErrorFile$ will contain the complete name and path to 
that file. Also, the file will contain only a single section, using the same name as the main name 
of the file itself. Thus if you receive reference to a file named "MYAPP.ERR", the single section 
heading will read "[myapp]". 
NOTE: User defined error files are not accessible. This is caused by a bug in the Idrisi 
MERCUR32.DLL.

In some cases, the error message strings listed in an error file will contain references to string 
substitutions using character sequences of "##1##" or "##2##". In these cases, the "##1##" and 
"##2##" character sequences can be found in the ErrorString1 and ErrorString2 fields, 
respectively. Thus, for example, the IDRISI error code -1013 corresponds to the key entry "Disk 
File ##1## not found". The name of the file in question is thus in the ErrorString1 field. It is 
important to recognize, however, that the ErrorMessage$ field will contain the complete error 
message, with all substitutions already inserted. The information in the SubstString1$ and 
SubstString2$ fields is supplied only for cases where you need to act upon the information 
provided. 
 

ErrorMessage$ This field contains the complete error message including all string substitutions in cases where 
the ErrorCode was zero or negative. In these cases it can be used directly in reporting an error 
condition. 
 

SubstString1$ A substitution string to be used in the reporting of error messages (see the section on the 
ErrorFile field above). Replace the "##1##" character sequence in the error message retrieved 
with this substitution string. 
 

SubstString2$ A substitution string to be used in the reporting of error messages (see the section on the 
ErrorFile$ field above). Replace the "##2##" character sequence in the error message retrieved 
with this substitution string. 

Result_1 Most values are set here. If the function is successful, Result_1returns 1, other 0.
Result_2 Input value depends on the ReportType. Return value is 0.

Related Commands:
IDR_GetProgress 



    IDR_UnRegisterClient 

UnRegisters a client application and returns the Client ID for use by another application. The ClientID passed as the parameter 
should be the same one that was received by a previous call to IDR_RegisterClient. 

Syntax: IDR_UnRegisterClient(Client_ID)

Parameter:
Client_ID The client ID to unregister.

Related Commands:
IDR_RegisterClient 



    IDR_Write_DocFile 

To be released in a maintenance update.
This function writes a documentation file for an image, places the values for the documentation into the record structure, and 
writes the data into the file.

Syntax: IDR_Write_DocFile (to be decided)

Parameters:

Related Commands:



If...Else...Endif

This control command executes commands conditionally in a structured manner. If the condition tested is true, script execution 
continues until either an Else or Endif keyword is located. If the condition tested is false, execution continues on the next line 
following the next located Else or Endif.

Syntax: If <condition> 
<true commands> 

 Endif

and 

If <condition> 
<true commands> 

 Else
<false commands>

 Endif

Parameters:
<commands> One or more PiXCL commands.

Operator Meaning
= equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to
<> not equal to

Table:    Logical Operators

Remarks:

PiXCL will issue a syntax error if you try to compare a string with a number. Before performing such a comparison, use the Str 
function to convert the number to a string or the Val function to convert the string to a number.

You can embed If...Then and If-Else-Endif structures in a structured If, to a depth of 16 levels. For example,

IfThenTest: {=== subroutine ===}
DrawBackground
Levels++ 
DrawNumber(150,30,Levels)
If Number1 = 0
    { here's a comment with an endif }
    DrawIcon(1,1,0,0,ICON01)
    If Number2 = 0 Then DrawIcon(80,1,0,0,ICON03)

            WaitInput(1)
    Number2++



    If Number2 = 2 Then Number1 = 1
    If Number2 = 4 Then Number2 = 0
    
    {here's an embedded If-Endif}

    If Number1 = 0
DrawIcon(1,1,0,0,ICON07)
If Number = 1
    DrawIcon(10,10,0,0,ICON10)
    If Number = 1
        DrawIcon(20,20,0,0,ICON10)

If Number =1 Then DrawIcon(10,10,60,60,ICON13)
    Endif
Endif

    Else
   DrawIcon(1,1,0,0,ICON08)
    Endif

Else
    DrawIcon(1,1,0,0,ICON04)
    If Number2 = 1 Then DrawIcon(80,1,0,0,ICON06)
    If Number2 = 2 Then Number1 = 0
    Number2++

    If Number1 = 1
DrawIcon(1,10,0,0,ICON09)
Number = 0

    Else
   DrawIcon(1,10,0,0,ICON10)
 Number = 1
    Endif
    

Endif
Return

More Remarks
All comments are ignored, so it is quite acceptable to have the strings “Else“ and “Endif” embedded in a comment.    When 
the interpreter is looking for the “Else” and “Endif” keywords, it will also ignore these strings if they are part of a numeric or 
string variable name, or part of a token identifier.    We suggest that a good programming practice is to not use variable names or 
token identifiers that include the strings “Else” or “Endif”.

You can have GoSub commands within    If-Endif structures, so long as the subroutine does in fact return to the structure.    A 
GoTo statement within the If-Endif is acceptable, but a GoTo that jumps outside the structure is not only poor programming 
practice, but may eventually cause a syntax error in code that previously runs correctly. This is not a bug: its been 
intentionally left in the parser code so a Syntax Error will be flagged. The Syntax Error occurs because PiXCL keeps a 
record of the embedded pointers to Else and Endif keywords, and resets them as the code is executed. A jump outside the 
structure leaves a valid Else | Endif pointer, and eventually all the entries are used up.

The same situation applies to using a GoTo to jump out of a While-EndWhile loop. The correct method is to use the Break 
command.

Related Commands:



Goto, Gosub, Str, Val    Switch    



If...Then

This control command executes commands conditionally. If the condition tested is true, execution continues on the same line, 
following the Then. If the condition tested is false, execution continues on the next line following the If; all commands on the 
same line as the If are ignored.

If-Then commands had their uses, for example when there is one or two functions to be executed, but the If-Else-Endif structure 
is more appropriate when there is a block of commands.

Syntax: If <condition> Then <commands> 

Parameters:

<condition> A conditional expression used to compare two integers or two strings taking
the form

Item1 logical_operator Item2 

where Item1 and Item2 are both integers or both strings and 
logical_operator is one of the logical Operators in Table 15-3. For example, 
the following are all valid conditional expressions:

Red <= 255
Mouse_x1 <> Mouse_x2
File$ = "SYSTEM.INI"
Lastname$ > "Carter"

<commands> One or more PiXCL commands.

Operator Meaning
= equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to
<> not equal to

Table:    Logical Operators

Remarks:

PiXCL will issue a syntax error if you try to compare a string with a number. Before performing such a comparison, use the Str 
function to convert the number to a string or the Val function to convert the string to a number.

Because PiXCL treats the split vertical bar (|) as white space, it serves as a nice way to separate commands following the Then. 
Here's an example:

If x < 10 Then x = x + 1 | y=20 | Goto Next

Without the split vertical bars, this line would be more difficult to read because the commands following the Then would be all 
jumbled together.



Example:

This program draws an 8 by 8 matrix of colored boxes starting at (5,5). The figure below shows the positioning of the boxes in 
the window. Several If commands are used to test the value of different variables and branch accordingly. When you start the 
program, for example, it draws the first box in the window, increments the Color_Red variable by 64, and tests the value of that 
variable using the following If command:

 
Using If to test variables and draw different colored boxes based on the results

If Color_Red <= 255 Then Goto Color_Ready

In this case, if Color_Red is less than or equal to 255, the program branches to the Color_Ready: label. Otherwise, the program 
continues execution on the next line following the If.

{Initialize variables}
Boxes:
     SetMenu("E&xit",Leave,ENDPOPUP)
     UseCaption("Drawing Color boxes")
     Color_Red=63
     Color_Green=63
     Color_Blue=63
     Color_X1=5        {Start the matrix at (5,5)}
     Color_Y1=5

Draw_Color:
     UseBrush(SOLID,Color_Red,Color_Green,Color_Blue)
     Color_X2=Color_X1+16
     Color_Y2=Color_Y1+16
     DrawRectangle(Color_X1,Color_Y1,Color_X2,Color_Y2)

     Color_Red=Color_Red+64
     If Color_Red<=255 Then Goto Color_Ready
     Color_Red=63
     Color_Green=Color_Green+64
     If Color_Green<=255 Then Goto Color_Ready
     Color_Green=63
     Color_Blue=Color_Blue+64
Color_Ready:

     Color_X1=Color_X1+21
     If Color_X1<=184 Then Goto Draw_Color
     Color_X1=5



     Color_Y1=Color_Y1+21
     If Color_Y1<=144 Then Goto Draw_Color

     WaitInput()

Remarks
See FileGet, GetScreenCaps, MessageBox, and Set for other examples of the If-Then command. The If-Then command can be 
embedded in If-Else-Endif structures.

Related Commands:

Goto, Gosub, Str, Val



ImageBox

This command creates a dialog box with an "thumbnail" or preview image display region, an 11 line text display region, and two 
buttons with user definable labels. The ImageBox command is designed to display a small view of an image in any of the 
supported formats (BMP, JPG, PCD, PCX, PPM, PSD, RAS, RLE, TGA and TIF), along with any relevent details about the 
image, such as the usual line and pixel counts, date information and other metadata (data about data).

Syntax: ImageBox(Title$,ImageFile$,Text$,Btn1_Label$,Btn2_Label$,Btn)

Parameters:
Title$ The string that appears in the titlebar.
ImageFile$ The image file to be displayed in the thumbnail region.
Text$ Up to eleven lines of text.
Btn1$ Label that appears on the left button. If set to "", the default label is "&Accept".
Btn2$ Label that appears on the right button. If to "", the default label is "&Reject".
Btn Returned code 1 (left) or 2 (right).

Remarks:

As with all other bitmap display related commands in PiXCL, ImageBox uses the filename as the bitmap record identifier. If the 
bitmap has already been loaded using the DrawBitmap or DrawSizedBitmap, the bitmap is stored in memory. This memory can 
be recovered with the FreeBitmap or FreeBitmapAll commands.    ImageBox loads Preview images into the list in the same way 
as the DrawPreviewBitmap command.

The bitmap is displayed in a fixed size window, and is adjusted in scale so that the largest dimension (width or height) fills the 
available image space. Hence, you will often get a blank area on the right side of bottom of the image area, depending on 
whether the bitmap is portrait, square or landscape sized.

Related Commands:

DrawBitMap, DrawPreviewBitMap, DrawSizedBitmap, LoadBitmap , all the image processing commands.



ImageListAdd

PiXCL 5 command. Add a new image to the ImageList structure. 

Syntax: ImageListAdd(ImageListHandle, Image$, Mask$, ListIndex)

Parameters:
ImageListHandle A valid handle returned from the ImageListCreate command.
Image$ The name of an image, either on disk or in the PiXCL image list.
Mask$ The name of a mask image, either on disk or in the PiXCL image list. If a mask is not required 

set this to an empty string.
ListIndex The returned ImageList image index, starting from 0. 

Related Commands:
ImageListCreate ImageListDestroy    ImageListDraw ImageListGetBkColor    ImageListSetBkColor    ImageListSetOverlay 



ImageListCreate

PiXCL 5 command.    A part from the image list that PiXCL uses to keep track of loaded images, PiXCL also supports what is 
called and ImageList structure. This is a set of related images that are the same dimensions (lines x pixels), and provides some 
additional display capabilities, most notably the ability to do transparent overlays with masks.

Syntax: ImageListCreate(Width,Height, CREATE_mode, Initial, GrowTo, ImageListHandle)

Parameters:
Width, Height The width and height of the images that will be in the ImageList.
(NO)MASK24 Create a list with 24 bit images, without or with masking.
(NO)MASK32 Create a list with 32 bit images, without or with masking.
Initial The initial number of images in the ImageList. For NOMASK modes, this will be 1, and for 

MASK modes, 2.
GrowTo The maximum number of images that the ImageList can contain.
ImageListHandle A non-zero value that refers to the ImageList. The ImageListDestroy command is to be used 

when the ImageList is no longer required.

Related Commands:
ImageListAdd ImageListDestroy    ImageListDraw ImageListGetBkColor    ImageListSetBkColor    ImageListSetOverlay 



ImageListDestroy

PiXCL 5 command. Add a new image to the ImageList structure. 

Syntax: ImageListDestroy(ImageListHandle, Result)

Parameters:
ImageListHandle The ImageList to destroy.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
ImageListAdd ImageListCreate ImageListDraw ImageListGetBkColor    ImageListSetBkColor    ImageListSetOverlay 



ImageListDraw

PiXCL 5 command. Draws an image from the ImageList structure into the client area.

Syntax: ImageListDraw(ImageListHandle, BaseIndex, OverlayIndex, x1,y1,x2,y2,
Fr, Fg, Fb, Br, Bg, Bb, MODE_token, Result)

Parameters:
ImageListHandle The ImageList to use, from ImageListCreate.
BaseIndex The 0-based index of the base image to be drawn
OverlayIndex The 1-based index of the overlay image to be drawn.
x1,y1,x2,y2 The client area draw rectangle.
Fr,Fg,Fb Foreground colour.
Br, Bg, Bb The background colour.
MODE_token One of the following:

BLEND25    Blend the image with 25% of the system highlight colour.
BLEND50 Blend the image with 25% of the system highlight colour.
MASK    Blend using the mask.
NORMAL    Show the image as it would with the DrawBitmap command.
TRANSPARENT Show BaseIndex overlaid with OverlayIndex in transparent mode.

Result 1 if the operation was successful, otherwise 0.

Related Commands:
ImageListAdd ImageListCreate ImageListDestroy ImageListGetBkColor    ImageListSetBkColor    ImageListSetOverlay 



ImageListGetBkColor

PiXCL 5 command. Get the background ImageList colour values.

Syntax: ImageListGetBkColor(ImageListHandle, Red,Green,Blue)

Parameters:
ImageListHandle The ImageList to use, from ImageListCreate.
Red,Green,Blue The RGB values currently used for the background colour. If these are all –1, images are drawn 

transparently using the mask, if one is present.

Related Commands:
ImageListAdd ImageListCreate ImageListDestroy    ImageListDraw ImageListGetBkColor ImageListSetOverlay 



ImageListSetBkColor

PiXCL 5 command. Set the background ImageList colour.

Syntax: ImageListSetBkColor(ImageListHandle, R,G,B, Result)

Parameters:
ImageListHandle The ImageList to use, from ImageListCreate.
R,G,B The values to use for the background (transparency) colour. Set these all to –1 ig you want to 

have a mask image drawn transparently.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
ImageListAdd ImageListCreate ImageListDestroy    ImageListDraw ImageListGetBkColor    ImageListSetOverlay 



ImageListSetOverlay

PiXCL 5 command. Sets a loaded image as the transparent overlay. 

Syntax: ImageListSetOverlay(ImageListHandle, OverlayIndex, Result)

Parameters:
ImageListHandle The ImageList to use, from ImageListCreate.
OverlayIndex The ImageList index of the overlay image.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
ImageListAdd ImageListCreate ImageListDestroy    ImageListDraw ImageListGetBkColor ImageListSetBkColor 



InetAutodial

This command attempts to dial into the Internet using the modem currently configured in Windows.

Syntax: InetAutodial(USERONLINE|UNATTENDED,Result)

Parameters:
USERONLINE Attempt a connection with user input available.
UNATTENDED Attempt a connection automatically.
Result 1 if the operation was succesful, otherwise 0.

Related Commands:
InetAutodialHangup    InetDial    InetHangup 



InetAutodialHangup

This command hangs up the modem currently configured in Windows.

Syntax: InetAutodialHangup(Result)

Parameters:
Result 1 if the operation was succesful, otherwise 0.

Related Commands:
InetAutodial    InetDial    InetHangup 



InetCheckConnection

It is possible to check if a connection to the Internet is available before dialing up or connection on a network.

Syntax: InetCheckConnection(URL$,Result)

Parameters:
URL$ The URL that you want to connect to directly. This can be a null string if desired.
Result 1 if the operation was succesful, otherwise 0.

Related Commands:
InetAutodialHangup    InetDial    InetHangup 



InetDial

This command attempts to dial into the Internet using the modem currently configured in Windows.

Syntax: InetDial(USERONLINE|UNATTENDED,ConnectionName$,Connection)

Parameters:
USERONLINE Attempt a connection with user input available.
UNATTENDED Attempt a connection automatically.
ConnectionName$ A name of a dialup connection that has been configured into Windows.
Connection a non-zero number if the operation was succesful, otherwise 0. This number is used in the 

InetHangup command.

Related Commands:
InetAutodialHangup    InetDial    InetHangup 



InetGetConnectedState

Use this command to get the current available Internet connection method.

Syntax: InetGetConnectedState(State)

Parameter:
State The currently available Internet access method. Possible values are

1 = MODEM A modem is available
2 = LAN A Lan connection is available.
4 = PROXY Connect via a proxy.
8 = MODEM_BUSY    The modem is assigned to another dialup application.

Related Commands:
InetSetConnectedState 



InetGoOnline

This command provides a means to connect to a URL directly, using the currently defined browser.

Syntax: InetGoOnline(URL$,Result)

Parameters:
URL$ The URL that you want to connect to directly.
Result 1 if the operation was succesful, otherwise 0.

Related Commands:
InetAutodialHangup    InetDial    InetHangup 



InetHangup

This command hangs up the modem currently configured in Windows.

Syntax: InetHangup(Connection, Result)

Parameters:
Connection The connection returned by the InetDial command.
Result 1 if the operation was succesful, otherwise 0.

Related Commands:
InetAutodial    InetDial    InetAutodialHangup 



InetSetConnectedState

This command has the effect of hanging up the modem regardless of the current state, and would generally be used to clear the 
modem of any previous operating modes (e.g. fax mode).

Syntax: InetSetConnectedState(Result)

Parameters:
Result 1 if the operation is successful, otherwise 0. 

Related Commands:
InetAutodialHangup    InetDial    InetHangup 



InfoMenu

Controls whether PiXCL's Info menu appears in the menu bar when creating your own custom menu.

Syntax: InfoMenu(REMOVE/ADD)

Parameters:

REMOVE Prevents PiXCL from including its Info menu in the menu bar the next time a SetMenu command
is executed.

ADD Causes PiXCL to include the Info menu the next time a SetMenu command is 
executed. This is the default.

Remark:

PiXCL normally includes an Info menu as the last item in the menu bar. By using InfoMenu(REMOVE) before a SetMenu 
command, you can prevent the Info menu from appearing when creating your own custom menu.

Be sure to use InfoMenu(REMOVE) before SetMenu. Using it afterward won't have any effect.

To remove the menu bar altogether, use the following code.

InfoMenu(REMOVE)
WaitInput(100)  { Lets windows catch up}
SetMenu()

Removing the menu bar is useful if you want to create an image in a window, or simulate a dialog box. 

Related Commands

SetMenu, Building Runtime executables, AboutPiXCL, AboutUser 



InsertListImageRect

Images loaded in the PiXCL image list can be copied into another larger list bitmap, for example when a set if thumbnail images 
is to be saved, or to create an animation sequence. Source and destination images must have the same number of bits per pixel.

Syntax: InsertListImageRect(SourceImage $,DestImage$,x1,y1,x2,y2,Result)

Parameters:

SourceImage $ The (usually smaller) source image in the list.
DestImage$ The larger image, often created with the CreateBitmap command.
x1,y1,x2,y2 The insertion coordinates in DestImage$.
Result 1 if the operation was successful, otherwise 0 if the source or destination image does not exist in

the list, or –1 if there is a problem with the coordinates.

Remarks:

The destination image can be saved with the SaveBitmap command in the desired format. Coordinate problems include x1 or y1 
being negative, or x2,y2 outside the boundaries of the source image, or the SourceImage$ coordinates do not match the size of 
the rectangle defined in x1,y1,x2,y2. It is your responsibility to ensure that the coordinates specified are correct.

Related Commands:

CreateBitmap    DuplicateImage    ExtractListImageRect    SaveBitmap    



InstallColorProfile

PiXCL 5 command: Windows 98 or later and Windows 2000 include colour management functions using the standardised 
profiles in the International Colour Consortium (ICC) format.    Colour profiles are stored in the c:\windows\system\color 
directory, and have to be made known to Windows before they can be used. If you add a colour profile, for example, supplied 
with a colour printer or scanner or other image input device, use this command to install the profile if required.

Syntax: InstallColorProfile(ProfileName$,Result)

Parameters:
ProfileName$ The name of a colour profile, extension .icm.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
UninstallColorProfile    



Instr

Returns a number representing the starting position of one string within another string.

Syntax: Instr(String1$,String2$,Location)

Parameters:
String1$ The string to be searched.

String2$ The string you want to look for in String1$.

Location An integer variable that will contain the starting position of String2$ within 
String1$, or 0 for not found.

Remark:

The first position within String1$ is 1.

Example:

This program tests for the presence of "for" within the string "testing for." It then draws the result, 9, at position (10,10) on the 
screen.

Test1$="testing for"
Test2$="for"
Instr(Test1$,Test2$,Result)
DrawNumber(10,10,Result)
WaitInput()

Related Commands:

Substr, Left, Right, Len



Int

Return the integer part of a floating point number. Updated for PiXCL 5.1 to support double numbers.

Syntax: Int(FpNumber&|Fp64#&, Number)

Parameters:
FpNumber& The floating point number. Note that if this number is exceeds 32 bit values, the return is 0. Use 

Int64 in preference.
Number The returned integer.

Related Commands:
Float     FpVar     FpStr Int64    



Int64

PiXCL 5.1 command. Return the integer part of a floating point or double precision number. 

Syntax: Int64(FpNumber&|Fp64#&, Number64#)

Parameters:
FpNumber&|Fp64#& The floating point number. 
Number64# The returned 64 bit integer.

Related Commands:
Float     FpVar     FpStr Int    



InvertRectangle

Inverts the colors of the specified rectangle in the client area. This is not the same as inverting the colors of a bitmap stored in 
memory, which requires the InvertImage command.

Syntax: InvertRectangle(x1,y1,x2,y2)

Parameter:
x1,y1,x2,y2 The client area coordinates to be inverted.

Remark:

The region that is inverted will remain inverted until you issue the InvertRectangle command again, or some other command that 
writes over the region. The DrawBackground and DrawBitmap commands will do this, as will any of the other draw commands.    
This command can be used for button bitmaps, or to highlight an area of interest in the client area.

Example:
This code fragment draws a sized bitmap at the specified coordinates, then inverts the colors of a sub-region.

DrawSizedBitMap(10,10,300,200,Bitmap$)
InvertRectangle(50,60,100,100)

Related Command:
DrawRectangle, DrawEdgeRectangle, all the Draw commands, DrawBitMap, DrawSizedBitmap, DrawBackground



IPAddressBox

When an Internet IP address (e.g. 192.72.14.1) rather than a Web page URL has to be entered, the IPAddressBox simplifies the 
process. It is used along with a Button and/or SetKeyboard command, plus the GetIPAddress command.

Syntax: IPAddressBox(x1,y1,x2,y2,Result)

Parameters:
x1,y1,x2,y2 The client area coodinates of the control. Setting either of x2,y2 to 0 removes an existing control.
Result 0 if the control cannot be created (such as when it already exists)

Example:
IPAddressBox(100,100,300,130,Res)
Button(310,100,400,130,PUSH,"IP Done",GettingIPAddress)
Goto Wait_for_Input

GettingIPAddress:
WaitInput(1)
GetIPAddress(P,A,B,C,D)
IPAddressBox(0,0,0,0,Res)
Button()
DrawBackground
DrawNumber(10,40,A) DrawNumber(50,40,B) 
DrawNumber(90,40,C) DrawNumber(130,40,D)

Related Command:
GetIPAddress 



ItemCount

The number of items in string variable lists with specified delimiter characters can be counted with the ItemCount command.

Syntax: ItemCount(List$,Delimiter$,Count)

Parameters:
List$ The delimited list.
Delimiter$ The defined delimiter character in the list.
Count The number of items in the list. If List is a null string, Count returns 0.

Related Commands:
ItemInsert  ItemExtract     ItemLocate  ItemRemove  



ItemInsert

 A new item string can be inserted into a List$ with the ItemInsert command.

Syntax: ItemInsert(List$,Delimiter$,Index,Item$,Result)

Parameters:
List$ The delimited list string variable. The updated list is returned here.
Delimiter$ The defined delimiter character in the list.
Index The insertion point in the list.
Item$ The new item to insert.
Result 1 if the insert ws succesful, otherwise 0.

Remarks:
The defined insertion point is where the new item is placed. Hence, if a new item 3 is inserted, the old item 3 becomes item 4.    
If, for example, a list has 6 items, and you want to append an item, specify the item number as 7.    You can also append or 
prepend items to any list with a string concatenation function. e.g.

Appending:
Delimiter$ = "|"
List$ = List$ + Delimiter$
List$ = List$ + Item$
Goto Wait_for_Input

If the insertion index number if greater than the number of items + 1, the function will fail and return 0.

Related Commands:
ItemCount  ItemInsert  ItemExtract  ItemLocate  ItemRemove  



ItemExtract

An item string can be extracted from a List$ with the ItemExtract command.

Syntax: ItemExtract(List$,Delimiter$,Index,Item$,Result)

Parameters:
List$ The delimited list.
Delimiter$ The defined delimiter character in the list.
Index The extract point in the list.
Item$ The item extracted. Can be a NULL string.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
ItemCount  ItemInsert  ItemExtract  ItemLocate  ItemRemove  



ItemLocate

An item string can be located in a List$ with the ItemLocate command.

Syntax: ItemLocate(List$,Delimiter$,Item$,Index)

Parameters:
List$ The delimited list.
Delimiter$ The defined delimiter character in the list.
Item$ The item to be located.
Index The index in the list, otherwise 0.

Related Commands:
ItemCount  ItemInsert  ItemExtract  ItemLocate  ItemRemove  



ItemRemove

An item string can be removed from List$ with the ItemRemove command. Use ItemLocate to get the Index of the list item to 
remove.

Syntax: ItemRemove(List$,Delimiter$,Index,Result)

Parameters:
List$ The delimited list.
Delimiter$ The defined delimiter character in the list.
Index The index of the item to be removed.
Result 1 if the item is removed from List$, otherwise 0.

Related Commands:
ItemCount  ItemInsert  ItemExtract  ItemLocate  



JoyGetDevCaps

PiXCL 5 command. Get the number of joysticks attatched to the system.

Syntax: JoyGetDevCaps(JoyStickID,Name$,Buttons,Axes)

Parameter:
JoyStickID Either 0 or 1.
Name$ The returned name of the selected joystick.
Buttons The number of available buttons.
Axes The number of axes of movement.

Related Commands:
JoyGetNumDevs JoySetCapture    JoyReleaseCapture    JoyGetThreshold    



JoyGetNumDevs

PiXCL 5 command. Get the number of joysticks attatched to the system.

Syntax: JoyGetNumDevs(Number)

Parameter:
Number The number of joysticks that have been attatched and set up. Maximum is 2.

Related Commands:
JoyGetDevCaps JoySetCapture    JoyReleaseCapture      JoyGetThreshold



JoyGetThreshold

PiXCL 5 Command. The movement threshold is the distance the joystick must be moved before your PiXCL application 
responds. The threshold is initially zero.

Syntax: JoyGetThreshold(JoyStickID,Threshold)

Parameter:
JoyStickID Either 0 or 1.
Threshold The current value.

Related Commands:
JoySetCapture    JoyReleaseCapture JoyGetNumDevs JoyGetDevCaps JoyGetThreshold



JoyReleaseCapture

PiXCL 5 Command. The joyReleaseCapture command release a joystick.

Syntax: JoyReleaseCapture(JoyStickID)

Parameters:
JoyStickID Either 0 or 1.

Related Commands:
JoySetCapture JoyGetNumDevs JoyGetThreshold JoyGetDevCaps      JoyGetThreshold



JoySetCapture

PiXCL 5 Command. The JoySetCapture command captures a joystick by causing its messages to be sent to the PiXCL 
Application.

Syntax: JoySetCapture(JoyStickID,Period)

Parameters:
JoyStickID Either 0 or 1.
Period The polling period in milliseconds

Related Commands:
JoyReleaseCapture JoyGetNumDevs JoyGetThreshold    JoyGetDevCapsJoySetThreshold



JoySetThreshold

PiXCL 5 Command. The movement threshold is the distance the joystick must be moved before your PiXCL application 
responds. The threshold is initially zero.

Syntax: JoySetThreshold(JoyStickID,Threshold)

Parameter:
JoyStickID Either 0 or 1.
Threshold The new desired value.

Related Commands:
JoySetCapture    JoyReleaseCapture JoyGetNumDevs JoyGetDevCaps    JoyGetThreshold    



LCase

Converts a string to lowercase.

Syntax: LCase(String$)

Parameter:
String$ The string to convert.

Example:

This program reads the text on the Clipboard, converts it to lowercase, and then writes it back out to the Clipboard.

ClipboardGet(String$,Result)
LCase(String$)
ClipboardPut(String$,Result)

Related Command:
UCase



Left

Returns a specified number of characters from the left of a string.

Syntax: Left(String$,Places,Result$)

Parameters:
String$ The string you want to extract the text from.

Places The number of places you want.

Result$ A string variable that will contain the result.

Example:

This program extracts the first word from the string " Ottawa Canada " and draws it at point (10,10) in the PiXCL window.

String$="Ottawa Canada"
Instr(String$," ",Location)
Location = Location - 1
Left(String$,Location,Result$)
DrawText(10,10,Result$)
WaitInput()

Related Commands:
Right, RightOf, Instr, Substr



LeftOf

Returns characters to the left of a location in a string.

Syntax: LeftOf(String$,Location,Result$)

Parameters:
String$ The string you want to extract the text from.

Location The location in the string. The character at the specified location is not 
returned.

Result$ A string variable that will contain the result. It can be the same as the 
input string.

Example:

This program returns the first word from the string " Ottawa Canada " and draws it at point (10,10) in the PiXCL window.

String$="Ottawa Canada"
Instr(String$," ",Location)
LeftOf(String$,Location,Result$)
DrawText(10,10,Result$)
WaitInput()

Related Commands:
Right    RightOf    Instr    Substr



Len

Returns the length of a string in bytes.

Syntax: Len(String$,Length)

Parameters:
String$ The string whose length you want to determine.

Length An integer variable that will contain the length.

Example:

This example puts up a text box asking you to enter your Zipcode. If the text you enter is longer than 10 bytes, a message box 
appears indicating the entry is too long. The program then loops back for you to try again.

Text$="Please enter your Zipcode"
Caption$="Enter ZIP"

Box:
TextBox(Text$,Caption$,Input$,ButtonPushed)
If ButtonPushed = 0 Then End
Len(Input$,Length)
If Length <= 10 Then Goto Wait_for_input
BoxText$ = "Zipcode too long"
MessageBox(OK,1,INFORMATION,BoxText$,"Error",Button)

Goto Box:
Wait_for_input:

WaitInput()

Related Commands
Right    Instr    Substr    Left



ListBox

Puts up a dialog box with a list box inside. The list box gets its contents from a string variable you provide. Only one list item can 
be selected with this dialog. If the list has more items than can be displayed, a vertical scrollbar is created automatically. If one of
the list items is longer than thirty characters, a horizontal scrollbar is created automatically. The PiXCL 5 USListBox command is 
identical, except that the list is presented unsorted.

Syntax: ListBox(Caption$, List$, Delimiter$, Result$)
PiXCL 5:    USListBox(Caption$, List$, Delimiter$, Result$)

Parameters:
Caption$ The text you want to appear in the title bar of the dialog box.

List$ A string containing the items you want to appear in the list box.

Delimiter$ The character you've used to delimit the items in List$.

Result$ A string variable that will contain the item you select. If you choose Cancel (or press 
ESC) to leave the dialog box, Result$ is assigned a null string (" ").

Remarks:

The items in List$ must be separated from one another (delimited) using the character in Delimiter$. You can use any character 
you want as the delimiter; a space or semicolon will usually suffice.

You can select an item from the list box by highlighting it and choosing OK or double-clicking on it.

Windows always sorts the items alphabetically before displaying them in the list box.

Example:

This example creates a list of space-delimited names and displays them in a list box, as shown in the figure below. After you 
select a name and choose OK, your selection appears in a message box.

 
A ListBox dialog box.

Caption$ = "Choose a name"
List$ = "Jamaica Sammy Millie Maggie George Elise John Mary "
List$ = List$ + "Dorothy Noel Carrie Burt Liz Tom Henry Richard"
ListBox(Caption$,List$," ",Result$)
If Result$ = "" Then Out$ = "You chose Cancel" | Goto Message



Out$ = "You picked " + Result$
Message:
MessageBox(OK,1,INFORMATION,Out$,"ListBox results",Button)
WaitInput()

Related Commands:
DialogBox  FileGet    TextBox    EnumWindows



ListBoxExt

Puts up a dialog box with a multi-column list box inside. This extended list box gets its contents from a string variable you 
provide, and includes a third button labeled "Help". Multiple list items can be selected with this dialog. Vertical and horizontal 
scrollbars are created automatically as needed.

Syntax:    ListBoxExt(Label$,List$,Delim$,Help$,Res$)

Parameters:
Label$ The text you want to appear in the title bar of the dialog box.

List$ A string containing the items you want to appear in the list box.

Delim$ The character you've used to delimit the items in List$.

Help$ The text that appears in a messagebox if the Help button is pressed.

Result$ A string variable that will contain the item you select. If you choose Cancel (or press 
ESC) to leave the dialog box, Result$ is assigned a null string (" "). Mutilple selections 
are delimited with the Delim$ character above.

Remarks:

The items in List$ must be separated from one another (delimited) using the character in Delimiter$. You can use any character 
you want as the delimiter; a space or semicolon will usually suffice.

You can select an item or items from the list box by highlighting it or them, and choosing OK or double-clicking on it. Use the 
Shift amd Control modifier keys as well.

Windows always sorts the items alphabetically before displaying them in the list box.

 
A ListBoxExt dialog box.

Related Commands:
DialogBox     FileGet    TextBox    EnumWindows





ListLoadedBitmaps

PiXCL maintains an internal linked list of any images loaded with the DrawBitmap command set. This command can be used to 
check on the list and take appropriate action.    With the DrawPreviewBitmap and LoadBitmap commands, you can also load a 
preview image. This will also appear in the list as two entries of the same name. In the list itself, each image is identified as a Full
or Preview image. Using FreeBitmap will remove both types if they exist.

Syntax: ListLoadedBitmaps(List$,Delimiter$,Count)

Parameters:
List$ The list of bitmap filenames is returned in List$. Null if no bitmaps are loaded.
Delimiter$ The character that you want use a list item delimiter. “|” is often suitable, or you could use 

Chr(13,CR$) to create a carriage return delimiter, as per the example below.
Count The number of valid entries in the bitmap list. If no images have been loaded, or the 

FreeBitmapAll command has been used, Count returns 0.

Example:
This code fragment accesses the list and returns a variable that is then displayed in a MessageBox. You could also pass the 
result to a ListBox command for display and item selection.

CountTheList:
Chr(13,CR$)
ListLoadedBitmaps(List$,CR$,Count)
Str(Count,Count$)
Msg$ = "Entries in PiXCL Bitmap List = " + Count$
MessageBox(OK,1,INFORMATION,List$,Msg$,Res)
Goto Wait_for_Input

Related Commands:
DrawBitmap    DrawSizedBitmap    DrawZoomedBitmap      FreeBitmap    FreeBitmapAll    LoadBitmap 



LoadBitmap

This command loads and image into memory without displaying it. It is equivalent to a DrawSizedBitmap(0,0,0,0,ImageFile$) 
command. It is up to you to ensure that the image exists on disk before you try to load it.

Syntax:    LoadBitmap(ImageFile$,PREVIEW | FULL)

Parameters:
ImageFile$ The name of the image file to load. 
FULL Load the whole image.
PREVIEW Load a preview image that has maximum dimensions

Related Commands:
DrawBitmap    DrawSizedBitmap    FreeBitmap    FreeBitmapAll 



LoadBitmapExt

This command checks the image format, and if recognized, loads and image into memory without displaying it. It is equivalent to 
a DrawSizedBitmap(0,0,0,0,ImageFile$) command. It is up to you to ensure that the image exists on disk before you try to load it.

Syntax:    LoadBitmapExt(ImageFile$,PREVIEW | FULL,Result)

Parameters:
ImageFile$ The name of the image file to load. 
FULL Load the whole image.
PREVIEW Load a preview image that has maximum dimensions
Result 1 if the imagefile can be loaded, otherwise 0 if the image format is unknown, or the image cannot be 
found.

Related Commands:
DrawBitmap    DrawSizedBitmap    FreeBitmap    FreeBitmapAll    CheckBitmapFormat    



LoadStdProfileSettings

PiXCL 5 command. All new applications should keep program parameters in the Registy. The LoadStdProfileSettings command 
(for now) just stores the last window position in screen coordinates.

Syntax: LoadStdProfileSettings(DeveloperName$,AppName$,sx1,sy1,sx2,sy2,Result)

Parameters:
DeveloperName$ The name of the application developer or company name. This reads from the

HKEY_CURRENT_USER tree, Software\DeveloperName$\AppName$\Settings\WindowPos 
key. 

AppName$ The name of your application.
sx1,sy1,sx2,sy2 The screen coordinates of the application when it was last run. These are decoded from the 

string read from the Registry.
Result 1 if the operation was successful, otherwise 0.

Related Command:
SaveStdProfileSettings    



LoadImageColorMap

PiXCL 5 command. For 8 bit images loaded into the image list, you can replace the current colour map with a new palette from 
a    ( .PAL ) file.

Syntax: LoadImageColorMap(ListImageName$, FULL|PREVIEW,PALfile$,Result)

Parameters:
ListImageName$ The name of the image loaded into your PiXCL application. This must be 8 bits per pixel, or 

Result returns 0. 24 bit images do not have a colour map.
FULL|PREVIEW Defines whether the image was loaded in full or preview mode. In most instances, you will load 

the image in FULL mode eg with DrawBitmap.
PALfile$ The name of the file to be read. If the file does not exist, the call fails.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
SaveImageColorMap        CreatePALfile      DrawBitmap        



Log10

Floating Point math library function. Calculate the base 10 logarithmic function Log(x).

Syntax: Log10(X&, Value&)

Parameters:
X& The X value to use.
Value& The result of the function.

Related Commands:
Exp     LogE 



LogE

Floating Point math library function. Calculate the Naperian log function LogE(x).

Syntax: LogE(X&, Value&)

Parameters:
X& The X value to use.
Value& The result of the function.

Related Commands:
Exp     Log10  



Logoff

Logs out of Windows by closing all running programs including Explorer. The task bar will disappear, and the Login dialog will 
eventually be displayed by Windows.

Syntax: Logoff

Remark:

Logoff is the equivalent of selecting Start: Log Off <current_use_name> 

Before logging off, Windows polls all active applications to see if it's OK to close them. If you haven't yet saved your work, an 
application can interrupt the shutdown and ask you to save.

Example:

This example asks whether you want to log off Windows. If you select Yes, it executes the Logoff command.

MessageBox(YESNO,2,QUESTION,"Log off Windows?",
           "Logoff?",ButtonPushed)
If ButtonPushed = 1 Then Logoff

Related Commands: 

ExitWindows    Shutdown    AbortShutdown



Max

Floating Point math library function. Locate the maximum of a list of real numbers.

Syntax: Max(Number_1&,…,Number_n&, Value&)

Parameters:
Number& Each of the list of numbers. These numbers can be integers (not integer variables).
Value& The maximum of the list.

Related Commands:
Average  Min  



MCIGetErrorString

PiXCL 5 command. The MCISendString command will return an error code if the operation requested fails for some 
reason. This code can be converted into an error description with the MCIGetErrorString command.

Syntax: MCIGetErrorString(ErrorCode, ErrorString$)

Parameters:
ErrorCode The code returned by MCISendString.
ErrorString$ The error description.

Related Commands:
MCISendString 



MCISendString

PiXCL 5 command. Multimedia devices are usually supported by the Multimedia Command    Interface or MCI. This 
command implements the MCI command string interface, where the command is assembled into a string and passed to 
the device. The result is also returned in a string. Your PiXCL application has to parse and convert the results into 
integers or smaller strings as might be required.

Syntax: MCISendString(Command$, Result$, ErrorCode)

Parameters:
Command$ The command string. Exact syntax is dependent on the device. Check your device 

documentation and the MCI Command Strings    Reference.
Result$ The result of the command, as a string. This might include integer values, or corners of a 

rectangle, or other information specific to the MCI driver. Check your device documentation.
ErrorCode 1 if the operation was successful, otherwise a value that can be passed to the 

MCIGetErrorString command to be decoded.

Related Commands:
MCIGetErrorString    MCI Command Strings 



Min

Floating Point math library function. Locate the minimum of a list of real numbers.

Syntax: Min(Number_1&,…,Number_n&, Value&)

Parameters:
Number& Each of the list of numbers. These numbers can be integers (not integer variables).
Value& The minimum of the list.

Related Commands:
Average  Max  



MessageBeep

Plays the waveform sound file associated with an entry in the [sounds] section of WIN.INI.

Syntax:

MessageBeep(BEEP/ASTERISK/EXCLAMATION/HAND/QUESTION/OK)

Parameters:

BEEP Issues the standard beep using the computer speaker.
ASTERISK Plays the file associated with the SystemAsterisk setting.
EXCLAMATION Plays the file associated with the SystemExclamation setting.
HAND Plays the file associated with the SystemHand setting.
QUESTION Plays the file associated with the SystemQuestion setting.
OK Plays the file associated with the SystemDefault setting.

Remarks:

Here are some typical entries in the [sounds] section of WIN.INI:

[sounds]
SystemDefault=ding.wav, Default Beep
SystemExclamation=ding.wav, Exclamation
SystemStart=chimes.wav, Windows Start
SystemExit=chimes.wav, Windows Exit
SystemHand=ding.wav, Critical Stop
SystemQuestion=ding.wav, Question
SystemAsterisk=ding.wav, Asterisk

If you use the command MessageBeep(ASTERISK), for example, PiXCL plays the sound file identified by the SystemAsterisk 
entry, which in this case is ding.wav.

Before PiXCL can play a sound file, you must first install a supported sound board and its associated waveform audio device 
driver.

The MessageBeep command has its origin in Windows 3.x. For a more fully featured sound function that lets you play waveform 
sound files or sound entries in the Windows registry, see the WAVPlaySound command.

Example:

This example displays a message telling you to press ESC if you want to end the current program and plays the sound 
associated with the SystemExclamation setting in WIN.INI. It then waits for a keystroke.

{Draw message on screen and play EXCLAMATION sound}
     DrawText(1,1,"Press ESC to end the program")
     MessageBeep(EXCLAMATION)

{Set up keyboard}
     SetKeyboard(27,Esc)     {27=virtual key for ESC}



Wait_for_input:
     WaitInput()

Esc:
     End

Related Commands:
WAVGetDevCaps, WAVGetNumDevs, WAVGetPitch, WAVPlaySound, WAVSetPitch, WAVSetPlayRate 



MessageBox

This is one of the most used PiXCL commands, and creates a custom message box with your own prompt, caption, and one, two
or three push buttons. MessageBoxes can display one of the system-defined icons (Application, Information, Exclamation, 
Question, Stop and Windows Logo) that you are familiar with in other Windows software, or any of the twenty-one icons built into
PiXCL as well.

Messageboxes appear centralized in the screen area. If you want to develop more advanced messageboxes positioned relative 
to the PiXCL client area, see the DialogBox  command.

Syntax: 
MessageBox(TYPE,DefaultButton,ICON,Text$,Caption$, ButtonPushed)

Parameters:
TYPE Specifies the type of push buttons that appear within the message box. It must be one of the 

tokens in the table below.

DefaultButton An integer indicating the button you want to appear as the default. The buttons are numbered 
from left to right starting with 1.

ICON Controls the type of icon that appears in front of Text$ in the message box. You must use one of 
the tokens in the table below.

Text$ The message to be displayed within the message box. Text$ can occupy multiple lines in the 
script (see the second example below). You can have as many lines as you like, but be aware 
that if you have too many, the message box may not fit on the screen.

Caption$ The text you want to place at the top of the message box.

ButtonPushed An integer variable that returns a number corresponding to the button that was pushed to leave 
the dialog box. The buttons are numbered from left to right starting with 1.

Push Button Types
Token Meaning

OK Displays one push button: OK.

OKCANCEL Displays two push buttons: OK and Cancel.

RETRYCANCEL Displays two pushbuttons: Retry and Cancel

YESNO Displays two push buttons: Yes and No.

YESNOCANCEL Displays three push buttons: Yes, No, and Cancel.

ABORTRETRYIGNORE Displays three push buttons: Abort, Retry and Ignore.

MessageBox Icon Types
Token Meaning

INFORMATION Displays an icon consisting of a lowercase    i    in a circle.



EXCLAMATION Displays an exclamation-point icon.

QUESTION Displays a question-mark icon.

STOP Displays a stop sign icon.

APP Displays a generic application logo that looks like a small dialog box.

WINLOGO Displays the Windows logo.

NOICON Displays no icon in the MessageBox

 
The above icon styles, in order.

ICON01 - ICON19 Displays one of the icons built into PiXCL. These are the same tokens that are used in the DrawIcon and 
DrawIconFile commands. Tokens PXLHISTOGRAM, PXLTOOLBAR, SCANNER, DIGICAM and SCANCAM also display usable 
icons in the MessageBox.

Remarks:
Most of the time you will use the system icons for your messageboxes. It is preferable to keep messagebox text short, or else your 
users will generally ignore them. For error messages, try to ensure that the severity of the message is apparent, and that you 
provide information on how to correct the problem.    

If you need to provide more details, it is better done with a call to WinHelp to display a suitable help topic.

Examples:

The following program displays a message box that asks whether you want to change the background of the window to blue. 
The message box has Yes and No buttons and a question-mark icon, as shown below.

 
A sample message box.

MessageBox(YESNO,1,QUESTION,
"Change the background to blue?",

  "Background box",Button)
If Button = 1
    UseBackground(OPAQUE,0,0,255)
    DrawBackground
Endif
WaitInput()

This next example displays three message boxes, each with more lines of text than the previous one.



{Show a single-line message}
     MessageBox(OKCANCEL,1,QUESTION,
     "See a message box with a two-line message?",
     "One-line message",Button_mashed)
     If Button_mashed=2 Then Goto Wait_for_input

{Show a two-line message}
     MessageBox(YESNO,1,QUESTION,
"This box has two lines of text.
Do you want to see one with three?",
     "Two-line message",Button_mashed)
     If Button_mashed=2 Then Goto Wait_for_input

{Show a three-line message}
     MessageBox(OK,1,INFORMATION,

"This box has three lines of text.
You've now seen message boxes with,
one, two, and three lines of text.",
     "Three-line message",Button_mashed)

Wait_for_input:
     WaitInput()

Remarks:
The text string in any message box can be any length you want, if you include carriage returns in the script. In practice, a 
message box should have enough information to allow the user to make a suitable choice. Information or Exclamation 
messageboxes can also be used as simple Help dialogs.

Related Commands:
DrawIcon    MessageBeep WinHelp WinHTMLHelp 



MonitorFromPoint

For multiple monitor systems, you can find which monitor is the nearest to a point. 

Syntax: MonitorFromPoint(X,Y, MonitorName$)

Parameters:
X, Y A point in the virtual desktop (not an application client area).
MonitorName$ The name of the nearest monitor to or containing the point.

Related Commands:
EnumDisplayMonitors      MonitorFromRect      MonitorFromWindow    



MonitorFromRect

For multiple monitor systems, you can find which monitor is the nearest to a rectangle.    This would typically be the coordinates 
of a window.

Syntax: MonitorFromRect(X1,Y1,X2,Y2, MonitorName$)

Parameters:
X1, Y1, X2,Y2 A rectangle in the virtual desktop (not an application client area).
MonitorName$ The name of the nearest monitor to or containing the rectangle.

Related Commands:
EnumDisplayMonitors    MonitorFromPoint    MonitorFromWindow    



MonitorFromWindow

For multiple monitor systems, you can find which monitor contains an application main window.

Syntax: MonitorFromWindow(WindowName$, MonitorName$)

Parameters:
WindowName$ A main window title.
MonitorName$ The name of the nearest monitor to or containing the application window.
Related Commands:
EnumDisplayMonitors MonitorFromPoint      MonitorFromRect 



MonthCalControl

The MonthCalControl is a control that is visible and active until you explicitly close it, while allowing all other main PiXCL 
application window functions to be available. It provides a simple and intuitive way for you to select a date from a familiar 
interface.

The control window is owned by your PiXCL application, so that if the application exits, it automatically closes the control window
as well.

The MonthCalControl command requires shell32.dll version 4.70 or later. If you have Windows 95 or NT 4 with Internet Explorer
4.01 or later installed, or are running Windows 98 or later, this command should work on your system. If an earlier version of 
shell32.dll (e.g. 4.00) is installed, this command has no effect.

 
The left and right hand arrows change the month up or down.

Syntax: MonthCalControl(X,Y, Title$, MonthDelta, TOKEN_1, TOKEN_2, TOKEN_3, 
TOKEN_4, Date_TOKEN,TimeString$, Result)

Parameters:

X,Y The top left corner client area coordinates for the control.

Title$ The string that appears in the title bar of the control.

MonthDelta The number of months to display, and the month delta value. The default is one. The control 
automatically adjusts its size according to MonthDelta.

TOKEN_1 _2 _3 in order
(NO)TODAY    displays a "today" string at the bottom of the control.
(NO)TODAYCIRCLE    displays a circle around today's date.
(NO)WEEKNUMBERS    displays week numbers adjacent to the month display.

TOKEN_4 (NO)MOVE defines whether the control can be moved within the PIXCL application client area. If
NOMOVE is specified, the titlebar is removed, and the value in Title$ is ignored. You can set 
Title$ to an empty string if you wish.

date_TOKEN All example dates below are the same. These are the same tokens as in the TimeToASCII 
command, and in fact, the same internal code is executed to do the conversion.



MMDDYYYY e.g.    2/8/1999
DDMMYYYY e.g.    8/2/1999
WDDDMYYYYe.g.    Saturday, 8 February, 1999
WDMDDYYYYe.g.    Saturday, February 8, 1999
MDDYYYY e.g.    February 8, 1999

TimeString$ The returned string of the current selected day, in the above date_TOKEN format. If the Cancel 
button is pressed, TimeString$ is unchanged from its current value, which may be an empty 
string.

Result 1 if the OK button was pressed, otherwise 0.

The Month Calendar Control User Interface

The month calendar control interface allows you to select a date from the displayed days or change the control's display in 
various ways. 

- Scrolling the control's display. 

By default, when you click the arrow buttons in the top left or top right of the month calendar control, it updates its display to 
show the previous or next month. If the month calendar control is displaying more than one month at a time, the display changes 
by the number of months currently in view. That is, if the month calendar displays January, February, and March and the user 
clicks the top right arrow button, the control updates its display to show April, May, and June. You can also perform the same 
action by clicking the partial months displayed before the first month and after the last month. 

- Selecting a nonadjacent month. 

When you click the name of a displayed month, a pop-up menu appears that lists all months within the year. The user can select 
a month on the list. If the user's selection is not visible, the month calendar control scrolls its display to show the chosen month. 

- Selecting a different year. 
If you click the year displayed next to a month name, an up-down control appears in place of the year. You can change the year 
with this control. The month calendar control updates its display for the selected year when the up-down control loses focus. 

-Selecting the current day. 

If a month calendar control is not using the NOTODAY style, you can return to the current day by clicking the "today" text at the 
bottom of the control, or right clicking to display a “Go to Today” popup. If the current day is not visible, the control updates its 
display to show it. 

Related Commands:

TimeToASCII    



Negate

Returns the arithmetic negation of the input number. Hence a positive number returns a negative, and a negative number returns
a positive.

Syntax: Negate(Number)

Parameters:

Number The input and negated output integer number.

Example:

Negate(Number)



NumToHex

This command converts a 32 bit integer to the equivalent hexadecimal string.

Syntax: NumToHex(Number,HexString$)

Parameters:
Number Any positive or negative 32 bit integer.

HexString$ The returned hexadecimal string.

Example:
Convert:

NumToHex(6523881,Hex$)
DrawText(10,10,Hex$)
Number = 6523881
NumToHex(Number,Hex$)
DrawText(10,30,Hex$)
Goto Wait_for_Input

Related Commands:
HexToNum  Str  Val 



PackRGB

PiXCL 5 command. It can often be handy to pack RGB color values into an integer and store it in an integer or integer array 
variable.

Syntax: PackRGB(Red, Green, Blue, PackedColour)

Parameters:
Red, Green, Blue Integer values for the defined colour.
PackedColour The packed colour value, in hex format, 0x00bbggrr

Related Commands:
UnpackRGB    UnpackRGBA



PackRGBA

PiXCL 5 command. It can often be handy to pack RGBA color values into an integer and store it in an integer or integer array 
variable.

Syntax: PackRGBA(Red, Green, Blue, Alpha, PackedColour)

Parameters:
Red, Green, Blue, Alpha Integer values for the defined colour.
PackedColour The packed colour value, in hex format, 0xaabbggrr

Related Commands:
UnpackRGB    UnpackRGBA



Pad

Adds a specified number of spaces to the end of a string.

Syntax: Pad(String$,Length)

Parameters:
String$ A string variable containing the string you want to pad.

Length The number of spaces you want to add to the end of String$.

Remarks:

Adding spaces to the end of a string can be handy when you want the string to overwrite another longer string that is already 
displayed in the PiXCL window (see the example).

If you want to add spaces to the start of a string, use the + operator to concatenate two strings together, as in Variable$ = "          
"+"Cranberry".

Example:

This program illustrates the benefit of padding a string with spaces before drawing it on the screen. First, a seven-character 
string is placed on the screen. Next, a shorter string is drawn at the same location. Because a portion of the longer string still 
remains in view, the shorter string is then padded with spaces and redrawn. The beneficial effect of the padding is that the 
remainder of the longer string is overwritten.

{Draw 7-character string on the screen and pause}
   Text$ = "Testing"
   DrawText(10,10,Text$)
   WaitInput(2000)
{Draw a shorter string at the same location}
   Text$ = "123"
   DrawText(10,10,Text$)
   WaitInput(2000)
{Pad shorter string with spaces and redraw}
   Pad(Text$,10)
   DrawText(10,10,Text$)
   WaitInput()

Related Commands:

Space, Trim, Set



PasswordBox

Visually this is quite similar to the dialog produced by the TextBox command, but includes the current default icon. It would be 
used when you want to input a secure string such as a password. Each character typed is replaced with a ' * '.

Syntax: PasswordBox(Title$,Text$,Btn1$,Btn2$,Btn,Password$)

Parameters
Title$ The string that appears in the titlebar.
Text$ Up to four lines of text.
Btn1$ Label that appears on the left button. If set to "", the default label is "&Accept".
Btn2$ Label that appears on the right button. If set to "", the default label is "&Reject".
Btn Returned code 1 (left) or 2 (right).
Password$ The returned string. If button 2 was pressed this ALWAYS returns a NULL string, even if the 

string had been previously defined.

Related Commands:
DialogBox     MessageBox     TextBox  TextBoxExt 



PathAddBackslash

Adds a backslash to the end of a string to create the correct syntax for a path. If the source path already has a trailing backslash,
no backslash will be added. 

Syntax: PathAddBackslash(Path$)

Parameter:

Path$ A path string variable.

Related Commands:
All the Path commands, string commands.



PathAddExtension

Adds a file extension to a filename string. If there is already a file extension present, no extension will be added. If the path is an 
empty string, the result will be the file extension only. 

Syntax: PathAddExtension(Extension$, FilePath$)

Parameter:

Extension$ An extension string.e.g. “.txt”
FilePath$ A path string variable.

Related Commands:
All the Path commands, string commands.



PathAppend

A path can be extended. For example, if the original path string is name_1\name_2, and the part to append to end is name_3, 
the appended path string is name_1\name_2\name_3.

Syntax: PathAppend(More$, Path$)

Parameter:

More$ A string that gets added to Path$.
Path$ A path string variable.

Related Commands:
All the Path commands, string commands.



PathCanonicalize

This function allows you to specify what to remove from a path by inserting special character sequences into the path. The ".." 
sequence indicates to remove the path part from the current position to the previous path part. The "." sequence indicates to skip
over the next path part to the following path part. The root part of the path cannot be removed. 

Syntax: PathCanonicalize(SourcePath$, DestPath$)

Parameter:

SourcePath$ A string that gets added to Path$.
DestPath $ A path string variable.

Example:
SomePath$ = "C:\PiXCLTools\Learning\More\New\program.pxl"
SourcePath$ = "C:\PiXCLTools\..\More\.\program.pxl"
PathCanonicalize(SourcePath$,DestPath$)
DebugMsgBox(DestPath$)
DestPath$ becomes "C:\PiXCLTools\More\program.pxl"

Related Commands:
All the Path commands, string commands.



PathCombine

This command concatenates two strings that represent properly formed paths into one path, as well as any relative path pieces. 

The directory path should be in the form of A:,B:, ..., Z:. The file path should be in a correct form that represents the file part of 
the path. The file path must not be a null string, and if it ends with a backslash, the backslash will be maintained. 

Syntax: PathCombine(Directory$, File$, NewPath$)

Parameter:

Directory $ The source directory.
File$ A filename.
NewPath $ A path string variable that holds the new file path.

Related Commands:
All the Path commands, string commands.



PathCommonPrefix

Compares two paths to determine if they share a common prefix. A prefix is one of these types: "C:\", ".", "..", "..\". 

Syntax: PathCommonPrefix(First$, Second$, Common$)

Parameters:
First$ The first path string.
Second$ The second path string.
Common$ The common prefix, if any, otherwise a null string.

Related Commands:
All the Path commands, string commands.



PathCompactPath

Truncates a file path to fit within a given pixel width by replacing path components with ellipses. This command is often used to fit
a string within an edit control in a dialog box.

Syntax: PathCompactPath(Path$,Width,CompactPath$)

Parameters:
Path$ The input path string.
Width The width in pixels of the region where the path string is to be drawn. 
CompactPath$ The resulting compact path. This works on the basis of the currently selected font.

Related Commands:
All the Path commands, string commands.



PathFindNextComponent

Parses a path for the next path component. Paths are delimited by backslashes or by the end of the path. 

Syntax: PathFindNextComponent (Path$, NextComponent$)

Parameters:
Path$ The input path string.
NextComponent$ The next component of the path..

Related Commands:
All the Path commands, string commands.



PathFindOnPath

Searches for a file on the specified path.    This command is similar to FileExist.

Syntax: PathFindOnPath (File$, Path$, Result )

Parameters:
File$ The input filename to be located.
Path$ The input path string.
Result 1 if File$ is found on the path, otherwise 0. 

Related Commands:
All the Path commands, string commands,    FileExist 



PathIsDirectory

Checks if a file is a directory. 

Syntax: PathIsDirectory(Path$, Result)

Parameters:
Path$ The input path string.
Result 1 if the file is a directory, otherwise 0.

Related Commands:
All the Path commands, string commands.



PathIsSystemFolder

Checks if a file is a system folder. 

Syntax: PathIsSystemFolder(Path$, Result)

Parameters:
Path$ The input path string.
Result 1 if the file is a system folder, otherwise 0.
Related Commands:
All the Path commands, string commands.



PathMakeSystemFolder

Set a directory as a system folder.

Syntax: PathMakeSystemFolder(Path$, Result)

Parameters:
Path$ The input path string.
Result 1 if the attributes are set, otherwise 0.
Related Commands:
PathUnmakeSystemFolder    All the Path commands, string commands.



PathQuoteSpaces

For paths that include spaces, it is necessary to enclose the path with quotation marks. 

Syntax: PathQuoteSpaces(Path$)

Parameters:
Path$ The path to be quoted, and the result.

Related Commands:
All the Path commands, string commands.



PathUnquoteSpaces

Removes any quotation marks around a path string. 

Syntax: PathUnquoteSpaces(Path$)

Parameters:
Path$ The path to be quoted, and the result.

Related Commands:
All the Path commands, string commands.



PathUnmakeSystemFolder

Set a system folder as a normal directory.

Syntax: PathUnmakeSystemFolder(Path$, Result)

Parameters:
Path$ The input path string.
Result 1 if the attributes are reset, otherwise 0.
Related Commands:
PathMakeSystemFolder    All the Path commands, string commands.



PixelsToDlgUnits

Converts a pixel coordinate to a dialog units coodinate.

Syntax: PixelsToDlgUnits(Px,Py,Dx,Dy)

Parameters:
Px,Py The returned pixel coordinate.
Dx,Dy The dialog box coordinate.

Remarks:
Converting between pixels and dialog coordinates will result in some loss of precision.

Related Commands:
DialogBox    DlgUnitsToPixels GetDialogUnits 



Pow

Floating Point math library function. Calculate the power function y**x.

Syntax: Pow(Y&, X&, Value&)

Parameters:
Y& The Y value
X& The X value
Value& The result of the function.

Related Commands:
Log10    LogE



PrintBitmap

PiXCL provides simple image printing services with the PrintBitmap command. The dialog boxes that appear are part of the 
Windows Common Dialogs library. All of the supported bitmap formats can be printed with this command.

Syntax: PrintBitmap(FileName$,SETUP | PRINT_PTRRES | PRINT_PAGERES, Result)

Parameters: 
FileName$ The file to be printed. Bitmap pixels are assumed to be square.
SETUP Displays the PrintSetup common dialogs, shown below. FileName$ is ignored and can be a 

NULL string. 
PRINT_PTRRES Displays the Print dialog, shown below, and starts the job. The bitmap is scaled from the 

PRINTER resolution to the printer page resolution, and centered on the page. If the bitmap width
is smaller than the number pixel per printer page, there will usually be a large unprinted area 
with this mode, while retaining the aspect ratio. If the image is bigger than the page resolution, 
only the center of the bitmap that fits will be printed. You would generally use this mode to check 
a bitmap output colors. 

DPRINT_PTRRES Passes the selected file directly to the current default printer.

PRINT_PAGERES Displays the Print dialog, shown below, and starts the job. The bitmap is scaled from the 
BITMAP resolution to the printer page resolution, and centered on the page. This option is effect 
scales the bitmap to fit the page, while retaining the aspect ratio.

DPRINT_PAGERES Passes the selected file directly to the current default printer.

Result 1 if either the print setup or start print operation is successful,otherwise 0.

Common Dialogs:
The standard dialogs for printer set up are shown below. The Page Setup dialog appears when you use the SETUP token in a 
PrintFile command.



 
Pressing OK will save the setup parameters in the PiXCL application. Pressing Cancel will close the Page Setup dialog. Pressing 
the Printer button in the above dialog will display the following secondary dialog box. 

 

The Name combobox above shows the available printers. There may be more than one printer available on your system, and there 



may be network available printers as well. Pressing the Properties button in the above dialog will display the following:

 

When you use the PRINT token in a PrintBitmap command, the standard dialog for printing a document, below, is displayed. 
Pressing the OK button will submit the print job. Pressing the Cancel button will close the Print dialog.



 

Remarks:
A common script programming error is to assign a string variable the name PrintFile$. This will result in a synax error because the 
variable name is the same as the command name string.    PiXCL requires that variables not have the same name string as any 
reserved command or keyword.

Once a SETUP token version of PrintBitmap has been issued and completed successfully, the selected printer settings are 
retained until the another SETUP command is issued, or the PiXCL application exits. 

Using either of the two PRINT tokens displays the Print dialog, and if you click OK, starts the print job. The DPRINT tokens start 
the print job immediately on the default printer.

If you have a network printer (i.e. connected directly on to the network) such as an HP IIISi, you will need to identify the printer by
its network port number for the print job to be successfully submitted.

Example:
PrintFileDialog:

DrawBackground
FileToPrint$ = "i:\v196beta\v_image.ini"
FileExist(FileToPrint$,Res)

If Res = 1 
    PrintBitmap(FileToPrint$,SETUP,Res)
    If Res = 0 Then DrawText(10,10,"Failed to start print.")
Else
    MessageBox(OK,1,EXCLAMATION,

"File to be printed cannot found.",FileToPrint$,Res)



Endif
PrintBitmap(FileToPrint$,PRINT_PAGERES,Res)
Goto Wait_for_Input

Related Commands:
Run     PrintFile    EnumPrinters 



PrintFile

When you need to print a document file from another application, it can be tedious to have to start the application, load the 
document, and print it. Fortunately, most applications have a way of printing documents in the background, using a Windows 
function called the shell.

The shell provides, amongst other functions, the ability to print files. When the PrintFile command is processed, the shell looks at
the file type and checks in the Windows registry for the application that is able to print the file. If you look in the Registry for a 
particular application, say MS-Word, you will see the entries …/shell/open and …/shell/print.

The shell starts the application in the background, loads the file to be printed and submits the job to the Windows print spooler. 
Once the job has been submitted successfully, the application is terminated. All you should see is a dialog box informing you that
the job is printing. If the press the Cancel button in this dialog, the print job is stopped.
 
Please note: It is NOT PiXCL that is printing the file, it is the application associated with that file type.

Syntax: PrintFile(FileToPrint$,Result)

Parameters:
FileToPrint$ The full path and filename of the file you want to print.
Result 1 if the operation was successful, otherwise 0.

Example:

Printing_A_File:
DrawBackground
FileToPrint$ = "i:\v196beta\v_image.ini"
FileExist(FileToPrint$,Res)
If Res = 1 
    PrintFile(FileToPrint$,Res)
    If Res = 0 Then DrawText(10,10,"Failed to print with the Shell.")
Else
    MessageBox(OK,1,EXCLAMATION,
    "File to be printed cannot found.",FileToPrint$,Res)
Endif
Goto Wait_for_Input

Related Commands:
PrintBitmap    Run  EnumPrinters



ProgressBar

Draws a standard Windows progress bar, either at the bottom of the PiXCL application client area, or at specified client co-
ordinates. Only one progress bar can be defined at one time. Progress bars are designed to indicate the state of any length 
process.    The image below shows an example of a progress bar and a status bar.

 

Syntax: ProgressBar(ENABLE|DISABLE,x1,y1,x2,y2)

Parameters:
ENABLE|DISABLE Enable or disable the status bar child window..

x1,y1,x2,y2 The client area co-ordinates that the progress bar is to be drawn. If all four of these co-ordinates 
are set to zero, the progress bar is drawn at the bottom of the client area, the same as is a 
status bar. If the progress bar is being disabled, these values are ignored.

Remarks:
If a status bar has been enabled, it takes precedence over a progress bar in the same location. That is, if a pane in a status bar is
updated, a progress bar will be overwritten. It is possible to have a a progress bar displayed and within a status bar pane, if the 
status bar is not updated while the progress bar is displayed.

Example:

This program fragment draws the client area in the example image shown above.

EnableCustom:
UseBackGround(TRANSPARENT,192,192,0)
DrawBackGround
ProgressBar(ENABLE,5,100,200,120)
DrawTextExt(10,10,300,90,
"Example of a partially filled progress bar, with a status bar as well.",LEFT)
StatusWindow(ENABLE,BOTTOM,1,290,-1,0,0)
DrawStatusWinText(0,"Long process under way ... please be patient!")
Goto Wait_for_Input

Related Commands:

UpdateProgressBar



PulseEvent

Events may be used or required by extension libraries only. For more information, see the topics on Synchronization Functions in
your compiler documentation. The PulseEvent function provides a single operation that sets (to signaled) the state of the 
specified event object and then resets it (to nonsignaled) after releasing the appropriate number of waiting threads. 

Syntax: PulseEvent(EventHandle,Result)

Parameters:
EventHandle The event handle created by CreateEvent. 
Result 1 if the function succeeds, otherwise 0.

Related Commands: 
CreateEvent CloseEvent    ResetEvent 



PXLCmds

This command returns the current number of fixed and variable argument commands. PXLCmds is normally only used when you 
need to verify the version of PiXCL you are using.

Syntax: PXLCmds(FixedArgCmds, VariableArgCmds)

Related Commands:

None



PXLResume, PXLResumeAt

These commands are designed to be used with the WaitInput() command, and sends a message to a PiXCL application to 
continue interpreting of the script at the current point or at a specific label. For example, if you want a PiXCL application to 
launch another application, and wait until the second application is completed, you would use a WaitInput() command (Note no 
arguments). You can of course use a polling method such as checking if a window exists or not, or polling the Clipboard for a 
particular text string, but these all take up processor cycles, and does not make use of the message passing nature of Windows.

It is not appropriate to use PXLResume with a WaitInput(n) command, as the PiXCL application will resume interpreting once the
wait-time is complete.

With PXLresumeAt, you can create a variety of separate PiXCL applications that can operate independently when required, but 
also have other PiXCL applications react to explicit events that occur outside of their process space. For example, you can have 
one PiXCL application processing some images, and send another PiXCL application a message to update a progress bar 
display.

If you are programming extension or fast processing functions in another language, the message passing operation of 
PXLResumeAt can also be simply included in your code. See the Remarks section below.

Syntax: PXLResume(WindowName$, Result)
PXLResumeAt(
To_WindowName$,Label$,From_WindowName$,Result) 

Parameters:

WindowName$ The name of the target window. This must be a PiXCL application. You must ENSURE that 
the exact window name is used (case insensitive) or the function will fail. 
FromWindowName$ can be a null string if desired. 

Label$ A specific label in the target PiXCL application. Note this has to be a string or string variable in 
this command, as it is passed to the target application.

Result 0 if the operation is not successful, the message cannot be posted or the target 
window does not exist. If you use a NULL string, the command is ignored, but the 
result is still 1, as the command has successfully done nothing...

Remarks:
Sending these messages to any window other than a PiXCL application parent window with either have no effect (i.e. it will be 
ignored by the target application), or can have an unpredictable effect.

Sending a resume message to itself or to a NULL windowname has no effect.

If you are writing additional programs with a C or C++ compiler to interact with a PiXCL 4.1 or later program, the resume 
message should be declared as

#define WM_USER_INTERPRETSCRIPT              (WM_USER+50)
#define WM_USER_INTERPRETSCRIPTAT    (WM_USER+53)

Label$ must be concatenated with From_Windowname$    with a space delimiter to form a text string that is passed to the 
clipboard owned by the target application window.

Example:



See the sample files comms1.pxl and comms2.pxl for examples of how this command can be used.

Related Commands:
WaitInput, EnumWindows GetCopyDataMsg    SendCopyDataMsg 



QueryRecycleBin

For systems with Internet Explorer 4.01 installed, it is possible to query the contents of the Recycle Bin.

Syntax: QueryRecycleBin (Drive$,Size,Items)

Parameters:
Drive$ The drive on which the Recycle Bin(s) are located. If an empty string “” is used, all Recycle Bins 

on all drives are queried.
Size The size in KB of the Recycle Bin(s).
Items The number of items in the Recycle Bin(s).

Remarks:
This command requires shell32.dll version 4.72 or later.

Related Commands:
DrawShellIcon    EmptyRecycleBin    



Random

Returns a pseudo-random positive integer number within a specified range. This command is useful for generating random 
colors for pens and brushes, or co-ordinates for graphic draw commands.

Syntax: Random(Range,RandomNumber)

Parameters:
Range A number between 0 and 32767.

RandomNumber The random number returned from the generator..

Remarks
The pseudo-random number generator generates a number from a seed value (the system time the first time the command is 
issued) in the range 0 to 32767.    Hence, for any particular program that uses the Random command, the first number in the 
sequence will always be different. The range value is used to take the modulus of the generated number before it is passed back
to your PiXCL script. For example, a random number of 723, and a Range of 255 (i.e. 723mod255) returns 213.

Example:

Random(1000,Number)
Random(255,Color)



RawDataParamBox

When working with raw bitmap data, it is often useful to be able to enter the image parameters via a dialog box. An example is 
shown below. The return values from this command are passed directly to the ReadRawBitmap command. If you are working 
with raw data of the same    parameters on a regular basis, you could store the parameters in an INI style file that is read to 
initialize the arguments for ReadRawBitmap, rather than using RawDataParamBox.

 

Syntax: RawDataParamBox(RawImage$,Help$,Xsize,Ysize,Samples,Bits,Offset,Flags)

Parameters:
ImageData$ The raw image data file on disk. The default extension is .raw, but can be anything required by 

your application. This is the filename that appears in the PiXCL image list with the 
ListLoadedBitmaps command. If ImageData$ is not null, it replaces the title bar text shown 
above.

Help$ Optional Help string that is displayed in a MessageBox when the Help button in the dialog is 
pressed. Can be set to a null string if desired.

Xsize,Ysize The returned number of pixels per line, and number of lines of the data. If the variables have 
been previously created, the current values appear in the edit controls.

Samples The returned number of samples per pixel.



Bits The returned number of bits per sample. Can be 1, 4, 5, 8 or 16.
Offset The returned offset from the beginning of the file to the start of the image data. This is used to 

skip binary header information. If the variable has been previously created, the current value 
appears in the edit control.

Flags Returned data formating flags. This value is obtained from the RawDataparamBox command. 
Flags is also the return variable. If the operation is successful, returns 1, otherwise is set to 0.

Remarks:
Xsize,Ysize,Samples,Bits,Offset are variables that can be used to initialize the edit fields in the dialog. Default values are shown 
in the sampel dialog above. Flags is binary combination of the bits per pixel, color channel and file structure settings retuned 
from the dialog.

Related Commands:
FileRead_Binary     ReadRawBitmap  



RDBCloseKey

The RDBCloseKey function releases the handle of the specified key. All keys should be closed once they no longer need to be 
accessed.

Syntax: RDBCloseKey(InHandle, Result)

Parameters:
InHandle A valid open handle or predefined handle. Permanently open keys cannot be closed, and if 

used, Result returns 0.

Result 0 if the operation failed, otherwise 1.

Remarks
See sample file registry.pxl for a working example of all registry commands.

Related Commands:
RDBCreateKey, RDBDeleteKey, RDBEnumKey, RDBOpenKey, RDBQueryKey, RDBQueryValue, RDBSetValue



RDBCreateKey

The RDBCreateKey function creates the specified key. If the key already exists in the registry, the function opens it. 

Syntax: RDBCreateKey(InHandle, SubKey$, ObjectType$, OutHandle, Result) 

Parameters:
InHandle A valid open handle or predefined handle. Permanently open keys cannot be closed, and if 

used, Result returns 0.

SubKey$ The string specifies the name of a subkey that this function opens or creates. SubKey$    must be a 
subkey of the key identified by the InHandle parameter. This subkey must not begin with the backslash 
character ('\'). This parameter cannot be NULL. 

ObjectType$ Specifies the class (object type) of this key. This parameter is ignored if the key already exists. This 
parameter is related to OLE, and can be set to a NULL string.

OutHandle A valid open handle, otherwise 0 or undefined.

Result 0 if the operation failed, otherwise 1.

Remarks
See sample file registry.pxl for a working example of all registry commands.

Related Commands:
RDBCloseKey, RDBDeleteKey, RDBEnumKey, RDBOpenKey, RDBQueryKey, RDBQueryValue, RDBSetValue



RDBDeleteKey

There are some variations between the result of this function in Windows 95 and Windows NT 3.51.

Windows 95: The RDBDeleteKey function deletes a key and all its descendents.
Windows NT: The RDBDeleteKey function deletes the specified key. This function cannot delete a key that has subkeys, so it 
is necessary to delete the last key in each branch at a time.

Syntax: RDBDeleteKey(InHandle, SubKey$,Result)

Parameters:
InHandle A valid open handle or predefined handle. Permanently open keys cannot be closed, and if 

used, Result returns 0.

SubKey$ The string specifies the name of a subkey that this function deletes. SubKey$    must be a 
subkey of the key identified by the InHandle parameter. This subkey must not begin with 
the backslash character ('\'). This parameter cannot be NULL. 

Result 0 if the operation failed, otherwise 1.

Examples:
This will delete a previously created subkey, because its root is @RDB_CLASSES_ROOT

RDBDeleteKey(@RDB_CLASSES_ROOT,"PiXCL4.2",Res)

whereas if you get a Handle with the (say) RDBOpenKey command, like this, 

RDBOpenKey(@RDB_CLASSES_ROOT,"PiXCL4.2",Handle)
RDBDeleteKey(Handle,"PiXCL4.2",Res) {fails, 

SubKey$ is not subkey of handle}

 "PiXCL4.2" is not a subkey of Handle (it is the string pointed to by Handle)

Remarks
See sample file registry.pxl for a working example of all registry commands.

Related Commands:
RDBCloseKey, RDBCreateKey, RDBEnumKey, RDBOpenKey, RDBQueryKey, RDBQueryValue, RDBSetValue



RDBEnumKey

RDBEnumKey enumerates subkeys of the specified open registry key InHandle. The function retrieves information about one 
subkey each time it is called. 

Syntax: RDBEnumKey(InHandle,Index,SubKeyName$,ClassName$,Result)

Parameters:
InHandle A valid open handle or predefined handle. Permanently open keys cannot be closed, and if 

used, Result returns 0.
Index Specifies the index of the subkey to retrieve. This parameter should be zero for the first call 

to the RDBEnumKey function and then incremented for subsequent calls. Because subkeys
are not ordered inthe Registry, any new subkey will have an arbitrary index. This means 
that the function may return subkeys in any order. You can also use the RDBQueryKey 
command to get the maximum number of keys for Index, then decrement to zero.

SubKeyName$ The returned string of the subkey name at the specified index. If SubKeyName$ returns a 
NULL string, no more subkeys can be located at InHandle. Returns a NULL string if Result 
= 2.

ClassName$ Returned string containing the name of the class. Relevent for OLE operations. . Returns a 
NULL string if Result = 2. May return a NULL anyway.

Result 0 if the operation failed, 1 if the operation was successful, and 2 if the operation was 
successful but found no additional subkeys to enumerate.

Remarks
See sample file registry.pxl for a working example of all registry commands.

Related Commands:
RDBCloseKey, RDBCreateKey, RDBDeleteKey, RDBOpenKey, RDBQueryKey, RDBQueryValue, RDBSetValue



RDBOpenKey

Opens a Registry subkey of the specified handle or predefined handle.

Syntax: RDBOpenKey(InHandle,SubKey$, OutHandle)

Parameters:
InHandle A valid open handle or predefined handle. Permanently open keys cannot be closed, and if 

used, Result returns 0.

SubKey$ The name of the application or known subkey.    For example, if we want to access the Registry entries 
for MS-Paint, SubKey$ requires a value of "PBrush". Keys are not case sensitive. The SubKey$ 
specified must be a subkey of the key identified by the InHandle parameter. SubKey$ must not begin 
with the backslash character ('\'). 

If this parameter is a NULL i.e. an empty string, the function will open a new handle of the key identified
by the InHandle parameter. In this case, the function will not close the handles previously opened. 

OutHandle 0 if the operation failed, or    non-zero (and usually large negative) if the operation succeeded.

Remarks
See sample file registry.pxl for a working example of all registry commands.

Related Commands:
RDBCloseKey, RDBCreateKey, RDBDeleteKey, RDBEnumKey, RDBQueryKey, RDBQueryValue, RDBSetValue



RDBQueryKey

This Registry command returns an assortment of information about a specified key or predefined constant.

Syntax: RDBQueryKey(
InHandle,ClassName$,NumberOfSubKeys,NumberOfValues,Result)

Parameters:
InHandle A valid open handle or predefined handle. Permanently open keys cannot be closed, and if used,

Result returns 0.

ClassName$ Name string related to OLE operations. Can be NULL.

NumberOfSubKeys Number of subkeys under InHandle.

NumberOfValues Number of values under InHandle. Subkeys can have multiple values.

Result 0 if the operation failed, 1 if the operation was successful.

Remarks
See sample file registry.pxl for a working example of all registry commands.

Related Commands:
RDBCloseKey, RDBCreateKey, RDBDeleteKey, RDBEnumKey, RDBQueryValue, RDBSetValue



RDBQueryValue

Use this command to retrieve the Registry subkey value as a string. This string can be either a string, ‘|’ delimited string or a 32 
bit binary value expressed as an integer.

Syntax: RDBQueryValue(InHandle,SubKey$, SubKeyRtn$,Result)

Parameters:
InHandle An integer value obtained from an RDBOpenKey, or one of the predefined handles.

SubKey$ The name of the value to query. If a value with this name is not already present in the key, 
the function returns 0 in Result. SubKeyRtn$ = ""    is a possible successful return.

SubKeyRtn$ The string representation of the key. This may be a STRING, a '|' delimited string LIST,    or 
a DWORD integer string. If you need the integer string converted to a numeric value, use 
the Val command.

Result 0 if the operation failed, or 1 if successful.

Remarks
See sample file registry.pxl for a working example of all registry commands.

Related Commands:
RDBCloseKey, RDBCreateKey, RDBDeleteKey, RDBEnumKey, RDBOpenKey, RDBQueryKey, RDBSetValue



RDBSetValue

The RDBSetValue function stores data in the value field of an open registry key. It can also set additional value and type 
information for the specified key. 

Syntax: RDBSetValue(InHandle,SubKey$,Value$, TOKEN, Result)

Parameters:
InHandle An integer value obtained from an RDBOpenKey, or one of the predefined handles.

SubKey$ The name of the value to set. If a value with this name is not already present in the key, the 
function adds it to the key. Set this to NULL to write a Value$ into the (Default) subkey.

Value$ The string representation of the value to be stored. Data can be strings, delimited lists, 
integers or binary data, according to the token specified. 

Available TOKENs are 
STRING Any string variable or string literal.

LIST A delimited list. The delimiter must be the "|" (pipe) character, and the last string must have 
the "|" following.    In the write to the Registry, these "|" are converted to NULLs, and the whole 
list has two NULLS following.

DWORD Any number. Use the Str command to convert any numerical value (a 32 bit integer can 
represent any 32 bit floating point or hex number) to a string. 

BINARY A delimited set of integer numbers, such as window placement coordinates. The delimiter 
must be the "|" (pipe) character. The last string does NOT require a following delimiter. 
Number strings are converted into binary and stored in the specified Registry key.

Result 0 if operation fails, else 1.

Remarks:
Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as files with the filenames
stored in the registry, as this helps it perform efficiently. Application elements such as icons, bitmaps, and executable files 
should be stored as files and not be placed in the registry. 

STRINGs appear in quotes in a Registry entry e.g. "h:\app\pixcl.exe,1".

LISTs appear in a Registry entry as a sequence of ASCII character in hexadecimal notation. e.g. 42 4d 50 00 52 4C 45 00 00 is
the list entered as "BMP|RLE|"

DWORDs are 32 bit numbers and appear in a Registry entry as Hexadecimal strings plus the decimal equivalent e.g. 
0x00000100 (256)

Example:
See sample file registry.pxl for a working example of all registry commands.

Related Commands:
RDBCloseKey    RDBCreateKey    RDBDeleteKey    RDBEnumKey    RDBOpenKey    RDBQueryKey    RDBQueryValue 





ReadBitmapID

PiXCL 5 command. Any bitmap loaded into the PiXCL image list can have an identifier string written into and read from the 
bitmap data at an arbitrary location. Because strings are ascii characters in the range 0-127 and 128-255 for other characters, an
identifier string will often be in effect invisible.    The general term for this hiding of data within other data is steganography. It can 
be handy to identify images for which you hold the copyright.

Syntax: ReadBitmapID(Imagename$, Pixel, Line, BytesToRead, Idstring$, Result)

Parameters:

Imagename$ The image loaded into the PiXCL image list. If the image is not loaded, the function fails.
Pixel, Line The start coordinate for the ID string.
BytesToRead The number of bytes to read.
Idstring$ The string read from the image.
Result 1 if the operation succeeded, otherwise 0.

Related Command:
WriteBitmapID    SaveBitmap 



ReadBitmapRect

Reads a sub-area of a BMP or TIF bitmap on the disk, into the current image in the PiXCL image list. The TIF bitmap can be 
compressed (except for LZW mode, which is not supported) or uncompressed. Reading subareas of other formats is not 
supported in the current version of PiXCL.

Syntax: ReadBitmapRect(ImageFile$,x1,y1,x2,y2,Result)

Parameters:
ImageFile$ The target image on the disk. This is the name that is written to the image list when the image is 

loaded.
x1,y1,x2,y2 The region in the target bitmap on disk that is to be read into the PiXCL list.
Result 1 if the operation is successful, otherwise 0.

Related Commands:
WriteBitmapRect  



ReadCommPort

Asynchronous data streams typically include variable length data, followed by a terminating character or string.    Most useful 
serial devices like digitizing tablets let you configure the terminating string. In the current version of PiXCL, this string MUST be 
set to a carriage return and linefeed pair (CR-LF). 

PiXCL maintains a read buffer of about 4 KB. Most input will be far less than this size. When the CR-LF is received, a comms 
event is generated to which your PiXCL program can respond, in much the same way that your program responds to mouse or 
keyboard events in the WaitInput() idle loop.

Hence, to receive a read or write comms event, you would use a command WaitCommsEvent(R,<label>,Timeout), and at 
<label>, you would use a ReadCommPort command to get the current buffer.

Syntax: ReadCommPort(COMx,Data$)

Parameters:
COMx Port, where x = 1 – 4 for standard PCs. PiXCL 5: If you have a multiple COM port board installed, ports 

5-13 are supported.

Data$ The data read in from the port buffer

Related Commands:
EscCommFunction    ClearCommPort    GetCommPort SetCommPort    WaitCommEvent    WriteCommPort 



ReadConsole

PiXCL 5 Command. Read the current line from a console window.

Syntax: ReadConsole(Command$)

Parameters:

Related Commands:
ShowConsole    FreeConsole    WriteConsole     



ReadRawBitmap

You can read raw bitmap data array files into a bitmap that is loaded into the PiXCL image list. Once in the list in memory, you 
can apply image processing operations and save the bitmap to one of the supported bitmap formats.

Syntax: ReadRawBitmap(ImageData$,Xsize,Ysize,Samples,Bits,Offset,Flags)

Parameters:
ImageData$ The raw image data file on disk. The default extension is .raw, but can be anything required by 

your application. This is the filename that appears in the PiXCL image list with the 
ListLoadedBitmaps command.

Xsize,Ysize The number of pixels per line, and number of lines of the data.
Samples The number of samples per pixel.
Bits The number of bits per sample. Can be 1, 4, 5, 8 or 16.
Offset The offset from the beginning of the file to the start of the image data. This is used to skip binary 

header information.
Flags Integer VARIABLE. Data formating flags. This value is obtained from the RawDataparamBox 

command. If the operation is successful, returns a non-zero image handle identifier, otherwise is 
set to 0 on exit.

Related Commands:
RawDataParamBox  ListLoadedBitmaps  



ReadTIFcompressMode

PiXCL supports several compression modes in TIFF files, with the exception of LZW (because of the copyright licensing issues). 
This command reads the file header, and can be used to identify TIF images with LZW compression, as an error check. This 
command will also return the compression mode of other file types (e.g. JPEG) if relevent.

Syntax: ReadTIFcompressMode(TIFimage$, CompressMode)

Parameters:
TIFimage$ The image whose header is read to get the compression mode. If the image file does not exist, 

CompressMode returns    0.
CompressMode 

1 = NONE No compression.
2 = LZW LZW compression (not supported DrawBitmap functions).
3 = PACKBITS PackBits compression.
5 = CCITT_FAX3 Group 3 fax. Relevent to monochrome bitmaps only.
6 = CCITT_FAX4 Group 4 fax. Relevent to monochrome bitmaps only.
8 = RLE Run Length Encoded.
9 = JPEG JPEG compression.
10 = DEFLATE Deflate compression.

Related Commands:
SaveTIFcompressMode    SaveBitmap SaveRectangle



Redraw

Forces a redraw of the memory to screen bitmaps. Redraw takes no parameters. Use this command only when modifying the 
raster operation code with the SetROPcode command. Use anywhere else has no visual effect, though it does redraw the client 
area.

Related Commands:
SetROPcode



RegisterExtLibCmdSet

This command is an alternative to RegisterUserCommand, and is designed to load all the commands in a command extension 
library at once.

RegisterExtLibCmdSet is generally used somewhere at the start of a program, but can be anywhere before the user commands 
are to be parsed and executed.    User commands are implemented in DLL's, with multiple commands within a DLL possible. The
DLL is loaded to access the command load function that is written in the DLL, then usually, but not always, unloaded.

The User Command Library API is an available option for PiXCL v4.4 and later, and ships with the geoPiXCL product.    
In summary however, an extension command DLL can include new image processing algorithms that access the (geo)PiXCL 
image list and (geo)PiXCL internal structures directly, and also custom dialogs and other Windows resources. User command 
syntax is defined within an extension command DLL, and are normally documented with an extension HLP file that comes with 
the DLL. This HLP file can be linked into the PiXCL MDI editor.    VYSOR Integration provides an extension command 
development service.

Syntax: RegisterExtLibCmdSet(DLLName$,LOADDLLNOW | LOADONDEMAND, Result)

Parameters:
DLLName$ The name of the DLL that contains the extension commands. DLLname$ can be either just the 

name of the DLL without path or extension (which requires it to be in either the current directory, 
windows or system directory, or a directory in the PATH environment string), or the full path and 
extension.

LOADDLLNOW This token instructs PiXCL to load the extension command DLL immediately, and leave it 
attatched to the PiXCL process.

LOADONDEMAND This token instructs PiXCL to load the DLL immediately. When the PiXCL application terminates, 
the DLL is automatically unloaded. The UnregisterUserCmd command can also be used to 
unload a DLL.

Result The number of commands successfully registered, otherwise 0.

Related Commands:
RegisterUserCommand    UnregisterUserCmds 



RegisterUserCommand

All user written extension commands have to be registered with a PiXCL and geoPiXCL application before they can be used, or 
else a syntax error will occur. Registering any command automatically enables user command processing.

RegisterUserCommand is generally used somewhere at the start of a program, but can be anywhere before the user command 
is to be parsed and executed.    User commands are implemented in DLL's, with multiple commands within a DLL possible. 

The User Command Library API is an available option for PiXCL v5.0 and later, and ships with the geoPiXCL product.    
In summary however, an extension command DLL can include new image processing algorithms that access the (geo)PiXCL 
image list and (geo)PiXCL internal structures directly, and also custom dialogs and other Windows resources. 

Syntax: RegisterUserCommand(DLLName$, CmdName$, Result, 
arg_type#1, . . . , arg_type#n,
P_NUM_VARIABLE)

Parameters:
DLLName$ The name of the DLL that contains CmdName$. DLLName$ can be either just the name of the 

DLL without path or extension (which requires it to be in either the current directory, windows or 
system directory, or a directory in the PATH environment string), or the full path and extension.

CmdName$ The string that is user for the command e.g. "UserCommand1". Commands have the same 
constraints as built in commands: must start with "a-z". This command name must not be the 
same as any predefined command or keyword, or a syntax error will occur.

Result 1 if the command was successfully registered, 2 if the command is already registered, otherwise 
0.

arg_type#n The following argument types are defined. Note that some of these take two or three argument 
buffer entries. The maximum number of buffer entries is 64.
token_value meaning      
P_NUMBER static integer
P_NUM_VARIABLE integer variable
P_FP_NUMBER static float
P_FP_VARIABLE float variable
P_STRING static string
P_STR_VARIABLE string variable
P_COORDINATE integer pair
P_RGB integer triplet (0-255)
For PiXCL 5.0 and later only
P_RGBA integer quad (0-255)
P_RECTANGLE integer quad
P_SQ_BRACKET_LEFT A [ used with array variables
P_SQ_BRACKET_RIGHT A ] used with array variables
P_VARIANT Indicates an integer, float or string can be used.
P_VARIANT_VARIABLE Indicates an integer, float or string variable can be used.
P_VARIANT_ARRAY Indicates an array variable, and must be followed by 

P_SQ_BRACKET_LEFT, P_NUMBER, P_SQ_BRACKET_RIGHT,

While the number of aruments is arbitrary, some argument types and position are mandatory. Insertion of left and right brackets 
and comma delimiters are automatic. 

1. The last argument MUST be a P_NUM_VARIABLE, as this is the default error return variable for the user command. A 



syntax error will result if this is not correct. This variable also returns 0 if the User Command DLL can’t be located, and -1 if 
the user command can’t be located in the DLL.

2. Once registered, a command remains registered until the geoPiXCL application exits.

3. 3. When the new command is executed, (geo)PiXCL loads the indicated library, performs the command, ythen unloads the 
library.

4. Commands must be registered in STRICT alphabetical order. Note that Function_10 comes between Function_1 and 
Function_2.

5. Array variables declared and called are slightly different because of the way the command parser works. For example a 
command MyFunction(… P_VARIANT_ARRAY, P_SQ_BRACKET_LEFT, P_NUMBER, P_SQ_BRACKET_RIGHT, 
P_NUM_VARIABLE)    is correctly called by MyFunction(MyArray[0], Result), rather than by MyFunction(MyArray, [0], 
Result) which is of course incorrect syntax.

It is not necessary to indicate the number of arguments, as this is calculated automatically. 

A typical command might be

RegisterUserCommand(DLLname$, 
"UserCmd1",Res,P_STRING,P_COORDINATE,P_NUM_VARIABLE)

This user command is later usable as, say, 

UserCmd1(StringVar$, 12,70, Res)

Related Commands:
CountRegdUserCmds    RegisterExtLibCmdSet    UnregisterUserCmds 



ReleaseCOM

PiXCL 5 command: A PiXCL application can become a COM client to a COM server. Calling this command initializes the 
Windows COM libraries. When using PiXCL as a COM client, you will need to have the necessary access or programming or 
scripting information on the server application. When it is time to shut down the COM access one or more servers, the 
ReleaseCOM command is used.

The call to ReleaseCOM uninitializes the Windows COM libraries. 

Syntax: ReleaseCOM()

Parameters:
None (for now)

Related Commands:
CreateCOMinstance 



RemoveFont 

The RemoveFont command removes the font resource from the Windows font table, so is no longer available to Windows 
applications.

Syntax: RemoveFont(FontFilename$,Result)

Parameters:
FontFilename$ A valid font file filename. The filename may specify either a .FON font resource file, a .FNT raw 

bitmap font file, a .TTF raw TrueType file, or a .FOT TrueType resource file.

Result 1 if the operation succeeded, otherwise 0. If the font is not installed, Result also returns 0.

Related Commands:
DrawText  DrawNumber     AddFont     UseFont 



RenameListImage

When you want to rename an image loaded in the PiXCL image list, use the RenameListImage command. Changing the name of
a loaded image will not change the name of the original file on the disk.

In PiXCL 5 and geoPiXCL, JPG, PNG and TIF image format create Options fields in the image list record. Rrenaming also has 
to potentially change the image file type set when the original image was loaded from disk. If the image type is JPG, PNG or TIF, 
and the new type is different, any existing Options are deleted and if necessary the new empty Options recreated. Changing just 
the name not the extension has no effect on existing Options.

Syntax: RenameListImage(OldName$,NewName$,Result)

Parameters:
OldName$ A current name in the image list. 
NewName$ The new list image name.
Result If OldName$ does not exist in the list, or NewName$ is a null string, Result returns 0. If the 

renaming is successful, Result returns 1.

Related Commands:
ListLoadedBitmaps    SetJPGOptions SetPNGOptions SetTIFOptions



ReportHistogramStats

Once a histogram or set of histograms has been displayed, some histogram statistics are available, using the 
ReportHistogramStats command.

Syntax: ReportHistogramStats(HistogramID,Mean&, StdDeviation&,MinPixel,MaxPixel, ModePixel , ModeCount,AllStats$)

Parameters:
HistogramID A histogram ID number returned by the Histogram command.
Mean& The calculated mean value of the selected image channel.
StdDeviation& The calculated standard deviation value of the selected image channel.
MinPixel, MaxPixel The minimum and maximum pixel values from the histogram.
ModePixel The pixel value with the greatest count.
ModeCount The mode count.
AllStats$ All the previous statistics in a preformatted string. See Remarks below.

Remarks:
The preformatted string for AllStats$ is cr-lf delimited, and takes the form:

Mean : 126.77601
Standard Deviation : 26.90554
Minimum Pixel : 0
Maximum Pixel : 234
Mode Pixel : 118

AllStats$ can be used directly in a messagebox or dialogbox.

Related Commands:
Histogram    ShowHistogram    



ReportMouse

This command reports the current coordinate position, and optionally the RGB values, in status window pane 0 as the mouse 
moves in the PiXCL application client area, or portion of the client area. 

Syntax: ReportMouse(x1,y1,x2,y2,xOffset,yOffset,xGain,yGain,
xZoom,yZoom,DISABLE|NORGB|RGB,STATUS|CHILD,x1,y1)

Parameters:
x1,y1,x2,y2 The rectangular region in which mouse reporting is active. This can be the whole client area if 

desired.

xOffset,yOffset An offset value, used when you want pixel values for a zoomed or roamed displayed image. 
Default value is 0,0. Can be negative numbers.

xGain,yGain A gain value. Normally 1,1, but can be used to invert mouse values.

xZoom,yZoom Default value is 1,1. Used when a displayed image is zoomed.

DISABLE Turn off mouse reporting. Other parameter valued are ignored.
NORGB Display mouse coordinates only in form XY: (x,y)
RGB Display mouse coordinates and RGB values in form XY: (x,y), (r,g,b)
STATUS Report the coordinates and RGB data in the status bar.
CHILD Report the coordinates and RGB data in a floating window bar with top-left coordinates x1, y1.
x1,y1 The top left coordinates of the CHILD window, if created. These are ignored for the STATUS 

mode, and DISABLE mode.

Remarks:
A status window must be enabled first with the StatusWindow command, or ReportMouse is ignored. If a region within the client 
area is defined, mouse reporting does not occur outside the defined area, and the status window pane 0 is cleared.

Example:
In this code fragment, a previously defined bitmap is loaded, and a reporting region the size of the displayed bitmap is specified. 
Reporting will occur independently of any other activity until the ReportingOff labeled code is executed.

ImageLoad:
GetBitmapDim(Image$,Lines, Pixels, Bits)
x2 += Pixels
y2 += Lines
DrawBitmap(20,20,Image$)
StatusWindow(ENABLE,BOTTOM,1,200,0,0,0)
ReportMouse(20,20,x2,y2,-20,-20,1,1,1,1,RGB)
{ 
  or use this code to define a region …
  WinGetClientRect("",cx1,cy1,cx2,cy2)
  ReportMouse(cx1,cy1,cx2,cy2,0,0,1,1,1,1,RGB)
}
Goto Wait_for_Input
. . .

ReportingOff:
ReportMouse(20,20,x2,y2,-20,-20,1,1,1,1,DISABLE)
Goto Wait_for_Input



Related Commands:
SetMouse, StatusWindow, DrawZoomedBitmap    



ResetEvent

Events may be used or required by extension libraries only. For more information, see the topics on Synchronization Functions in
your compiler documentation. The ResetEvent function sets the state of the specified event object to nonsignaled. 

Syntax: ResetEvent(EventHandle,Result)

Parameters:
EventHandle The event handle created by CreateEvent. 
Result 1 if the function succeeds, otherwise 0.

Related Commands: 
CreateEvent CloseEvent    PulseEvent 



RestoreArray

PiXCL 5 command. The contents of array variables can be saved into binary files with the SaveArray command, and later 
restored with the RestoreArray command. The files are binary, with the the following format:
Bytes 0-3 = the number of entries in the array (current maximum 2048K);
Bytes 4-5 = the array type (1 = string, 3 = integer, 5 = float);
Bytes 6-7    = the number of arrays in the save file.
The array data follows: for integer and float arrays, each entry takes four bytes. For string arrays, each string entry is followed by 
two pipe characters i.e. “||”.    The last four bytes are a delimiter 0xffffffff, which is used only in multisave arrays. The contents of 
the file must match the size and type of the target array. A saved array of n elements can be restored to an array of n+m 
elements.

Syntax: RestoreArray(ArrayVariable,SaveFileName$,Result)

Parameters:
ArrayVariable A pre-existing array variable, in the form Name[0], Name$[0] or Name&[0].
SaveFileName$ The path and name of the file from which the array is to be restored.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
Array    FreeArrayVar    FreeArrayVarAll    SaveArray      RestoreMultiArray    



RestoreMultiArray

PiXCL 5 command. The contents of multiple array variables can be saved into binary files with the SaveMultiArray command, 
and later restored with the RestoreMultiArray command. The files are binary, with the the following format:
Bytes 0-3 = the number of entries in the array (current maximum 2048K);
Bytes 4-5 = the array type (1 = string, 3 = integer, 5 = float);
Bytes 6-7    = the number of arrays in the save file.
The array data follows: for integer and float arrays, each entry takes four bytes. For string arrays, each string entry is followed by 
two pipe characters i.e. “||”.    The last four bytes are a delimiter 0xffffffff. The contents of the file must match the size and type of 
the target array. A saved array of n elements can be restored to an array of n+m elements.

Syntax: RestoreMultiArray(ArrayVariable_1[Size],…,ArrayVariable_n[Size],SaveFileName$,Result)

Parameters:
ArrayVariable[Size] A pre-existing array variable, in the form Name[Size], Name$[ Size] or Name&[ Size]. Size must 

be the size of the array as it was declared.
SaveFileName$ The path and name of the file from which the array is to be restored.
Result The number of arrays restored if the operation was successful, otherwise 0.

Remarks:
The name of the array is NOT stored in the save file, so the target array has to be of the same type and at least the same size as
the array record in the file. The order of the target arrays MUST match the order of the array records in the save file. If not, an 
error dialog will appear.

Related Commands:
Array    FreeArrayVar    FreeArrayVarAll SaveArray SaveMultiArray



Right

Returns a specified number of characters from the right of a string.

Syntax: Right(String$,Places,Result$)

Parameters:
String$ The string from which you want to extract the text.

Places The number of places you want extracted.

Result$ A string variable that will contain the result.

Example:

This program extracts the last word from the string " Ottawa Canada." and draws it at point (10,10) in the PiXCL window.

String$="Ottawa Canada"
Len(String$,Length)
Instr(String$," ",Location)
Places = Length - Location
Places = Places + 1
Right(String$,Places,Result$)
DrawText(10,10,Result$)
WaitInput()

Related Commands:

Right, Instr, Substr



RightOf

Returns characters from the right of a location in a string.

Syntax: RightOf(String$,Location,Result$)

Parameters:
String$ The string from which you want to extract the text.

Location The location after which characters are copied to the Result$ string. The character at 
the specified location is not returned in    Result$.

Result$ A string variable that will contain the result.

Example:

This program extracts the last word from the string " Ottawa Canada." and draws it at point (10,10) in the PiXCL window.

String$="Ottawa Canada"
Instr(String$," ",Location)
RightOf(String$,Location,Result$)
DrawText(10,10,Result$)
WaitInput()

Related Commands:

Right, Instr, Substr, Left, LeftOf, StrRev



RotateRectangle

This command lets you rotate blocks of pixels in a defined rectangle in a PiXCL application client area. Rotation can be vertical 
or horizontal, and the rate and number of iterations can be set. The effect is rather like scrolling an image up or down within a 
window. One possible use is to create a banner image and text, and scroll it across the screen or within a screen region.

Syntax: RotateRectangle(x1,y1,x2,y2,MOVE_TOKEN,Rate,Count)

Parameters:
x1,y1,x2,y2 co-ordinates of the client area target. These do not have to be visible in the client area.

MOVE_TOKEN Defines the direction of the rotation, and synchronous (script waits till done) or 
asynchronously (script continues operation).
T2B[SYNC|ASYNC]
B2T[SYNC|ASYNC]
R2L[SYNC|ASYNC]
L2R[SYNC|ASYNC]

Rate The speed at which the pixels are rotated. This is in effect a delay counter. At present this 
varies depending on the clock speed of the PC that the program is running on.

Count The number of rotations that will be performed. A value of 0 will cause the rotation to run 
until the PiXCL application is terminated.

Remarks:
The rotation process is run as a thread or lightweight process, so other commands can be issued, if an ASYNC mode is used.

Related Commands:
None.



Run

Launches another Windows application from within an PiXCL program.

Syntax: Run(CommandLine$)

Parameter:
CommandLine$ A string containing the command line (filename plus optional parameters) for the application to 

be executed. 

Remarks:

The application you launch can be a Windows 3.1, 95 or NT application, or some other type of application (for example, MS-
DOS, OS/2, or POSIX) if the appropriate subsystem is available on your PC.

When PiXCL encounters a Run command, it launches the program specified in CommandLine$, and then immediately executes 
the next command in the script without pausing. 

In previous versions of PiXCL, you could have an PiXCL program pause after executing a Run command. To do so, you would 
use a SetWaitMode(FOCUS) command before Run and a WaitInput(1) command immediately after. In PiXCL 4.0 and later, this 
technique is obsolete. Because of the 32 bit Windows multitasking architecture, there are two ways to pause PiXCL after 
executing a Run command, using either 

a) a variation of the following method...

Run(CommandLine$)
WinGetActive(Win$) {returns the name string}

Loop:
WinExist(Win$,Result)
WaitInput(1000)
If Result = 1 Then Goto Loop

Continue:

or if the second application is also a PiXCL program, by using a WaitInput()    command, and have the second application send a 
PXLResume command to the first PiXCL application.

If CommandLine$ does not contain a directory path, Windows searches for the executable file in the following order: 

1. The current directory.

2. The Windows system directory. 

3. The Windows directory.

4. The directories listed in the PATH environment variable.

If you want to change the size or location of an application window, use WinLocate. To hide. unhide, maximize, minimize, or 
restore a window, use WinShow. If you want the location of any window, use the WinGetLocation command.

Examples:



This example launches Notepad and has it automatically load the AUTOEXEC.BAT file on startup. Without pausing, the program 
then launches CMD.EXE.

Run("NOTEPAD C:\AUTOEXEC.BAT")
Run("C:\WINDOWS\SYSTEM32\CMD.EXE")
WaitInput()

Related Commands:

RunExt, WaitInput, WinClose,    WinGetLocation, WinLocate, WinShow



RunExt

This command lets you launch another application from within an PiXCL program and, at the same time, control the priority of its 
main process. You can also control the program's environment, current directory, window size, and window placement.

Syntax: 

RunExt(CommandLine$,IDLE/NORMAL/HIGH,Environment$,CurrentDir$,
x1,y1,x2,y2,WAIT/NOWAIT,WaitInit)

Parameters:
CommandLine$ A string containing the command line (filename plus optional parameters) to be used to 

launch an application.

IDLE Sets the priority of the application's process to level 4, the same priority level as a screen 
saver.

NORMAL Sets the priority of the application's process to level 9 when the application is in the 
foreground and to level 7 when the application is in the background. You should use 
NORMAL for most applications.

HIGH Sets the priority of the application's process to level 13, the same priority level as the Task 
Manager. You should use this setting only when absolutely necessary.

Environment$ A string that specifies the environment to be used by the application. If the string is null (" "),
PiXCL's environment is used. The environment variables within the string should be 
separated from one another by commas (see the first example). 

CurrentDir$ A string that specifies the current drive and directory for the application.    If the string is null 
(" "), PiXCL's current drive and directory are used. 

x1,y1 The upper-left corner of the window.

x2,y2 The lower-right corner of the window.

WAIT Wait until the application's main process is waiting for user input with no input pending, or 
until the WaitInit interval has elapsed. (This setting has no effect on Windows 3.x apps.)

NOWAIT Do not wait until the application's main process has no input pending.

WaitInit If WAIT is specified for the previous parameter, this is the interval in milliseconds to wait.

Remarks:

The purpose of this command is to give you more control over an application as it is launched -- for example, to specify its 
environment, current directory, window size, and window location. It is also intended to give you control over the priority of the 
application's main process. Although it's uncommon to need to control the process's priority, you may find it helpful when sending
keystrokes to Windows 3.x programs using SendKeys. (See the SendKeys and SetPriority commands for more on this topic.)

See the SetPriority command for further explanation of the IDLE, NORMAL, and HIGH settings.

By setting x1,y1,x2,y2 all to 0, you can have Windows determine the size of the window that is created (i.e. Windows uses 
default settings).



The most common reason to use the WAIT parameter with a WaitInit setting is when you want to send keystrokes to an 
application (using SendKeys) immediately after launching it and you want to make sure the application is ready to accept the 
input.

Examples:

This example launches CMD.EXE and, in the process, sets its window size to 400 by 300 pixels. It also sets the PATH and 
PROMPT environment variables.

UseCoordinates(PIXEL)
RunExt("CMD.EXE",
       NORMAL,
       "PATH=C:\WINDOWS\system32;C:\WINDOWS,PROMPT=Bob's$P$G",
       "c:\temp",
       10,10,
       400,300,
       NOWAIT,
       0)

Related Commands:

SendKeys, SetPriority, SetSendKeysPriority, Run



SaveArray

PiXCL 5 command. The contents of array variables can be saved into binary files with the SaveArray command, and later 
restored with the RestoreArray command. The files are binary, with the the following format:
Bytes 0-3 = the number of entries in the array (current maximum 2048K);
Bytes 4-5 = the array type (1 = string, 3 = integer, 5 = float);
Bytes 6-7    = the number of arrays in the save file.
The array data follows: for integer and float arrays, each entry takes four bytes. For string arrays, each string entry is followed by 
two pipe characters i.e. “||”.    The last four bytes are a delimiter 0xffffffff, which is used only in multisave arrays. The contents of 
the file must match the size and type of the target array. A saved array of n elements can be restored to an array of n+m 
elements.

Syntax: SaveArray(ArrayVariable,SaveFileName$,Result)

Parameters:
ArrayVariable A pre-existing array variable, in the form Name[0], Name$[0] or Name&[0].
SaveFileName$ The path and name of the file into which the array is to be saved.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
Array    FreeArrayVar    FreeArrayVarAll    RestoreArray 



SaveBitmap, SaveBitmapChannel

Image processing operations create modified bitmaps that have to be re-displayed with a DrawBitmap or DrawSizedBitmap or 
DrawZoomedBitmap command. Using these commands sets the specified image as the current bitmap, at which point the 
SaveBitmap command can be used. This writes the current bitmap out to the disk in the selected format, either as a new image, 
or overwriting a pre-existing image of the same name. No check is done to see if an image is being overwritten: this is your 
responsibility. Use the FileExist() command before the SaveBitmap command if this is an issue.

One use of SaveBitmap is automated format conversion of images.    You could create a list if images and sequentially read them
into memory (e.g. with LoadBitmap or DrawBitmap), then save them out in the new format.

SaveBitmapChannel is generally used to save an individual channel of a colour composite image.

Syntax: SaveBitmap(ImageFilename$,Result)
SaveBitmapChannel(Handle, ImageFilename$,Result)

Parameters:
Handle A bitmap handle returned from GetChannel or TuneImage or SetCurrentBitmap.
ImageFilename$ The name of the output file that the bitmap is to be written. Not all variations of readable image 

formats can be written. Supported formats for writing are BMP, JPEG, PCX, PPM, PSD, SGI, 
RAS, RLE, TIF and TGA. Writing Run Length Encoded PNG images are not supported. Photo-
CD is a read-only format proprietary to Kodak. Formats are 24 bits per pixel where possible, with
RGB encoding.

JPEG: 24 bits per pixel, with standard encoding.
BMP: 24 bits per pixel, RGB encoding 

Result 1 if the bitmap was saved successfully, otherwise 0.

Remarks:

PiXCL creates a double linked list of bitmap records each time a Draw[Sized}Bitmap command is issued the first time for a 
specific image file. The bitmap data is stored in main memory, and a (sized) copy is written to the PiXCL memory and display 
contexts. This is why a copy drawn in the client area remains visible even if you issue a FreeBitMap or FreeBitmapAll command. 
Once a bitmap is stored in memory, subsequent calls to Draw[Sized]BitMap reads the bitmap data from memory, not from the 
disk file. Hence, if you have a file that changes on disk between display commands, you must issue a FreeBitmap command so 
that the new file on disk will be displayed.

SaveBitmap looks at the specified bitmap format, and saves the output image in the same number of bits per pixel, if possible. 
Not all readable formats are writeable. For example, you can read a Kodak Photo-CD (PCD) file, but you cannot write one. 
Similarly, if the input image is 24 bits per pixel, you cannot save this as an RLE file, as this supports 8 bit images only.

If the specified image format is not supported, a MessageBox will appear to inform you, and the call to SaveBitmap returns a 0. 

PiXCL 5: A common programming error is that the current bitmap (loaded say as a JPEG) has to be saved to a TIF. Both of 
these formats support Options fields, which are incompatible. For this example you should change the name of the list image 
with RenameListImage, that creates a new Options field, then set the desired options with SetTIFOptions command.    A typical 
error result is that a 0 byte TIF file is created on the disk.

Consequently, when you want to save a bitmap back to disk, perhaps in an alternative format, you must select the desired stored
bitmap to the current bitmap. For example:

SaveAStoredImage:



DrawBackground
FreeBitmapAll
ImageName1$ = SourceDir$ + "\1iddnext.jpg"
ImageName2$ = SourceDir$ + "\1iddxxxx.bmp"
DrawSizedBitmap(10,10,250,220,ImageName1$)
ScatterPixels(25,Res)
{DrawSizedBitmap(10,10,250,220,ImageName1$)}
SaveBitmap(ImageName2$,Res)
Goto Wait_for_Input

This code fragment above draws the original image, then performs a scatter pixel operation on the image in memory, without 
displaying. Uncommenting the second DrawSizedBitmap command will display the modified bitmap. The JPEG bitmap is saved 
to disk as a 24-bit BMP.

TestSaveAStoredImage:
FreeBitmapAll
DrawBackground
DrawSizedBitmap(10,10,250,220,ImageName1$)
DrawSizedBitmap(260,10,500,220,ImageName2$)
Goto Wait_for_Input

The code fragment above follows on from the first fragment. All of the stored images in memory are deleted, and the original and 
saved bitmaps are read in and displayed.

Related Commands:
ConvertColorSpace    SaveRectangle    SaveTIFcompressMode    



SavedArrayInfo

PiXCL 5 command. The file in which you save arrays can be queried to extract information. This is esspecially useful when you 
need to create the necessary arrays prior to a RestoreArray operation.

Syntax: SavedArrayInfo(ArrayFile$, SaveIndex, ArrayType, Elements, NumberOfArrays)

Parameters:
ArrayFile$ The name of the saved array file. The array save file must exist or the command returns 0 in all 

other variables.
SaveIndex Set to 0 to return just the NumberOfArrays in the file, otherwise 1 or greater.
ArrayType The selected array type located in the file. 1 = string, 3 = integer, 5 = floating point.
Elements The number of elements in the selected array located in the file.
NumberOfArrays The number of arrays saved in the file. For a valid array save file this will be at least 1, otherwise

0. If SaveIndex >= the number of arrays in the file, NumberOfArrays returns 0. 

Related Commands:
SaveArray    SaveMultiArray    



SaveImageColorMap

PiXCL 5 command. For 8 bit images loaded into the image list, you can save the current colour map into a palette (.PAL) file for 
later use.

Syntax: SaveImageColorMap(ListImageName$, FULL|PREVIEW,PALfile$,Result)

Parameters:
ListImageName$ The name of the image loaded into your PiXCL application. This must be 8 bits per pixel, or 

Result returns 0. 24 bit images do not have a colour map.
FULL|PREVIEW Defines whether the image was loaded in full or preview mode. In most instances, you will load 

the image in FULL mode eg with DrawBitmap.
PALfile$ The name of the file to be created. If the file exists it is overwritten.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
LoadImageColorMap        CreatePALfile      DrawBitmap        



SaveMultiArray

PiXCL 5 command. The contents of several array variables can be saved into binary files with the SaveMultiArray command, 
and later restored with the RestoreMultiArray command. The files are binary, with the the following format:
Bytes 0-3 = the number of entries in the array (current maximum 2048K);
Bytes 4-5 = the array type (1 = string, 3 = integer, 5 = float);
Bytes 6-7    = the number of arrays in the save file.
The array data follows: for integer and float arrays, each entry takes four bytes. For string arrays, each string entry is followed by 
two pipe characters i.e. “||”.    The last four bytes are a delimiter 0xffffffff, which is used only in multisave arrays. The contents of 
the file must match the size and type of the target array. A saved array of n elements can be restored to an array of n+m 
elements.

Syntax: SaveMultiArray(ArrayVariable_1, …, ArrayVariable_n, SaveFileName$,Result)

Parameters:
ArrayVariable A pre-existing array variable, in the form Name[0], Name$[0] or Name&[0].
SaveFileName$ The path and name of the file into which the array is to be saved.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
Array    FreeArrayVar    FreeArrayVarAll    RestoreArray    SaveArray    RestoreArray    RestoreMultiArray    



SaveRectangle, SaveRectangleToList

This command is used to capture a region of the PiXCL application client area, and save it in a bitmap to disk. For example, you 
can dynamically create a series of client area images, and save them out to a series of disk images, or save the region as a 
variety of image formats, for later playback with the DrawBitmap command.

Syntax: SaveRectangle(x1,y1,x2,y2,Imagename$,FOREGND | BACKGND, Result)
PiXCL 5 SaveRectangleToList(x1,y1,x2,y2,Imagename$,FOREGND | BACKGND, Result)

Parameters:
x1,y1,x2,y2 The PiXCL application client area region to be captured. The region specified does not have to 

be visible. You can use the WinGetClientRect command to get the current coordinates of the 
visible client area. Note that when PiXCL starts it creates a bitmap the size and pixel depth of the
current screen e.g. optimally1024x768x16-bit for a 2MB video card. This is the memory bitmap 
that is accessed to create the image on disk. This on-disk bitmap is saved as a 24-bit BMP file, 
regardless of the pixel depth of your current screen. If the x2 value results in line length which is 
not a multiple of four pixel, x2 is adjusted to the next multiple e.g. 101 pixels requested results in 
104 pixels selected. If all four coordinates are set to 0, the current screen in captured.

ImageName$ The filename to be used to save the image. BMP is the only supported save format at present. If 
another image format is used, the operation fails and returns 0. In PiXCL 5, a rectangle saved to
the memory list can be saved in any supported format.

FOREGND | BACKGND Save the region in the screen or memory bitmap. If the client area is off screen or hidden 
(see WinShow ) , FOREGND will grab whatever is visible in the screen i.e. a simple screen 
grabber function. In most cases you will want to use BACKGND mode.

Result If the save operation succeeds, Result returns 1, otherwise it returns 0.

Remarks:
Internally, this function does the following. If the whole screen area bitmap is to be saved (e.g. coords are all 0), the PiXCL 
memory bitmap is used as the source. If a region is to be saved, a new bitmap region is created in memory, saved to disk, then 
the new region is deleted and the memory returned to the global heap.

Related Commands:
SaveBitmap



SaveStdProfileSettings

PiXCL 5 command. All new applications should keep program parameters in the Registy. The SaveStdProfileSettings command
(for now) just stores the last window position in screen coordinates. If the Registry key does not exist, it is automatically created.

Syntax: SaveStdProfileSettings(DeveloperName$,AppName$,sx1,sy1,sx2,sy2,Result)

Parameters:
DeveloperName$ The name of the application developer or company name. This reads from the

HKEY_CURRENT_USER tree, Software\DeveloperName$\AppName$\Settings\WindowPos 
key. 

AppName$ The name of your application.
sx1,sy1,sx2,sy2 The screen coordinates of the application when it was last run. These are encoded to the string 

written to the Registry.
Result 1 if the operation was successful, otherwise 0.

Related Command:
LoadStdProfileSettings    



SaveTIFcompressMode

PiXCL supports several modes of compression when saving a TIFF bitmap with the SaveBitmap command.

Syntax: SaveTIFcompressMode(MODE_TOKEN)

Parameters:
NONE Save file without compression.
CCITT_FAX3 Save file as a Group 3 fax. Relevent to monochrome bitmaps only.
CCITT_FAX4 Save file as a Group 4 fax. Relevent to monochrome bitmaps only.
JPEG Save a 24 bit image with JPEG compression.
PACKBITS Save file with PackBits compression.
DEFLATE Save file with the Deflate compression scheme.

Remarks:
Selecting FAX3 or FAX4 compression mode with other than a monochrome (1 bit) image will cause a SaveBitmap or 
SaveBitmapHandle call to fail.

Related Commands:
ReadTIFcompressMode    SaveBitmap SaveRectangle



Scrollbar

When you need to enter a numeric control variable, and instead of typing the value into an edit control, it is more logical to use a 
slider control called a Scrollbar, esspecially when working with images.

Scrollbars can be vertical or horizontal, and come in several styles.    When a Scrollbar control is used, it

a) takes the mouse and keyboard focus; and

b) when you release the mouse, jumps to the label in your script and executes the commands found there.

You can have up to 8 Scrollbars visible at any one time, and you can selectively update the range values, set the slider position, 
get the current slider value, and delete one or more of the controls, using the related commands, ScrollbarSetRange, 
ScrollbarSetPosition, ScrollbarGetValue and ScrollbarRemove, respectively.

Syntax: Scrollbar(x1,y1,x2,y2,VERT|HORZ,Min,Max,ScrollbarNumber, Label)

Parameters:

x1,y1,x2,y2 The client area position of each trackbar.

VERT | HORZ Vertical or horizontal orientation.

Min, Max Positive or negative range.

ScrollbarNumber Zero if the operation failed, otherwise a number in the range 1-8

Label Jump to label for Scrollbar actions.

Remarks:

See sample program “controls.pxl”.

Related Commands:

ScrollbarSetRange , ScrollbarSetPosition , ScrollbarGetValue , ScrollbarRemove 



ScrollbarGetValue

Retrieve the current scrollbar value

Syntax: ScrollbarGetValue(SBnumber, Value)

Parameters:

SBnumber The number in range 1-8 of the scrollbar.

Value The current value according to the range set in the Scrollbar command. 

Related Commands:

Scrollbar , ScrollbarSetRange , ScrollbarSetPosition , ScrollbarRemove 



ScrollbarRemove

Closes the scrollbar window.

Syntax: ScrollbarRemove(SBnumber)

Parameters:

SBnumber The number in range 1-8 of the Scrollbar to remove. If Sbnumber is 0, all scrollbars are 
removed.

Related Commands:

Scrollbar      ScrollbarSetRange      ScrollbarSetPosition      ScrollbarGetValue 



ScrollbarSetPosition

Use this command to set a new position of the slider.

Syntax: ScrollbarSetPosition(ScrollbarNumber,Position)

Parameters:

ScrollbarNumber The number in range 1-8 of the Scrollbar.

Position New numeric position of the slider. 

Related Commands:

Scrollbar , ScrollbarSetRange , ScrollbarGetValue , ScrollbarRemove 



ScrollbarSetRange

Use this command to reset the range, tick mark frequency and strings of an existing Scrollbar control. This is useful when you 
want to change only one of a group of controls.

Syntax: ScrollbarSetRange(ScrollbarNumber,Min,Max)

Parameters:

ScrollbarNumber The number in range 1-8 of the Scrollbar.

Min, Max Positive or negative range

Related Commands:

Scrollbar    ScrollbarSetPosition    ScrollbarGetValue    ScrollbarRemove 



SCSIHostAdapterCount

PiXCL 5 command. Windows 95/98/ME access SCSI class devices using the Adaptec (tm) ASPI Manager windows\system\
wnaspi32.dll. This DLL provides a standardised interface to SCSI devices. SCSIHostAdapterCount needs to be called once in your 
applications to initialize the ASPI Manager, and should ideally be run before your application exits, to ensure that device I/O is 
cleaned up completely.

It is possible that ASPI is not installed on your Win 95/96/NT4 (but not Win ME or 2000) PC. There are two utilities from Adaptec:
a) ASPICHK.exe that checks the version and functionality of ASPI. Final version is 4.60; and 
b) ASPI32.exe that installs ASPI on your PC.

These are available from www.adaptec.com or from the VYSOR Support Pages www.vysor.com 

Syntax: SCSIHostAdapterCount(ASPI_ENABLE|ASPI_DISABLE,Count)

Parameters:
ASPI_ENABLE Loads windows\system\wnaspi32.dll and initializes the APSI Manager
ASPI_DISABLE Unloads windows\system\wnaspi32.dll
Count On ASPI_ENABLE, The number of SCSI host adapters located. This will almost always be at 

least 1, as CD-ROM devices are considered to be SCSI devices, even if they are actually IDE or 
E-IDE.

Related Commands:
SCSIGetDeviceType 



SCSIGetDeviceType

PiXCL 5 command. There are different types of SCSI devices, the most common being disks and tapes, but other devices are also 
available.

0  Disk Device
1  Tape Device
2  Printer
3  Processor (uncertain what this might be)
4  Write-once read-multiple
5  CD-ROM device (includes DVD-ROM)
6  Scanner device
7  Optical memory device
8  Medium Changer device
9  Communications device
10-30  Reserved values
31  Unknown or no device type

Syntax: SCSIGetDeviceType(HostAdapter, DevID, LUN, DevName$,Type,Type$ )

Parameters:
HostAdapter A value of 0 to 7.    The maximum number of host adapters supported is 8.
DevID A value of 0 to 7 for SCSI and SCSI-2 adapters, and 0 to 15 for SCSI-3 devices.
LUN Logical Unit Number. Almost always 0, as LUNs are rarely used in modern devices.
DevName$ The name reported by DevID. If no device is present at DevID, returns and empty string.
Type, Type$ The device type number and decoded into a string. If no device is present at DevID, returns -2.

Remarks:
This command does not report the Host Adapter name, as it is not strictly considered to be a device. Use the 
SCSIHostAdapterInquiry command to get the desired information.

Related Commands:
SCSIHostAdapterInquiry 



SCSIHostAdapterInquiry

PiXCL 5 command. Get the SCSI id# and name of a host adapter.

Syntax: SCSIHostAdapterInquiry(HostAdapter,HostID,HA_Name$,HA_Idenifier$ )

Parameters:
HostAdapter A value of 0 to 7.    The maximum number of host adapters supported is 8.
HostID The returned SCSI id# of the specified host adapter. This is usually 7 or 15, but may in cases be 

other values depending on how the hardware has been set up.
HA_Name$ String describing the SCSI manager. If you have multiple hardware adapters from different 

manufacturers, these strings will be different.
HA_Idenifier$ The name reported by the specified host adapter.

Related Commands:
SCSIGetDeviceType 



SCSIReset

PiXCL 5 command. SCSI devices support a reset command that is equivalent to cycling the power on the device. For example, 
tape devices and scanners (and even disks) can get themselves into a problematic situation that a reset only will cure.

Syntax: SCSIReset(HostAdapter, DevID, Result)
Parameters:
HostAdapter A value of 0 to 7.    The maximum number of host adapters supported is 8.
DevID A value of 0 to 7 for SCSI and SCSI-2 adapters, and 0 to 15 for SCSI-3 devices.
Result 1 if the operation completed successfully, 0 if the operation was aborted by the ASPI Manager , 

and -1 if the operation was aborted by the ASPI Manager because of a failure of some kind. 

Related Commands:
SCSIGetDeviceType 



SendCopyDataMsg

When you need to asynchronously pass text information to another application without using the clipboard, the SendDataMsg 
command is very useful. In PiXCL, it is provided to enable 
a) one PiXCL application to send information to another, and have the target PiXCL application start processing at a specific 

label; and 
b) applications written in other languages like Visual Basic, C and C++ to communicate easily with a PiXCL application.

The complementary GetCopyDataMsg command is used by a target PiXCL application to retrieve the message string. 

Syntax: SendCopyDataMsg(WindowName$,Message$)

Parameters:
WindowName$ The target window title. If this is NULL, or the window does not exist, the command has no 

effect. In addition, if the target application does not know how to process the message, or the 
message syntax is unrecognised, the target application SHOULD ignore it, but equally, its 
behavior may be unpredictable.

Message$ The message that is to be sent to the target application. A PiXCL target application requires a 
specific message syntax: see the remarks below. Other applications will also generally require 
their own message syntax.

 
Remarks:
The PiXCL received message syntax must be in the form          Label_Name Message_String        with a space delimiter before the
MessageString, if it exists. The length of the MessageString can be of arbitrary length, including 0. The PiXCL target application 
must have a defined label of Label_Name, or the message is ignored, and there should generally be GetCopyDataMsg 
command immediately following Label_Name, unless you know that the message will be a NULL string.

See the comms1.pxl and comms2.pxl programs for a simple example of using the SendCopyDataMsg and GetCopyDataMsg 
commands.

Related Commands:
GetCopyDataMsg    PXLresumeAt 



SendKeys

Sends keystrokes to the named Windows 95 or NT or Windows 3.x graphical application.

Syntax:

SendKeys(Windowname$,Keystrokes$,PauseRespond,PauseKeystroke,
Respond)

Parameters:
Windowname$ The name of the Windows 95, NT or Windows 3.x graphical application you want to send 

keystrokes to. Be sure to specify the full window name exactly as it appears in the Task List, 
paying careful attention to spacing (case doesn't matter).

Keystrokes$ The keystrokes you want to send in the form of a string.

PauseRespond The number of milliseconds to pause when waiting for a window to respond to SendKeys's initial 
effort to send messages to it. Start with a setting of 500 and increase or decrease it as 
necessary. Decreasing is often more useful.

PauseKeystroke The maximum number of milliseconds to pause    between keystrokes. Under most 
circumstances, PiXCL will not pause the full amount of time but will continue on as soon as it 
can. Start with a setting of 500 and increase or decrease it as necessary.

Respond An integer variable that indicates whether Windowname$ (or its descendants) responded to 
SendKeys's initial effort to send messages to it. If it did respond, this variable is assigned a value
of 1. Otherwise, it is assigned a value of 0.

Remarks:

SendKeys works only with Windows 95, NT and Windows 3.x graphical applications. It does not let you send keystrokes to 
character-based applications, including Windows NT console, DOS, OS/2, and POSIX applications. 

Don't expect too much from this command, because sending keystrokes to other applications in a multitasking environment like 
Windows 95 and NT doesn't always work. For example, you may send a pattern of keystrokes several times in a row without 
incident, but then the operation will fail for no apparent reason. This is the nature of the operating system. At any given time, 
Windows (or an active application) may be using the system's resources to the extent that the target application window cannot 
respond to SendKeys's effort to send messages to it. When this happens, the Respond variable is set to 1, indicating failure. 
(The same thing may happen when the keystrokes you're sending cause the target's parent window to change, for example, a 
new dialog box to appear. Again, SendKeys must determine whether the new target window is responding to messages being 
sent to it.) 

You'll have the best luck with SendKeys if you send short sets of keystrokes and break up your keystrokes into more than one 
command.

Placing a SetSendKeysPriority(NORMAL) immediately before the SendKeys command is often useful.

Here are the ways to represent the CTRL, ALT, SHIFT, and ENTER keys within the Keystroke$ argument:

SHIFT +
ALT %
CTRL        ^
ENTER  ~



The table below shows how to represent certain other keys.

Keystroke Representation
========= ==============
BACKSPACE {BACKSPACE} or {BS}
BREAK {BREAK}
CAPSLOCK {CAPSLOCK}
CLEAR {CLEAR}
DEL {DEL} or {DELETE}
DOWNARROW {DOWN} or {D}
END {END}
ENTER {ENTER} or ~
ESC {ESC} or {ESCAPE}
F1 to F24 {F1} to {F24}
HELP {HELP}
HOME {HOME}
INS {INSERT}
LEFTARROW {LEFT} or {L}
NUMLOCK {NUMLOCK}
PGDN {PGDN}
PGUP {PGUP}
PRINTSCRN {PRTSC}
RIGHTARROW {RIGHT} or {R}
SCROLLLOCK {SCROLLLOCK}
SPACE {SPACE} or {SP}
TAB {TAB}
UPARROW {UP} or {U}
% {%}
+ {+}
^ {^}
{ {{}
} {}}
~ {~}

Table: Keystroke Representations for SendKeys

Be sure not to include any spaces in your Keystrokes$ argument. If you want to send space characters to an application, use 
{SPACE} instead.

You can express duplicate keystrokes by placing the keystroke within curly braces and using a repetition count. For example, {t 
3} is the same as ttt and {SPACE 2} is the same as {SPACE}{SPACE}.

If your keystrokes cause a new control or window to become active, don't use a repetition count with them--for example, rather 
than {TAB 3}, use {TAB}{TAB}{TAB}. (Using a repetition count in such a situation will cause PiXCL to misinterpret the context, 
and your keystrokes will not work.)

PauseRespond is the maximum amount of time PiXCL waits for a window to initially respond to keystrokes. (PiXCL also uses 
this value before sending the first keystroke and each time a keystroke causes the target window to change--for example, a new 
dialog box or application window to appear.) A setting of 500 is usually best, but you may need to increase it if you find that 
PiXCL isn't sending keystrokes to the proper window.

Likewise, the PauseKeystroke argument controls the maximum amount of time PiXCL waits between keystrokes. Under most 



circumstances, PiXCL doesn't need to wait the full time, because it can detect that the target application has received a 
keystroke and is ready for another. But sometimes a keystroke merely sets a setting internal to the target program and PiXCL 
has no way of detecting whether the keystroke has been processed. You can set PauseKeystroke to a value of 500, and then 
increase or decrease it based on SendKeys's success rate sending keys. As a general rule, you should try increasing 
PauseKeystroke only if the keystrokes you're sending are being skipped, appear out of sequence, or don't have their desired 
effect as they flow to Windowname$.

If you're having trouble sending keystrokes to a Windows 3.x application, see the SetPriority and SetSendKeysPriority 
commands for some possible help.

Example:

The following example sends some simple keystrokes to Notepad.

Program$ = "Notepad - (Untitled)"
Keys$ = "Simple keystrokes being sent to Notepad~Line 2{HOME}"
SendKeys(Program$,Keys$,
         500,        {Wait for .5 secs for window to respond}
         500,        {Wait for max of .5 secs between keystrokes}
         Respond)
If Respond = 0 Then Beep

Related Commands:

RunExt, SetPriority, SetSendKeysPriority, Run



Set

This command lets you assign values to integer or string variables. In the case of integer variables, you can also perform simple 
mathematical calculations using integers. When assigning string variables, you can perform concatenation--that is, joining one or
more strings to the end of another and storing the result.

Syntax:

Set Variable = -2147483647 to 2147483648

Set Variable = <math_expression> 

Set Variable$ = "String"
Set Variable$ = "String1" + “String2” + Variable2$

or 

Set Variable$ = <string_expression>

Although the Set portion of the command is required in previous versions of PiXCL, it is optional in PiXCL 4.0 and later. For 
example, the following two forms of syntax are identical:

Variable$ = "String"
Set Variable$ = "String"

Parameters:
Variable A valid integer variable name (see "Variables" earlier).

<math_expression> A mathematical expression of the form 

Integer1 math_operator Integer2  

where Integer1 and Integer2 are integers (or integer variables) and 
math_operator is one of the mathematical operators. For example, the following 
are all valid mathematical expressions:

Counter + 3
X2 / 18
10 * Box_size

Variable$ A valid string variable name (a trailing $ is required).

<string_expression> A string expression of the form 

"String1" + "String2" [ + String3 … + Stringn]  

where "String1" and "String2" represent strings enclosed in double quotation 
marks (or string variable names) and + is the concatenation symbol. For 
example, here are some valid string expressions:

"Nonprofit " + "Corporation"
Yearend$ + "Results"
File1$ + File2$



Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus

Table: Mathematical Operators

Remarks:

In PiXCL 4.0 and later, integer variables can be in the range -2147483647 to 2147483648.

When assigning integer variables, the results of mathematical expressions are rounded down and stored as integers. For 
example, the command Set Green=2/3 assigns a value of zero to the variable Green. Likewise, the command Set Green=3/2 
assigns a value of 1 to Green.

If you want to perform more than one mathematical operation at a time, the only way to do so is to break them up into separate 
operations. For example, the following command is invalid:

y = 3 * x + 4   {Invalid}

But you can accomplish the same thing using these two commands:

y = 3 * x
y = y + 4

The modulus operator can be used to perform an operation every n th iteration of a loop.

Modulus = 21 % 10 returns a value of 1 to Modulus

You can perform string concatenation with any number of strings and string variables. The command can extend over multiple 
lines as well. For example, to put a carriage return into a string that is to be displayed with the DrawTextExt command, you would
use code like

Chr(13,cr$)
A$ = "One "
B$ = "Two "
C$ = "Three "
Six$ = "Six"
Test$ = A$ + B$ + C$ + "Four " + cr$ + 

"Five " + Six$
DrawTextExt(20,50,300,200,Test$,LEFT)

Examples:

To check an operation every 20 iterations to see if an exit has been called, use code like

Index = 0
WinGetClientRect("",cx1,cy1,cx2,cy2)
SetMouse(cx1,cy1,cx2,cy2, StopDraw,X,Y)
Random(255,R) Random(255,G) Random(255,B)

Loop:



UseBrush(SOLID, R, G, B )
DrawRectangle(x1,y1,x2,y2)
Index = Index + 1
J = Index % 20
If J = 0 Then WaitInput(1) {check for input}
Goto Loop

StopDraw:
SetMouse()
Goto Wait_for_Input

A 3-Dimensional Shaded ball.

The following program draws the 3-D 
ball in red, as shown at left. By 
modifying the Set commands at the 
beginning of the program, you can 
change the size of the ball and its 
position on the screen.

{Initialize variables}
     UseCoordinates(PIXEL)
UsePen(NULL,0,0,0,0)     {Use NULL pen for shading}
     Set Red=0
     Set Blue=0
     Set Green=0
     Set x1=50               {Starting x position}
     Set Final_x1=x1
     Set y1=180               {Starting y position}
     Set Final_y1=y1
     Set Ball_size=150        {Ball size}
     Set Count=1
Next_shade:
     If Count>10 Then Goto Flood
     Set x2=x1+Ball_size
     Set y2=y1-Ball_size
     UseBrush(SOLID,Red,Green,Blue)
     DrawEllipse(x1,y1,x2,y2)
     Set x1=x1+2
     Set y1=y1-2
     Set Red=Red+25
     Set Count=Count+1
     Goto Next_shade

Flood:
     UsePen(SOLID,2,0,0,0)



     UseBrush(NULL,0,0,0)
     Set x2=Final_x1+Ball_size
     Set y2=Final_y1-Ball_size
     DrawEllipse(Final_x1,Final_y1,x2,y2)
     UseBrush(SOLID,255,255,255) {White brush}
     DrawFlood(1,1,0,0,0) {Flood with white}    

  WaitInput()

This next example shows how to assign string variables and perform string concatenation using Set. In particular, it illustrates 
how to use the Chr function to handle the thorny issue of placing double-quotation marks within a string.

{Get first name using TextBox}
Top: Text$ = "What is your name?"
     Caption$ = "Enter name"
     TextBox(Text$,Caption$,Input$,Button)
{If Cancel mashed, then quit}
     If Button = 2 Then End
{Build MessageBox prompt with double quotes around name,
 for example, 'Is "George" correct?'} 
     Chr(34,Quote$)
     Prompt$ = "Is " + Quote$ + Input$ + Quote$ + " correct?"
{Put up message box}
     MessageBox(YESNO,1,QUESTION,Prompt$,"Verify",Button)
{If No mashed, then loop to get name again}
     If Button = 2 Then Goto Top:

Related Commands:

DrawNumber, DrawText, DrawTextExt 



SetBitmapResolution

An image loaded into or created in the PiXCL image list can have a print resolution value in dots per inch set. The default setting 
is 0, that is, no resolution information is used. This is only relevent when the image is saved to a format that supports a resolution
value in the file header (e.g. BMP and TIF).

Syntax: SetBitmapResolution(Xdpi, Ydpi)

Parameters:
Xdpi, Ydpi The dots per inch in the X and Y axes.

Related Commands:
GetBitmapResolution 



SetBMWMouse, SetBMWRightMouse

PiXCL provides up to eight bitmap windows with vertical and horizontal scroll bars, and a zoom capability. It is often handly to be 
able to select a specific pixel in a bitmap window and get the pixel coordinates. The SetBMWMouse and SetBMWRightMouse 
and SetBMWMidMouse commands work similarly to the SetMouse commands, and support multiple definitions in a valid 
command.

Syntax: SetBMWMouse(WindowID,Label,x,y, …)
SetBMWMidMouse(WindowID,Label,x,y, …)
SetBMWRightMouse(WindowID,Label,x,y, …)

Parameters:
WindowID The bitmap window ID returned from a DrawBitmapWindow command.
Label The jump-to label when the left, middle or right mouse event occurs.
x, y The BITMAP pixel coordinates, based on (0,0), according to the zoom factor and roam position 

of the bitmap window.

Remarks:
As with the SetMouse commands, a SetBMW[Right]Mouse() command deletes the settings and disables the mouse functions in 
the bitmap window. Note that deleting the settings disables mouse actions on ALL bitmap windows. Hence, if you want to disable
mouse actions on one bitmap window, you have to issue a new command.

It is recommended that when you want to get zoomed pixel coordinates, that you select whole number zoom values, as fractional
zoom values can occasionally cause the reported coordinates be off by 1, due to integer rounding during the coordinate 
calculation process. The top-left corner of a zoomed pixel in a bitmap window should be considered the origin point of the image.

Related Commands:
SetMouse , CloseBitmapWindow , DrawBitmapWindow , FlashBMWindow , ZoomBitmapWindow 



SetBreakpoint

PiXCL 5 command. Pauses the interpreter at the current point in the script and updates the debug dialog with the current the 
integer, float, string, array and bitmap records.

Syntax: SetBreakpoint
Parameters:
None
Related Command:
Breakpoints    



SetColorPalette

Controls whether PiXCL draws a bitmap using the bitmap's own color palette or generates an evenly distributed color palette and
uses it instead.

Syntax: SetColorPalette(BITMAP/GENERATE)

Parameters:
BITMAP When drawing a bitmap, reads the color palette from the bitmap's file. This is the default.

GENERATE When drawing a bitmap, uses an evenly distributed color palette and disregards the palette in 
the bitmap's file.

Remarks:

If you draw one 256-color bitmap after another in the same PiXCL window, the first bitmap will likely change color as the second 
bitmap's color palette is realized; this occurs instantly, just before the second bitmap is appears on the screen (the second 
bitmap appears normally). A 256 color display has 20 colors preassigned to the so-called “static colormap”, and all additional 
colors required must use the remaining 236 color palette entries.

The SetColorPalette command was introduced to try to mitigate this problem. By using SetColorPalette(GENERATE), you can 
have PiXCL generate an evenly distributed color palette that is used by both bitmaps. Neither bitmap will appear optimal, but one
bitmap's colors will not override the other's.

You must have at least a 256-color video driver installed to see the effect of this command. If you have a 2MB or greater video 
card, your computer will be able to display images using 65,536 colors or more. This produces a much better display, because 
Windows now has much larger static colormap, typically 4096. This means that for imaging applications, the bitmap palette issue
becomes much less of a problem. 

Example:

The following program draws one 256-color bitmap starting at the point (5,5) and then another starting at (130,5). As the second 
bitmap is drawn and its color palette realized into the device context, the first bitmap instantly changes colors.

DrawBitmap(5,5,"color.bmp")
DrawBitmap(130,5,"amber.bmp")
WaitInput()

To have both bitmaps use an evenly distributed color palette, you can add the SetColorPalette command as follows:

SetColorPalette(GENERATE)
DrawBitmap(5,5,"color.bmp")
DrawBitmap(130,5,"amber.bmp")
WaitInput()

Related Commands:

DrawBitmap, DrawSizedBitmap



SetCommPort

This command requires a string that specifies device-control information. The string must have the same form as the mode 
command’s command-line arguments. For example, the following string specifies a baud rate of 1200, no parity, 8 data bits, and 
1 stop bit: 

baud=1200 parity=N data=8 stop=1 
 
The device name is ignored if it is included in the string, but it must specify a valid device, as follows: 

COM1: baud=1200 parity=N data=8 stop=1 

This command string can also be written with comma delimiters as
1200,N,8,1

For further information on mode command syntax, refer to the end-user documentation for your operating system. 

PiXCL 4 Syntax: SetCommPort(COMx,Mode$,XON|XOFF, Result)
PiXCL 5 Syntax: SetCommPort(COMx,Mode$,XON|XOFF, CR|LF|CRLF|ESC|NULL, Result)

Parameters:
COMx Port, where x = 1 – 4 for standard PCs. PiXCL 5: If you have a multiple COM port board installed, ports 

5-13 are supported.

Mode$ Port state parameters, according to the MS-DOS mode command, e.g. "baud=9600 parity=N 
data=8 stop=2"

XON|XOFF Enables or disables the data stream control mode for both input and output.

CR Received messages are terminated by a CR character.
LF Received messages are terminated by a LF character.
CRLF Received messages are terminated by a CRLF character pair. This is the most commonly used setting.
ESC Received messages are terminated by an ESC character.
NULL Received messages are terminated by a NULL character.

Result 1 if the command was successful, otherwise 0.

Remarks:
You can set the COMx port parameters from the control panel for system wide operation. The settings made within PiXCL only 
apply while your PiXCL application is running.

Related Commands:
ClearCommPort EscCommFunction GetCommPort    ReadCommPort WaitCommEvent    WriteCommPort 



SetComputerName

You can set the name of the current computer if you have appropriate authority.    This must be a string not longer than 15 
characters, in the    standard character set including letters, numbers, and the following symbols: 

! @ # $ % ^ & ‘ ) ( . - _ { } ~ 

If you use any other characters, in Windows 95 the out-of-set characters will be changed to standard characters, while in 
Windows NT the operation will fail and the current name will not be changed.

Any name change will only take effect the next time you restart the computer.

Syntax: SetComputerName(NewName$,Result)

Parameters:
NewName$ The new name for the computer. If this is a NULL string, the command is ignored.
Result 1 of the operation is successful, otherwise 0. 

Remarks:
Issuing a GetComputerName after this command will not return the new name, and will usually return a null string.

Related Commands:
GetComputerName 



SetConsoleTitle

PiXCL 5 command. You can programmatically change the title of an existing console window with this command.

Syntax: SetConsoleTitle(Title$)

Parameter:
Title$ The new title of the console window.

Related Commands:
ShowConsole    FreeConsole 



SetCtrlMouse, SetShftMouse

This commands are like the SetMouse command, except that they work with control left-mouse and shift left-mouse clicks. All 
mouse commands use the same syntax.

Syntax:

SetShftMouse()
SetCtrlMouse()

or

SetCtrlMouse(Region1_x1,Region1_y1,Region1_x2,Region1_y2,Label,x,y,
                  Region2_x1,Region2_y1,Region2_x2,Region2_y2,Label,x,y,
                  .
                  .
                  Regionn_x1,Regionn_y1,Regionn_x2,Regionn_y2,Label,x,y)

Remarks:

See the SetMouse command for an explanation of SetCtrlMouse's arguments and behavior.

If a SetMouse command is already in effect and the user double-clicks the left mouse button, PiXCL will respond to the 
SetMouse command first before responding to the SetDblMouse command.

Related Commands:

SetMouse    SetCtrlMouse    SetDblMouse  SetRightMouse    SetShftRightMouse



SetCurrentBitmap

Image processing commands require that the current bitmap be selected. This can be done with a DrawBitmap or LoadBitmap 
command, and also with the SetCurrentBitmap command.

Syntax: SetCurrentBitmap(ImageName$,FULL | PREVIEW,Handle)

Parameters:
ImageName$ The desired current bitmap loaded in the image list.
FULL | PREVIEW The display mode of the loaded image.
Handle If the image is not loaded, Handle returns 0, otherwise it returns the image handle. This is the 

same handle that TuneImage returns.

Remarks:
SetCurrentBitmap differs from LoadBitmap in that if the image is not loaded, it will not load it automatically. 

Related Commands:
LoadBitmap     TuneImage    



SetMidMouse, SetCtrlMidMouse, SetDblMidMouse, SetShftMidMouse

These commands are like the SetMouse command, except that they work with control mid-mouse, shift and double midmouse 
clicks. All mouse commands use the same syntax. You must have a Microsoft Intellimouse™ or equivalent installed on your 
system for these commands to function.

Syntax:

SetMidMouse()
SetShftMidMouse()
SetCtrlMidMouse()
SetDblMidMouse()
or

SetMidMouse(Region1_x1,Region1_y1,Region1_x2,Region1_y2,Label,x,y,
                  Region2_x1,Region2_y1,Region2_x2,Region2_y2,Label,x,y,
                  .
                  .
                  Regionn_x1,Regionn_y1,Regionn_x2,Regionn_y2,Label,x,y)

Remarks:

See the SetMouse command for an explanation of SetMidMouse's arguments and behavior.

If a SetMidMouse command is already in effect and the user double-clicks the mid mouse button, PiXCL will respond to the 
SetMidMouse command first before responding to the SetDblMidMouse command.

Related Commands:

SetMouse    SetCtrlMouse    SetDblMouse  SetRightMouse    SetShftRightMouse



SetDblMouse

This command is like the SetMouse command, except that it works with double left-mouse clicks.

Syntax:

SetDblMouse()

or

SetDblMouse(Region1_x1,Region1_y1,Region1_x2,Region1_y2,Label,x,y,
                  Region2_x1,Region2_y1,Region2_x2,Region2_y2,Label,x,y,
                  .
                  .
                  Regionn_x1,Regionn_y1,Regionn_x2,Regionn_y2,Label,x,y)

Remarks:

See the SetMouse command for an explanation of SetDblMouse's arguments and behavior.

If a SetMouse command is already in effect in the same area, and you double-click the left mouse button, PiXCL will respond to 
the SetMouse command first before responding to the SetDblMouse command.

Related Commands:

SetMouse, SetCtrlMouse, SetRightMouse, SetShftRightMouse



SetDrawBitmap

An image that has been loaded into the PiXCL and geoPiXCL image lists can be drawn to directly with the various Draw 
commands. This command replaces the background memory bitmap with the image list bitmap.    Drawing is done in the 
background image, then that image is redrawn in the foreground.

Syntax: SetDrawBitmap(Image$,PREVIEW|FULL,Result)

Parameters:
Image$ The name of a loaded image in the list. If the image is not loaded, Result returns 0, and nothing 

happens, which means that you should nearly always check the return value. If Image$ is set to 
NULL, the default client area drawing surface is restored.

PREVIEW, FULL Same as the LoadBitmap command, and defines whether a full or preview sized bitmap is to set 
as the drawing surface.

Result If the function succeeds, Result is set to 1, otherwise 0.

Remarks:
You should issue a SaveBitmap to save the newly written bitmap data. The function works with 8 and 24 bit images.

Example:
OpeningFile:

WaitInput(1)
DrawBitmap(20,40,Image1$)
SetDrawMode(BACKGND) 
SetDrawBitmap(Image1$,FULL,Res)
UseFont("Arial",13,27,NOBOLD,NOITALIC,NOUNDERLINE,255,255,0)
UsePen(SOLID,2,255,255,0)
DrawText(30,50,"This is text written to a loaded bitmap")
DrawLine(20,20,200,200)
UsePen(SOLID,4,255,0,0)
UseBrush(CROSS,0,255,255)
DrawEllipse(20,30,80,60)
SetDrawBitmap("",FULL,Res)
SetDrawMode(BOTH) 
DrawBitmap(20,40,Image1$)
Goto Wait_for_Input

Related Commands:
LoadBitmap     SetDrawMode     DrawVECcommands 



SetDrawMode

PiXCL keeps a foreground and background image of what you see in the application client area. SetDrawMode provides the 
means to write only in the foreground or background, or both, and is generally used in simple animation programs.

For example, you can use the foreground as the main display image, and manipulate animated images, while preparing the 
background with a different background color or bitmap image. Only when the new image is ready is it copied to the foreground.

Syntax: SetDrawMode(DISABLE | FOREGND | BACKGND | BOTH)

Parameters:
DISABLE Stops any Draw[Tr][Sized][Zoomed]Bitmap command writing in either memory image. 

This token is not commonly used.
FOREGND Draws in the foreground image (i.e. the PiXCL client area) only.
BACKGND Draws in the background image only.
BOTH Draws in the foreground and background images.

Notes:
It is your responsibility to change the draw mode of you want other than the default of BOTH.

Related Commands:
DrawBackgroundRegion , SetROPcode , SetDrawMouse 



SetDrawMouse

The SetDrawMouse enables you to draw freehand in the PiXCL application client area with the mouse while the left button is 
down. The currently selected pen is used, or if a UsePen command has not been issued, the default black pen is used. You can 
also draw in the foreground, background, or both.

The SetDrawMouse function could be used, for example, where you need to select or indicate part of the screen display. If the 
left button is released, the drawing action stops and the mouse moves in the normal way without drawing.

Syntax: SetDrawMouse(FOREGND|BACKGND|BOTH|DISABLE)

Parameters:
FOREGND The line is drawn in the foreground only (i.e. the screen context).

BACKGND The line is drawn in the background only (i.e. the memory context). The line will not be visible 
until the screen is refreshed, either by resizing the display or issuing the ReDraw command.

BOTH The line is drawn in the foreground and background.

DISABLE SetDrawMouse operations are disabled.

Remarks:
When SetDrawMouse is enabled, the cursor changes to a pen like shape. When SetDrawMouse is disabled, the cursor is reset 
to the standard application default.

SetDrawMouse uses the left button to initiate the draw operation. If a SetMouse command (which also uses the left button) is in 
effect, the PiXCL code will be activated as well, but you can still draw with the mouse. You may find it helpful to either disable 
SetMouse() while a SetDrawMouse is in effect, or use another of the mouse commands.

Example:
Here are a number of functions that turn on, process and turn off the mouse draw option. They could be included in a SetMenu 
or toolbar. Note how the mouse draws in the foreground, and if the right mouse is pressed, the background image (which is 
unchanged) is copied to the foreground i.e. erasing the lines previously drawn.

Mouse_DrawOn:
DrawBackGround
WinGetClientRect("",cx1,cy1,cx2,cy2)
SetRightMouse(cx1,cy1,cx2,cy2,ReDrawMemoryDC,n,n)
SetCtrlMouse(cx1,cy1,cx2,cy2,DrawBlock,X,Y)
SetMouse()
SetDrawMouse(FOREGND)
Goto Wait_for_Input

Mouse_DrawOff:
SetDrawMouse(DISABLE)
SetRightMouse()
Goto Wait_for_Input

ReDrawMemoryDC:
ReDraw



Goto Wait_for_Input

DrawBlock:
X1 = X - 15 X2 = X + 15
Y1 = Y - 15 Y2 = Y + 15
DrawRectangle(X1,Y1,X2,Y2)
Goto Wait_for_Input

Related Commands:

SetMouse, SetCtrlMouse, SetRightMouse, SetShftRightMouse, 
UsePen 



SetEditControl

This command lets you create any number of edit control windows in the PiXCL client area, for text or numeric string entry. Text 
entry can also be done under program control with the SetKeyboard and other commands (see the keyboard.pxl example) but is 
very tedious to code.

Windows manages the allocation of memory for the edit strings before they are entered into PiXCL string variables. While a 
string can    be about 32 KB long if required, the aim of edit windows is to enter small strings such as names, numbers or 
program parameters. 

For example, you can read an INI file or registry entries with FileRead_INI or one of the RDB commands, display the various 
string values in edit windows, make any desirable changes, then write the INI or registry entry back with FileWrite_INI.

You can also use SetEditControl to create a form page with a variety of entries for information. For example, display an image 
(using DrawSizedBitMap), and create a set of edit controls to describe the image parameters, then write these parameters out to 
an ASCII file with FileWrite_ASCII.

 

The above image shows the available button styles enclosed in a group box, with embedded edit controls.

Syntax:

SetEditControl() to clear all edit controls

or

SetEditControl(x1,y1,x2,y2,STRING|NUMBER|NUMBERUD|PASSWORD,
MaxLimit, MinLimit,Text$,...)

Parameters:
x1,y1,x2,y2 Co-ordinates of the edit control.

STRING Control edit text is a single line.
NUMBER Control edit text is numbers only. +/- signs are not accepted from the keyboard, but can be 

copied from the Clipboard.
NUMBERUD Control edit text is numbers only, plus an attached up-down control. +/- signs are not accepted 

from the keyboard, but can be copied from the Clipboard. See the example below.
PASSWORD Control edit text is secure, displays * for all characters.
MaxLimit,MinLimit For NUMBER edit controls only, sets the limits of integer input. Negative numbers are allowed. 

Values are ignored in STRING and PASSWORD modes.

Text$ Input text string. If the variable is not already defined, it is created. If it used as the default, then 
modified, the variable will include the changes.

Remarks:



SetEditControl is generally used with Button() commands to indicate that the edit string entry is complete. You could also set a 
mouse active region, or use a specific key stroke as the terminating event. Windows user interface style conventions generally 
suggest using a push-button or perhaps a Radio button.

It is strongly recommended that you use the SetEditControl(...) before the related Button(...) command in your script, otherwise 
you may get unpredictable visual results, such as pre-existing edit controls which should be redrawn, not being redrawn, or 
button text appearing in the system font even if a user font has been selected. This is not a bug in PiXCL, rather it is the way 
Windows processes commands in its message queues, and usually only appears with pushbuttons, radio-buttons and 
checkboxes created with Button(). If using SetEditControl(...) before the related Button(...)  does not clear the problem, ensure 
that you have the latest video driver. If the problem persists, please contact VYSOR Technical Support for more information.

Edit text is displayed in the current font, either the system font, or the font selected with a UseFont command. Text is always 
monochrome

If you use the NUMBERUD token to create the up-down control, click the upper button to increment and the lower button to 
decrement the edit control value. If the variable has not been previously defined, or is not a numeric string, the first click will set it
to zero.    Negative numbers are possible. If you click and hold a button down (i.e. generate a stream of mouse events), the edit 
string will be incremented or decremented until you release the button. The resulting value is available in the variable name.

Once you have the numeric string, use the Val command to convert it to a numeric variable, and the Negate commands to take 
the arithmetic negative.

Example:
This code fragment draws the dialog controls shown in the image above. Some of the controls have been activated or edited 
once they were created.

New_Buttons:
DrawBackGround
UseFont("MS Sans Serif",0,19,

NOBOLD,NOITALIC,NOUNDERLINE,255,0,0)
SetEditControl(20,20,125,45,STRING,0,0,Edit1$,

       20,50,125,75,NUMBERUD,0,255,Edit2$,
       20,80,125,105,PASSWORD,0,0,Edit3$)

Button(320,35,380,75,PUSH,"&OK",New_Buttons_End,
       320,85,380,125,PUSH,"&Cancel",New_Buttons_End,
       180,15,260,40,AUTORADIO,"Invert",New_Buttons_Wait,
       180,50,260,75,AUTORADIO,"Normal",New_Buttons_Wait,
       180,90,260,115,AUTOCHECK,"Check",New_Buttons_Wait,
       10,2,400,140,GROUP,"Value Selections",New_Buttons_End)

New_Buttons_Wait:
WaitInput()

Remarks:
See also the DialogBox  command to produce dialog boxes with edit controls.

Related Commands:
Button, UseFont, SetMouse, SetKeyboard, Val, Negate



SetEnvVariable

Use this command to set the current value of an environment variable.

Syntax: SetEnvVariable(Variable$, Value$, Result)

Parameters:
Variable$ The name of the environment variable.

Value$ The new value of Variable$.    If this is a null string, Variable$ is deleted from the environment 
string list.

Result 1 if the variable was set successfully, otherwise 0. 

Related Commands:

GetEnvString     GetEnvVariable



SetFontEscapement

Font escapement is the angle with which character strings are written. In PiXCL, the default value is 0, which produces horizontal
text. You can set this escapement value in increments of 0.1 degrees with the SetFontEscapement command. This value 
remains valid until changed by another SetFontEscapement command.

Syntax: SetFontEscapement(AngleX10)

Parameters:
AngleX10 The angle that you want text to appear, times 10. Hence, a desired angle of 15.3 degrees 

requires AngleX10 to be 153. Positive numbers are clockwise, negative are anti-clockwise.

Remarks:
Not all fonts support the escapement setting. MS Serif and MS Sans Serif are Adobe™ fonts, and any escapement setting is 
ignored. In general, if the font you select is a TrueType™ font, the escapement angle can be set.

The escapement value is set in a global variable within PiXCL, and affects all subsequent UseFont commands only. This means 
that just setting the escapement value without a following UseFont will not have any effect.

Related Commands:
AddFont     ChooseFont    GetTextSpacing    DrawText    DrawShadowText DrawTextExt    DrawShadowTextExt RemoveFont  
SetTextSpacing  UseFont    UseFontExt



SetJPGOptions

PiXCL 5 command. When you load a JPEG image from disk, the options data in the file, if any, are also loaded and stored with 
the image in the PiXCL image list. These fields can be set or updated as well. If the disk image type is not JPEG, the command 
has no effect, and all values return null or 0. You can get this command to work if you first set change the name of the loaded 
image in the list, using RenameListImage.

Syntax: SetJPGOptions(Filename$, Comments$, ResType, XRes, YRes)

Parameters:
Filename$ The name of a loaded file in the image list.
Note all the following MUST be variables, or you will get a syntax error.
Comments$ The contents of the field. This may be an empty string.
ResType The resolution indicator. 0 = no unit of measurement specified, 1 = dots per inch, 2 = pixels per 

meter.
XRes, YRes The X and Y axis resolution.

Related Commands:
GetJPGOptions      GetPNGOptions    GetTIFOptions SetPNGOptions    SetTIFOptions RenameListImage



SetKeyboard

This command lets you get keyboard input from the user. When the program is pausing for input and the user presses a 
specified key, the program branches to the label associated with that key.

Syntax:

SetKeyboard()

or

SetKeyboard("a",Label,
                        "^a",Label,
                        vkey,Label)

Parameters:
"a" Any white key on the keyboard (except function keys and certain keys on the numeric keypad). 

For example, "a" represents lowercase a and "R" represents uppercase R.

"^a" Any white key on the keyboard (except function keys and certain keys on the numeric keypad) in
combination with CTRL. For example, "^b" represents CTRL+b and "^V" represents CTRL+V.

vkey A virtual key number taken from the Table below.    For example, the virtual key number for the 
F1 function key is 112. Using a virtual key number is the only way to test for certain keys, 
including function keys and several keys on the numeric keypad.

Label A label you want PiXCL to branch to when the user presses the preceding key. For example, the 
command SetKeyboard("C",Run_calc) causes the program to branch to the label Run_calc 
when the user presses C.

Value Description Value Description Value Description

8 BACKSPACE 9 TAB 12 5 on numeric keypad
                            with NUMLOCK off

13 ENTER (or    ^M) 16 SHIFT 17 CTRL
18 ALT 19 PAUSE (or CTRL + 

                            NUMLOCK)
20 CAPS LOCK

27 ESCAPE 32 SPACEBAR 33 PGUP
34 PGDN 35 END 36 HOME
37 LEFTARROW 38 UPARROW 39 RIGHTARROW

40 DOWNARROW 44 PRINTSCREEN
45 INSERT 46 DELETE 48 0
49 1 50 2 51 3
52 4 53 5 54 6
55 7 56 8 57 9
65 A 66 B 67 C
68 D 69 E
70 F 71 G 72 H
73 I 74 J 75 K
76 L 77 M 78 N
79 O 80 P 81 Q
82 R 83 S 84 T
85 U 86 V 87 W

88 X 89 Y
90 Z 96 Numeric key pad 0 97 Numeric key pad 1 



                      (NUMLOCK must be on)                   (NUMLOCK must be on)
98 Numeric key pad 2
            (NUMLOCK must be on)

99 Numeric key pad 3
                      (NUMLOCK must be on)

100 Numeric key pad 4 
                  (NUMLOCK must be on)

101 Numeric key pad 5 
            (NUMLOCK must be on)

102 Numeric key pad 6 
                      (NUMLOCK must be on)

103 Numeric key pad 7 
                  (NUMLOCK must be on)

104 Numeric key pad 8
            (NUMLOCK must be on)

105 Numeric key pad 9 
                      (NUMLOCK must be on)

106 Numeric key pad *

107 Numeric key pad + 109 Numeric key pad - 110 Numeric key pad . 
                  (NUMLOCK must be on)

111 Numeric key pad / 112 Function Key F1 113 Function Key F2
114 Function Key F3 115 Function Key F4

116 Function Key F5 117 Function Key F6 118 Function Key F7
119 Function Key F8 120 Function Key F9 121 Function Key F10
122 Function Key F11 123 Function Key F12 124 Function Key F13
125 Function Key F14 126 Function Key F15 127 Function Key F16
144 NUM LOCK 145 SCROLL LOCK

The following key codes apply to US keyboards only:
186 Colon/semi-colon
187 Plus/equal
188 Less than/comma
189 Underscore/hyphen
190 Greater than/period
191 Question/slash
192 Tilde/backwards single quote
219 Left curly brace/left square brace
220 Pipe symbol/backslash
221 Right curly brace/right square bracket
222 Double quote/single quote

 Virtual Key Numbers Table

Remarks:

When PiXCL encounters a SetKeyboard command in your program, it does not immediately branch anywhere. Instead, it waits 
until it encounters a WaitInput() command (which causes the program to pause indefinitely for user input) and the user presses a
specified key. Only then does control transfer to the Label associated with that key.

The syntax above shows only three keys in the SetKeyboard list, but you can actually include as many keys as you want in the 
list.

A SetKeyboard command remains in effect until any of the following occurs:

· You use another SetKeyboard command.

· You use SetKeyboard() without any parameters to reset the keyboard.

· The program ends.

When you place a 3-D button in a window using the Button command, PiXCL automatically provides mouse support for it. If you 
want the user to be able to select the button using the keyboard, though, you must use SetKeyboard (see the second example).

Examples:

The following example puts the message "Press E to end the program" on the screen, and then pauses the program indefinitely 



until you press e or E. When you press either key, the program ends.

DrawText(1,1,"Press E to end the program")
SetKeyboard("E",End_it,"e",End_it)
WaitInput()

End_it:
End

A SetKeyboard command has to be very soon followed by a WaitInput() command. If you place a SetKeyboard in a code section 
that does many other processing, esspecially Vid* commands, you may get odd effects, including application crashes. This is 
because of the way that PiXCL processes a selected key stroke, by looking at the position of the SetKeyboard command in the 
script. 
This next example places two buttons on the screen.    When you click on a button with the mouse, or press the key associated 
with the button, the program runs the named application. On the other hand, if you press F1, the program displays a message 
box with some simple help text.

{Draw buttons}
     Button(22,13,95,35,"&Notepad",Run_Notepad,
            22,43,95,65,"&Calc",Run_Calc)

{Set up keyboard support for buttons}
     SetKeyboard("N",Run_Notepad,
                 "n",Run_Notepad,
                 "C",Run_Calc,
                 "c",Run_Calc,
                 112,Help_Box)     {112=virtual key for F1}

Wait_for_input:
     WaitInput()

Run_Notepad:
     Run("NOTEPAD.EXE")
     Goto Wait_for_input

Run_Calc:
     Run("CALC.EXE")
     Goto Wait_for_input

Help_Box:
     MessageBox(OK,1,NOICON,
        "Pick a button to run the named application",
        "Help box",Ignore)
     Goto Wait_for_input

Related Commands:

Button, SetMenu, SetMouse, SetCtrlMouse, SetRightMouse, SetShftRightMouse,
WaitInput



SetListBitmapPixel

 
The GetPixel command retrieves a pixel coordinate RGB value from the client area, which is    not necessarily a 24 bit color 
mode as set in the video driver. The SetListBitmapPixel command sets a pixel RGB value at a coordinate in a bitmap loaded into
the PiXCL image list.

Syntax: SetListBitmapPixel(Handle,Line,Pixel,Index,R,G,B,Result)

Parameters:
Handle The handle of a loaded bitmap, as returned by SetCurrentBitmap, TuneImage and others.
Line,Pixel The coordinate of the pixel to set the RGB values.
Index The pixel index value for paletted bitmaps. Ignored for a 24-bit image pixel.
R,G,B The Red, Green and Blue colour values. Set these to -1 if not required in a paletted bitmap. 

Values in the range 0-255 will set the colour map of the target bitmap.

Related Commands;
GetListBitmapPixel    GetPixel     SetCurrentBitmap    



SetLocalTime, SetSystemTime

System time, actually Greenwich Mean Time or GMT, and Local system time, based on the time zone to which your PC is set 
can be accessed and if desired, reset. Both commands have the same arguments. 

Syntax: SetLocalTime(Year, Month, DayOfWeek, DayOfMonth, Hour, Minutes)
SetSystemTime(Year, Month, DayOfWeek, DayOfMonth, Hour, Minutes)

PiXCL 5
SetLocalTime(Year, Month, DayOfWeek, DayOfMonth, Hour, Minutes, Seconds)
SetSystemTime(Year, Month, DayOfWeek, DayOfMonth, Hour, Minutes, Seconds)

Parameters:
Year Four digit integer, e.g. 2001
Month Range is 1 to 12
DayOfWeek Range is 0=Sunday to 6=Saturday
DayOfMonth Range is 1 to 31
Hour Range 1 to 23
Minutes Range 0 to 59
Seconds Range 0 to 59

Related Commands:
GetLocalTime, GetSystemTime, GetTimeZone, TimeToASCII



SetMapMode 

Get the current client area mapping mode.

Syntax: SetMapMode(TEXT | ISOTROPIC | ANISOTROPIC)

Parameter:
TEXT The default mode.
ISOTROPIC Origin is top left.
ANISOTROPIC Origin is bottom left.

Related Commands:
GetMapMode  GetWindowExtent  GetWindowOrigin GetViewportExtent  GetViewportOrigin  SetWindowExtent  
SetWindowOrigin  SetViewportExtent  SetViewportOrigin 



SetMenu

This command is used create your own custom menus. When the program is pausing for input and the user selects a menu item,
the program branches to the label associated with that menu item. A menu command from a PiXCL 4 application is completely 
compatible with PiXCL 5, that adds the capability for child pop up menus.

Syntax:

SetMenu()
Or

PiXCL 4
SetMenu(Top1$,IGNORE/Label,
                ItemA$, Label,
                ItemB$, Label,
                SEPARATOR,
                ItemC$, Label,
                ENDPOPUP,
                Top2$, Label,
                .
                .
                ENDPOPUP)

PiXCL 5
SetMenu(Top1$,IGNORE|Label,
                ItemA$, Label,
                ItemB$, Label,
                ItemX$, CHILDPOPUP,
                      ItemX1$, Label,
                      ItemX2$, Label,
                      ENDCHILDPOPUP,
                SEPARATOR,
                ItemC$, Label,
                ENDPOPUP,
                Top2$, Label,
                .
                .
                ENDPOPUP)

Parameters:
Top1$, Top2$ The items that are to appear on the main or top-level menu bar. You can have as many 

items as you like on the main menu bar. (If you have more than a single line's worth, 
Windows will extend the menu bar to a second line and beyond.)

ItemA$, ItemB$,        The items that are to appear within a popup ItemC$ menu, also called a pull-down menu. 
You can have as many items as you like within a popup menu.

Label A label you want PiXCL to branch to when the user selects a menu item. 

IGNORE Tells PiXCL not to do anything when the menu item is selected. When IGNORE follows an 
item on the main menu bar, PiXCL displays the item's popup menu, provided you've defined
one.

SEPARATOR Divides the items in a popup menu into groups.

ENDPOPUP Ends a popup menu. In addition, this token is always the last argument in a SetMenu 
command.

PiXCL 5
CHILDPOPUP Token that indicates the next items are a child popup menu.
ENDCHILDPOPUP Token that completes the definition of the child popup menu.

Remarks:

A top-level menu consists of one or more items--Top1$, Top2$, Top3$, and so on. Below each top-level menu item is a popup 



menu. You can have one or more items within a popup menu--ItemA$, ItemB$, ItemC$, and so on.

When you define a menu in PiXCL, you define it sequentially. You begin by setting up the first top-level menu item and its popup 
menu. You then set up the second top-level menu item and its popup, and so on.

Following each top-level menu item (Top1$) and popup menu item (ItemA$) is a label you want the program to branch to when a 
menu item is selected. If you don't want the program to branch anywhere, use the IGNORE token instead; the IGNORE token is 
most often used following a top-level menu item when all you want PiXCL to do is show the item's popup menu. (The IGNORE 
token is recognized even if you've created an IGNORE label.) 

When PiXCL encounters a SetMenu command in your program, it does not immediately branch anywhere. Instead, it waits until 
it encounters a WaitInput() command (which causes the program to pause indefinitely for user input) and the user selects a 
menu item. Only then does control transfer to the Label associated with that item.

Here are some conventions you may want to follow when creating PiXCL menus in order to give the user additional information 
about the items within the menu:

· An underlined letter in a menu item indicates that the letter can be used to select the menu item. You 
create underlined letters by placing an & in front of the letter you want underlined. For example, the 
parameter "&Notepad" underlines the letter N in the Notepad menu item. When a letter is underlined, it
is known as a mnemonic. To select an item on the top-level menu using its mnemonic, you press 
ALT+mnemonic, for example ALT+N. Once a popup menu appears, you can select an item within it by 
pressing that item's mnemonic alone.

· By placing an exclamation point at the end of a top-level menu item, you can indicate that no pop-up 
menu will appear when the user selects the item.

· By using a separator, you can divide items within a popup menu into groups. You can have as many 
separators as you like within a popup menu.

A SetMenu command remains in effect until any of the following occurs:

· You use another SetMenu command.

· You use SetMenu without any parameters 
to eliminate the menu from the window.

· The program ends.

You can add hot-key text--for example, Ctrl+N--to a menu item by preceding the text with a tab character. For example, here's 
some code that creates a menu item of the form
"Notepad      Ctrl+N":

Chr(9,Tab$)
Notepad$ = "&Notepad" + Tab$
Notepad$ = Notepad$ + "Ctrl+N"

You can then use the Notepad$ variable when defining a menu item in SetMenu. Be aware that PiXCL does not automatically 
provide keyboard support for hot-key text you assign. You must provide the support yourself using the SetKeyboard command.

Example:



A menu created with SetMenu.

This example creates the simple
menu shown left.    As you can 
see, the menu has two top-level 
menu items, Programs and 
Exit!. (Because Exit! does not 
lead to a popup menu, it 
includes an exclamation point.) 
When you select an item from 
Programs' popup menu, the 
program branches to the 
associated label. For example, 
when you select Goto 
Command Prompt, the program 
branches to the label Interpret, 
where it launches a copy of the 
command interpreter, 
CMD.EXE.

{Set up the menu}
SetMenu("&Exit!",Leave,
        ENDPOPUP,
     "&Programs",IGNORE,

        "&Notepad",Run_Notepad,
        "&Write",Run_Notepad,
        "&Calculator",Run_Notepad,
        SEPARATOR,
        "Goto Command &Prompt",Run_Notepad,
        ENDPOPUP)
Wait_for_input:
     WaitInput()

Run_Notepad:
     Run("NOTEPAD.EXE")
     Goto Wait_for_input

Run_Write:
     Run("WRITE.EXE")
     Goto Wait_for_input

Run_Calc:
     Run("CALC.EXE")
     Goto Wait_for_input

Interpret:
     DirGetSystem(WindowsSystem$)
     Cmd$=WindowsSystem$+"\cmd.exe"
     Run(Cmd$)
     Goto Wait_for_input

Shutdown:
     End

Related Commands:
GetMenuStatus, SetKeyboard, SetPopupMenu, WaitInput



SetMouse

This command lets you get mouse input. When the program is pausing for input and the user clicks the left mouse button within 
a specified rectangular region, the program branches to the label associated with that region.

Syntax: 
SetMouse()

or

SetMouse(Region1_x1,Region1_y1,Region1_x2,Region1_y2,Label,x,y,
                  Region2_x1,Region2_y1,Region2_x2,Region2_y2,Label,x,y,
                  .
                  .
                  Regionn_x1,Regionn_y1,Regionn_x2,Regionn_y2,Label,x,y)

Parameters:
Regionx_x1,Regionx_y1 The upper-left corner of a rectangular mouse hit-testing region.

Regionx_x2,Regionx_y2 The lower-right corner of a rectangular mouse hit-testing region.

Label The label you want to branch to when the user clicks the mouse within the mouse hit-
testing region (as defined by the previous four arguments).

x,y The coordinates of the mouse pointer, as measured from the upper-left corner of the 
window.

Remarks:

To get mouse input, you must set up rectangular areas in the window known as mouse hit-testing regions. When the user clicks 
the mouse within a hit-testing region, the program branches to the label associated with that region and saves the mouse pointer
coordinates in the two variables that follow, x and y. 

When PiXCL encounters a SetMouse command in your program, it does not immediately branch anywhere. Instead, it waits until
it encounters a WaitInput() command (which causes the program to pause indefinitely for user input) and the user clicks the 
mouse within a hit-testing region. Only then does control transfer to the Label associated with that region.

You can have as many hit-testing regions as you like for a given SetMouse command. If two hit-testing regions overlap, PiXCL 
will branch to the label for the first one in the list.

When you place a 3-D button in a window using the Button command, PiXCL automatically provides mouse support for the 
button--you do not need to use SetMouse for this.

Setting the coordinate system to pixels is helpful when you want to get mouse input (see UseCoordinates).

Example:

The following program sets up a mouse hit-testing region corresponding to the rectangle on the left-hand side of the window. 
When you click the mouse within the rectangle--the region (1,1) to (300,200)--the program saves the mouse pointer coordinates 
in Mouse_x and Mouse_y and branches to the Mouse_hit label, where it draws a small black rectangle at the location of the 
mouse pointer.

{Set coordinate system to pixels}



     UseCoordinates(PIXEL)

{Draw rectangle that will become hit-testing region}
     DrawRectangle(1,1,300,200)
     DrawText(30,210,"Click the mouse within the rectangle")

{Set up the mouse}
     SetMouse(1,1,300,200,Mouse_hit,Mouse_x,Mouse_y)

{Put up Exit button}
     Button(340,80,400,120,"Exit",Goodbye)

Wait_for_Input:
     WaitInput()

Mouse_hit:
     x2=Mouse_x+2
     y2=Mouse_y+2
     DrawRectangle(Mouse_x,Mouse_y,x2,y2)
     Goto Wait_for_Input

Goodbye:
     End

See the DrawNumber and SetKeyboard commands for other examples of SetMouse.

Related Commands:

SetDblMouse    SetCtrlMouse SetMidMouse  SetRightMouse    SetShftRightMouse



SetPopupMenu

In Windows 95 and NT 4.0 and later, extensive use is made of popup menus that appear when the right mouse button clicked. 
These menus are often also called context sensitive menus, and typically provide access to most commonly used commands. 
PiXCL supports popup menus, and uses essentially the same syntax the SetMenu() command that creates the standard menu 
bar.

The SetPopupMenu command would normally be used with the SetRightMouse command, but will work with any of the 
SetMouse commands too. It can be easily programmed to create any size popup menu at any location.    When you click the 
mouse in the PiXCL application client area, and invoke a SetPopupMenu(...) function, the top left corner of the popup menu 
appears at the coordinates returned by the Set[Shift|Ctrl|Right|Dbl]Mouse command.

The same syntax used in the SetMouse commands applies with some small exceptions. You can use SEPARATOR tokens, but 
there should be only one ENDPOPUP token. Multiple ENDPOPUP tokens will not cause errors, but are not meaningful. An 
ENDPOPUP after a SEPARATOR will be ignored. The IGNORE token, used in top level menu items with pull down menus, is not
meaningful in a popup menu. If you try to use the IGNORE token, a popup menu will be created, but selecting this menu item will
respond with a syntax error message.

You can also define accelerator keys (e.g. "&Item#1",...), just as you can with the standard SetMenu command.

SetPopupMenu() Clear all popup menu commands.

or

SetPopupMenu(ItemA$,Label,
ItemB$,Label,
SEPARATOR,
ItemC$,Label,
…
…
ENDPOPUP)

Parameters:

ItemA$, ItemB$,        The items that are to appear within a popup Item$ menu. You can have as many 
items as you like within a popup menu.

Label A label you want PiXCL to branch to when the user selects a menu item. 

SEPARATOR Divides the items in a popup menu into groups.

ENDPOPUP Ends a popup menu. In addition, this token is always the last argument in a 
SetPopupMenu command.

CHILDPOPUP PiXCL 5: add a child popup menu.
ENDCHILDPOPUP Terminate the definition of the child popup menus. You can use the SEPARATOR

token within a child popup.

Example:

SetRightMouse(cx1,cy1,cx2,cy2,Test1,X,Y)
. 
. 



. 
Test1:

SetPopupMenu("Item #&1",Item_1,
     SEPARATOR,
     "Item #&2",Item_2,
     SEPARATOR,
     "Item #&3",Item_3,
     "Item #&4",Item_4,
     ENDPOPUP)

Goto Wait_for_Input

Related Commands:
SetMenu, SetDblMouse, SetCtrlMouse, SetRightMouse, SetShftRightMouse



SetPNGOptions

PiXCL 5 command. When you load a PNG image from disk, the options data in the file, if any, are also loaded and stored with 
the image in the PiXCL image list. These fields can be set or updated as well. If the disk image type is not PNG, the command 
has no effect, and all values return empty strings. You can get this command to work if you first set change the name of the 
loaded image in the list, using RenameListImage.

Syntax: SetPNGOptions(Filename$, Title$, Author$, Copyright$, Description$, 
Software$, Warning$, Disclaimer$, Source$, Comment$)

Parameters:
Filename$ The name of a loaded file in the image list.
Note all the following MUST be string variables, or you will get a syntax error.
Title$ The contents of the field. This may be an empty string.
Author$ The contents of the field. This may be an empty string.
Copyright$ The contents of the field. This may be an empty string.
Description$ The contents of the field. This may be an empty string.
Software$ The contents of the field. This may be an empty string.
Warning$ The contents of the field. This may be an empty string.
Disclaimer$ The contents of the field. This may be an empty string.
Source$ The contents of the field. This may be an empty string.
Comment$ The contents of the field. This may be an empty string.

Related Commands:
GetJPGOptions    GetTIFOptions    SetJPGOptions    GetPNGOptions    SetTIFOptions RenameListImage



SetPriority

Sets the priority of the PiXCL process or the process of an application you've launched from within PiXCL using the RunExt 
command.

Syntax: SetPriority(CommandLine$,IDLE/NORMAL/HIGH,Result)

Parameters:
CommandLine$ A string containing the command line (filename plus optional parameters) used with the RunExt

command to launch an application. If CommandLine$ is a null string (" "), sets the priority of the
PiXCL process.

IDLE Sets the priority of the application's process to level 4, the same priority level as a screen saver.

NORMAL Sets the priority of the application's process to level 9 when the application is in the foreground 
and to level 7 when the application is in the background. You should use NORMAL for most 
applications.

HIGH Sets the priority of the application's process to level 13, the same priority level as the Task 
Manager. You should use this setting only when absolutely necessary.

Result If the process's priority was changed, this integer variable is assigned a value of 1. Otherwise, it
is assigned a value of 0.

Remarks:

You cannot change the priority of a running process unless you've launched it from within PiXCL using the RunExt command.

Windows NT supports four priority classes for processes: idle, normal, high, and real-time. (Setting a process to real-time priority 
can bring down Windows NT and is therefore not included in PiXCL.) PiXCL lets you assign a priority class to an application's 
main process, provided you've launched the application from within PiXCL using the RunExt command. (If the application was 
launched in another manner--with the Run command, for example--PiXCL won't have the proper security rights to it and 
therefore won't be able to change the application's priority.)

If you're having trouble sending keystrokes to an application with SendKeys, try raising or lowering the priority of the application's
main process (or the priority of PiXCL's main process). Another useful thing to try is raising the priority of the hook thread within 
PiXCL; see the SetSendKeysPriority command.

Related Commands:

RunExt, SendKeys, SetSendKeysPriority



SetRightMouse, SetDblRightMouse, SetShftRightMouse, SetCtrlRightMouse

These commands are like the SetMouse command, except that they work with right-mouse, control right-mouse, shift right-
mouse and double right-mouse clicks.

Syntax:
SetRightMouse()
SetDblRightMouse()
SetCtrlRightMouse()
SetShftRightMouse()

or

SetRightMouse(Region1_x1,Region1_y1,Region1_x2,Region1_y2,Label,x,y,
Region2_x1,Region2_y1,Region2_x2,Region2_y2,Label,x,y,
 ...
 …
 Regionn_x1,Regionn_y1,Regionn_x2,Regionn_y2,Label,x,y)

Remarks:

See the SetMouse command for an explanation of SetRightMouse and SetShftRightMouse's arguments and behavior.

Related Commands:

SetCtrlMouse, SetMouse, SetDblMouse



SetROPcode

PiXCL creates two bitmap images of the client area, one in memory and the other in the screen.

The SetROPcode commands provides a method of changing how the foreground image (in the screen or destination bitmap) is 
redrawn from the background image (in the memory or source bitmap), by changing the raster operation, or ROP, code. The 
default method is direct copy from source to destination (token SRCCOPY).

Syntax: SetROPcode(TOKEN)

Parameters:

BLACKNESS Fills the destination rectangle using the color associated with index 0 in the physical palette.
(This color is black for the default physical palette.)

DSTINVERT Inverts the destination rectangle.

MERGECOPY Merges the colors of the source rectangle with the specified pattern by using the Boolean 
AND operator.

MERGEPAINT Merges the colors of the inverted source rectangle with the colors of the destination 
rectangle by using the Boolean OR operator.

NOTSRCCOPY Copies the inverted source rectangle to the destination.

NOTSRCERASE Combines the colors of the source and destination rectangles by using the Boolean OR 
operator and then inverts the resultant color.

PATCOPY Copies the specified pattern into the destination bitmap.

PATINVERT Combines the colors of the specified pattern with the colors of the destination rectangle by 
using the Boolean XOR operator.

PATPAINT Combines the colors of the pattern with the colors of the inverted source rectangle by using 
the Boolean OR operator. The result of this operation is combined with the colors of the 
destination rectangle by using the Boolean OR operator.

SRCAND Combines the colors of the source and destination rectangles by using the Boolean AND 
operator.

SRCCOPY Default Value. Copies the source rectangle directly to the destination rectangle. This is the 
default value when a PiXCL application starts up.

SRCERASE Combines the inverted colors of the destination rectangle with the colors of the source 
rectangle by using the Boolean AND operator.

SRCINVERT Combines the colors of the source and destination rectangles by using the Boolean XOR 
operator.

SRCPAINT Combines the colors of the source and destination rectangles by using the Boolean OR 
operator.

WHITENESS Fills the destination rectangle using the color associated with index 1 in the physical palette.
(This color is white for the default physical palette.)

Remarks:

Setting the ROP code enables you to draw in the screen bitmap only, without drawing in the background bitmap. This can be 
useful to create a client area bitmap with the SRCCOPY mode that is stored in both screen and memory, then, using another 
mode, draw in the screen only for a few operations, then draw the background image again. This is how simple animation 
operations can be achieved.



If you change the ROP code to another setting, you must reset to the default SRCCOPY or another mode or the current mode 
remains in place.    

Related Commands:
Redraw    SetDrawMode  



SetSendKeysPriority

Sets the priority of the PiXCL thread that handles keystroke messages initiated by SendKeys.

Syntax: 
SetSendKeysPriority(LOWEST / BELOW_NORMAL / NORMAL / ABOVE_NORMAL / HIGHEST)

Parameters:

LOWEST The hook thread's priority should be two less than the PiXCL process's priority.

BELOW_NORMAL The hook thread's priority should be one less than the PiXCL process's priority.

NORMAL The hook thread's priority should be the same as the PiXCL process's priority. This is the 
default.

ABOVE_NORMAL The hook thread's priority should be one more than the PiXCL process's priority.

HIGHEST The hook thread's priority should be two more than the PiXCL process's priority.

Remarks:

When you send keystrokes to other applications using SendKeys, PiXCL sets up a hook to monitor the flow of messages through
the system. This hook is controlled by a second thread of execution, separate from the thread that controls the main PiXCL 
program.

The priority of the thread is set relative to the PiXCL process's priority. The default setting is NORMAL, which is appropriate for 
sending keystrokes to most 32-bit Windows applications. In certain cases, though, you may need to raise (or lower) the priority of
the hook thread in order to process messages. This is particularly true when sending keystrokes to 16-bit Windows apps if it 
doesn't appear to accept them. Another good time is when PiXCL appears to hang during a SendKeys command. 

This setting has no effect unless you're using the SendKeys command. If you want to control the priority of an application, start 
the application form within PiXCL using RunExt. You can also change the priority of an application started with RunExt by using 
the SetPriority command.

Related Commands:

SendKeys, SetPriority, Run, RunExt



SetTextSpacing

The SetTextSpacing command sets a new intercharacter spacing. The effect is immediately available with all of the text drawing 
commands.

Syntax: SetTextSpacing(Spacing)

Parameter:
Spacing Has to be an integer variable. The desired new spacing between characters.

Remarks:
Text spacing can be different if required in the foreground and background. Use the SetDrawMode command before 
GetTextSpacing and SetTextSpacing.

Releted Commands:
DrawText  DrawNumber  SetDrawMode    GetTextSpacing    



SetTIFOptions

PiXCL 5 command. When you load a TIF image from disk, the options data in the file, if any, are also loaded and stored with the
image in the PiXCL image list. These fields can be set or updated as well. If the disk image type is not TIF, the command has no 
effect, and all values return an empty string. You can get this command to work if you first set change the name of the loaded 
image in the list, using RenameListImage.

Syntax: SetTIFOptions(Filename$,Artist$,Description$,Software$,HostComputer$,DocName$)

Parameters:
Filename$ The name of a loaded file in the image list.
Note all the following MUST be string variables, or you will get a syntax error.
Artist$ The contents of the field. This may be an empty string.
Description$ The contents of the field. This may be an empty string.
Software$ The contents of the field. This may be an empty string.
HostComputer$ The contents of the field. This may be an empty string.
DocName$ The contents of the field. This may be an empty string.

Related Commands:
GetJPGOptions    GetPNGOptions GetTIFOptions      SetJPGOptions    SetPNGOptions RenameListImage    



SetupColorMatching

PiXCL 5 command. For Windows 98 / 2000 based systems, both of which have the ICC colour matching libraries installed, 
colour matching can be set up with the dialog that this command displays.

Syntax: SetupColorMatching(Profile$, Display$, Printer$, Intent_TOKEN, Result)

Parameters:
Profile$
Display$
Printer$
Intent_TOKEN

PERCEPTUAL
SATURATION
RELATIVE_COLORIMETRIC
ABSOLUTE_COLORIMETRIC

Result 1 if the operation succeeded, otherwise 0.

Related Commands:



SetVECdrawParams

Ascii VECtor files can have coordinates expressed in integer or floating point format, and refer to a region with a different 
coordinate space than the PiXCL client area where you want to display an image. The raw VEC file coordinate space can be 
transformed into the display coordinate space by setting the gain and offset for the X and Y axes.    You are responsible for 
calculating the gains and offsets, either externally with hand coding, or have your PiXCL program calculate them for you.

Syntax: SetVECdrawParams(Xgain,Ygain,Xoffset,Yoffset,x1,y1,x2,y2)

Parameters:
Xgain,Ygain Coordinate gain * 100 
Xoffset,Yoffset Coordinate offset * 100
x1,y1,x2,y2 Client area region in which to draw.

Remarks:
The parameters set by this command are used by all subsequent DrawVEC commands, until a new SetVECdrawParams 
command is issued, or the program exits.

Related Commands:
DrawVEC commands 



SetViewportExtent    

Set the X and Y extent of the viewport in the client area.

Syntax: SetViewportExtent(Xextent,Yextent)

Parameters:
Xextent The viewport extent in the X-axis. This number can be negative.
Yextent The viewport extent in the Y-axis. This number can be negative.

Related Commands:
GetMapMode  GetWindowExtent  GetWindowOrigin GetViewportExtent  GetViewportOrigin  SetMapMode SetWindowExtent  
SetWindowOrigin SetViewportOrigin 



SetViewportOrigin 

Set the X and Y origin of the viewport in the client area.

Syntax: SetViewportOrigin(Xorigin,Yorigin)

Parameters:
Xorigin The viewport origin in the X-axis. 
Yorigin The viewport origin in the Y-axis. 

Related Commands:
GetMapMode  GetWindowExtent  GetWindowOrigin GetViewportExtent  GetViewportOrigin  SetMapMode SetWindowExtent  
SetWindowOrigin  SetViewportExtent  



SetWaitMode

This command is obsolete in PiXCL 4.0 and later, and has no effect. It is maintained merely for compatibility with earlier versions.
In Windows 3.1, it controlled how PiXCL behaves after a Run command starts another application and PiXCL encounters a 
WaitInput() command in your script. If you need to pause a PiXCL program until another PiXCL application is complete, use the 
PXLResume or PXLResumeAt command.

Syntax: SetWaitMode(NULL/FOCUS)

Parameters:

NULL Causes WaitInput to behave in the normal way. That is, WaitInput with an argument 
pauses PiXCL a specified number of milliseconds, and WaitInput without an argument 
pauses PiXCL indefinitely while it waits for user input. SetWaitMode(NULL) is the 
default.

FOCUS Causes PiXCL to pause until the focus returns when it encounters a WaitInput(1) 
command.

Related Commands:
WaitInput, PXLResume, PXLResumeAt 



SetWindow

Maximizes, minimizes, or restores the PiXCL window. This is an obsolete command provided for compatibility with earlier 
versions of PiXCL. The WinShow command is more powerful, and should be used in preference.

Syntax: SetWindow(MAXIMIZE/MINIMIZE/RESTORE)

Parameters:

MAXIMIZE Maximizes the PiXCL window.

MINIMIZE Minimizes the PiXCL window.

RESTORE Restores the PiXCL window.

Remark:

The SetWindow command is provided only for compatibility with previous releases of PiXCL. The WinShow command is a more 
powerful replacement for SetWindow; it lets you hide, unhide, minimize, maximize, or restore any application window, including 
PiXCL's.

Example:

This program uses the SetWindow command to maximize, minimize, and restore the PiXCL window in various ways, pausing for 
one second in between SetWindow commands.

SetWindow(MAXIMIZE)
WaitInput(1000)
SetWindow(RESTORE)
WaitInput(1000)
SetWindow(MINIMIZE)
WaitInput(1000)
SetWindow(RESTORE)
WaitInput()

Related Commands

WinClose, WinExist, WinGetLocation, WinLocate, WinSetActive,    WinShow



SetWindowExtent 

Set the X and Y extent of the client area.

Syntax: SetWindowExtent(Xextent,Yextent)

Parameters:
Xextent The extent in the X-axis. This number can be negative.
Yextent The extent in the Y-axis. This number can be negative.

Related Commands:
GetMapMode  GetWindowExtent  GetWindowOrigin GetViewportExtent  GetViewportOrigin  SetMapMode SetWindowOrigin  
SetViewportExtent  SetViewportOrigin 



SetWindowOrigin    

Set the X and Y origin of the window in the client area.

Syntax: SetWindowOrigin(Xorigin,Yorigin)

Parameters:
Xorigin The window origin in the X-axis. 
Yorigin The window origin in the Y-axis. 

Related Commands:
GetMapMode  GetWindowExtent  GetWindowOrigin GetViewportExtent  GetViewportOrigin  SetMapMode SetWindowExtent  
SetViewportExtent  SetViewportOrigin 



SetWorkingDirBox

The PiXCL MDI Editor and the geoPIXCL display engine both have a dialog to select the current working directory for project or 
application files. The same dialog is available using the SetWorkingDirBox command. The default title and text are shown below, 
and can be changed by setting string variables in the command. The contents of the combobox are created from entries in the 
Registry, if they exist. See the Remarks below for more information. 

 

Syntax: SetWorkingDirBox(Title$, StaticText$, RegistryHandle, Selection$, Result)

Parameters:
Title$ A user defined title string. Leave this null to display the default “Set the active image working 

directory”.
StaticText$ A user defined string if the default is not suitable. Leave this null to display the default.
RegistryHandle A handle returned by RDBOpenKey. This handle has to be closed by a call to RDBCloseKey 

when this command returns.
Selection$ The selected directory returned from the dialog.
Result 1 if the operation was successful, otherwise 0.

Remarks:



Pressing the browse 
button causes the dialog
(right) to appear. You 
can select the desired 
directory, and when OK 
is clicked, the selected 
directory string appears 
in the previous dialog 
edit control.

Pressing Cancel has no 
effect on the content of 
the previous dialog edit 
control.

The current working directory is stored in the Registry. The recommended key for application parameters is 
HKEY_CURRENT_USER\Software\Company\Product\Settings
Where Company is the name of your organisation, and Product is the name of the package. For example, if you look in the 
Registry with regedit or regedt32, you will see VYSOR Integration Inc and PiXCL MDI Editor and geoPiXCL Remote 
Sensing if you purchased the geoPIXCL product. 

Additional string values are written into the Settings key as follows.
CurDir which is where the selected working directory is stored.
PrevDir#1 – PrevDir#4 that are created and filled as you add more selections. These previous working directories are

written into the drop-down list of the combobox.

Related Commands:
RDBCloseKey    RDBOpenKey 



ShellAbout

Windows has an about box built-in that can be called by the ShellAbout command. A dialog example is shown below, with the 
Windows 95 large icon. If you run Windows NT the icon will be different. You can also select one of the icons built into PiXCL if 
you want.

 

Syntax: ShellAbout(Title$,Info$,ICON)

Parameters:
Title$ Text displayed in the title bar of the Shell About dialog box and on the first line of the dialog box 

after the text “Microsoft”. If the text contains a “#” separator, dividing it into two parts, the 
function displays the first part in the title bar, and the second part starting on the same line as, 
and to the right of the text “Microsoft”. Only one line of text after the “#” is accepted, so keep the
text brief, or set it to NULL or a space character.

Info$ Text that the function displays in the dialog box after the Microsoft version and copyright 
information.

ICON The same icons that the MessageBox command uses are available in the ShellABout command.
Some of these (e.g. QUESTION) would usually not be used.

INFORMATION Displays an icon consisting of a lowercase    i  in a circle.

EXCLAMATION Displays an exclamation-point icon.

QUESTION Displays a question-mark icon.

STOP Displays a stop sign icon.

APP Displays a generic application logo that looks like a small dialog box.

WINLOGO Displays the large Windows 95 or Windows NT logo.

ICON01 - ICON19 Displays one of the icons built into PiXCL. These are the same tokens that are used in the 
DrawIcon and DrawIconFile commands..

Related Commands:
AboutPiXCL    AboutUser    MessageBox 



SetX1Mouse, SetShftX1Mouse, SetCtrlX1Mouse, SetDblX1Mouse

These commands are like the SetMouse command, except that they work with X1- mouse, control X1-mouse, shift and double 
X1 mouse clicks. All mouse commands use the same syntax. You must have a Microsoft Intellimouse™ or Explorer™ or Optical 
Explorer™ or equivalent installed on your system for these commands to function. 
Windows 2000 supports the X buttons, and Windows 98 also if an Explorer™ or Optical Explorer™ mouse is installed.

Syntax:

SetX1Mouse()
SetShftX1Mouse()
SetCtrlX1Mouse()
SetDblX1Mouse()
or

SetX1Mouse(Region1_x1,Region1_y1,Region1_x2,Region1_y2,Label,x,y,
                  Region2_x1,Region2_y1,Region2_x2,Region2_y2,Label,x,y,
                  .
                  .
                  Regionn_x1,Regionn_y1,Regionn_x2,Regionn_y2,Label,x,y)

Remarks:

See the SetMouse command for an explanation of SetX1Mouse's arguments and behavior.

If a SetX1Mouse command is already in effect and the user double-clicks the mid mouse button, PiXCL will respond to the 
SetX1Mouse command first before responding to the SetDblX1Mouse command.

Related Commands:
SetX2Mouse 



SetX2Mouse, SetShftX2Mouse, SetCtrlX2Mouse, SetDblX2Mouse

These commands are like the SetMouse command, except that they work with X2- mouse, control X2-mouse, shift and double 
X2 mouse clicks. All mouse commands use the same syntax. You must have a Microsoft Intellimouse™ or Explorer™ or Optical 
Explorer™ or equivalent installed on your system for these commands to function. 
Windows 2000 supports the X buttons, and Windows 98 also if an Explorer™ or Optical Explorer™ mouse is installed.

Syntax:

SetX2Mouse()
SetShftX2Mouse()
SetCtrlX2Mouse()
SetDblX2Mouse()
or

SetX2Mouse(Region1_x1,Region1_y1,Region1_x2,Region1_y2,Label,x,y,
                  Region2_x1,Region2_y1,Region2_x2,Region2_y2,Label,x,y,
                  .
                  .
                  Regionn_x1,Regionn_y1,Regionn_x2,Regionn_y2,Label,x,y)

Remarks:

See the SetMouse command for an explanation of SetX2Mouse's arguments and behavior.

If a SetX2Mouse command is already in effect and the user double-clicks the mid mouse button, PiXCL will respond to the 
SetX2Mouse command first before responding to the SetDblX2Mouse command.

Related Commands:
SetX1Mouse 



ShowConsole

PiXCL 5 Command. A DOS-like console window can be created to,    for example, log results of processes. When the console is 
no longer required, it is deleted by the FreeConsole command.

Syntax: ShowConsole(x1,y1,x2,y2,Result)

Parameters: 
x1,y1,x2,y2 The screen position for the console window.
Result 1 if the console was created, otherwise 0.

Related Commands:
ReadConsole FreeConsole    



SHPAddAttribute

geoPiXCL command. When a new SHP/SHX file set is created, the DBF file has no attributes (also referred to as fields) 
associated with it. These attributes MUST ABSOLUTELY be added before you proceed any further. At present you can’t add 
more attributes to a DBF file that has had any records added to it.

You can set as many attributes as you want for a particular DBF file, and ALL the records subsequently written will have the 
same attributes per record.    To create a valid Shape file set, you should add attribute values as you add the shape coordinates 
with the SHPCreateObject or SHPCreateSimpleObject commands.

Syntax: SHPAddAttribute(ShapeBaseName$, AttributeName$, Type_TOKEN, Width, DecimalPlaces, Result)

Parameters:
ShapeBaseName$ The full path. The extension SHP or SHX or DBF can be used if desired.
AttributeName$ The name of the new field, maximum 10 characters. Longer names will be truncated.
Type_TOKEN One of STRING, INTEGER  or  DOUBLE.
Width The width in characters of a STRING field, or the maximum number of digits for INTEGER and 

DOUBLE types, to a maximum of 8.
DecimalPlaces The number of decimal places for DOUBLE types. Set to 0 for integer and string types.
Result The number of the field created starting at 0 if the operation was successful, otherwise -1.

Related Commands:
SHPWriteAttribute      SHPReadAttribute



SHPCreateSimpleObject

geoPiXCL command. A new Shape object is created with the parameters supplied, and written to the end of the specified 
SHP/SHX file set.

Syntax: SHPCreateSimpleObject(ShapeBaseName$, ShapeType_TOKEN,
Vertices, Xarray&[StartIndex], Yarray&[StartIndex], Zarray&[StartIndex], 
Result)

Parameters:
ShapeBaseName$ The full path. No extension is needed, as the SHP and SHX extensions are added automatically.
ShapeType_TOKEN The shapefile type, being one of the following.

POINT, ARC, POLYGON, MULTIPOINT, 
POINTZ, ARCZ, POLYGONZ, MULTIPOINTZ, 
POINTM, ARCM, POLYGONM, MULTIPOINTM,
MULTIPATCH

Vertices The number of vertices in the X, Y, Z arrays.
X|Y|Zarray& Previously created arrays of at least Vertices elements. 
StartIndex The element start index from which the vertex list is read. This will be generally be 0 but does 

not have to be.
Result 1 if the operation was sucessful, otherwise 0.

Related Commands:
SHPFileCreate    SHPFileGetInfo    SHPWriteAttribute



SHPFileCreate

geoPiXCL command. Create an empty ESRI ArcView ™    Shape SHP/SHX/DBF fileset.

Syntax: SHPFileCreate(ShapeBaseName$, ShapeType_TOKEN, Result)

Parameters:
ShapeBaseName$ The full path. No extension is needed, as the SHP, SHX and DBF extensions are added 

automatically.
ShapeType_TOKEN The shapefile type, being one of the following.

POINT, ARC, POLYGON, MULTIPOINT, 
POINTZ, ARCZ, POLYGONZ, MULTIPOINTZ, 
POINTM, ARCM, POLYGONM, MULTIPOINTM, 
MULTIPATCH

Result The number of files created. This should always be 3 if the operation was successful.

Related Commands:
SHPFileGetInfo    SHPWriteAttribute



SHPFileGetInfo

geoPiXCL command. Reads the specified SHP/SHX file, and returns an information summary. The files are opened, read and 
closed by this command.

Syntax: SHPFileGetInfo(ShapeBaseName$, Entities, ShapeType, FloatArray& [ Size ], Result)

Parameters:
ShapeBaseName$ The full path. No extension is needed, as the SHP, SHX and DBF extensions are added 

automatically.
Entities The number of objects in the shape file set. These are referenced from 0.
ShapeType The type of objects in the shape file set. Possible values are

1 = POINT, 
3 = ARC, 
5 = POLYGON, 
8 = MULTIPOINT, 
11 = POINTZ, 
13 = ARCZ, 
15 = POLYGONZ, 
18 = MULTIPOINTZ, 
21 = POINTM, 
23 = ARCM, 
25 = POLYGONM, 
28 = MULTIPOINTM
31 = MULTIPATCH

FloatArray&[ Size ] An array of at least 8 elements that holds
in [0-3] mimimum bounds X,Y,Z, M (0.0 for other than Measure types), and 
in [4-7] maximum bounds X,Y,Z, M (0.0 for other than Measure types).

Result 1 if the operation was successful, otherwise 0 e.g. if the file cannot be found or is not of the 
specified ShapeType.

Related Commands:
SHPFileCreate    SHPFileGetType



SHPFileGetType

geoPiXCL command. Reads the specified SHP/SHX file, and returns the number and type of the entities. The files are opened, 
read and closed by this command.

Syntax: SHPFileGetInfo(ShapeBaseName$, Entities, ShapeType)

Parameters:
ShapeBaseName$ The full path. No extension is needed, as the SHP, SHX and DBF extensions are added 

automatically.
Entities The number of objects in the shape file set. These are referenced from 0.
ShapeType The type of objects in the shape file set. Possible values are

1 = POINT, 
3 = ARC, 
5 = POLYGON, 
8 = MULTIPOINT, 
11 = POINTZ, 
13 = ARCZ, 
15 = POLYGONZ, 
18 = MULTIPOINTZ, 
21 = POINTM, 
23 = ARCM, 
25 = POLYGONM, 
28 = MULTIPOINTM
31 = MULTIPATCH

Remarks:
If the file cannot be found or opened, Entities and ShapeType return 0.

Related Commands:
SHPFileCreate      SHPFileGetInfo SHPWriteAttribute



SHPGetAttributeCount

geoPiXCL command. Reads the specified SHP/SHX/DBF file, and returns the number of attributes that are present.

Syntax: SHPGetAttributeCount(ShapeBaseName$,Count)

Parameters:
ShapeBaseName$ The full path. No extension is needed, as the SHP, SHX and DBF extensions are automatically 

added as required.
Count The number of attributed located in the file.

Related Commands:
SHPReadAttribute      SHPWriteAttribute



SHPGetFieldInfo

geoPiXCL command. Reads the specified DBF file, and returns the details of a field.

Syntax: SHPGetFieldInfo(ShapeBaseName$, FieldNumber, FieldName$,Type, Width, DecimalPlaces)

Parameters:
ShapeBaseName$ The full path. No extension is needed, as the SHP, SHX and DBF extensions are automatically 

added as required.
FieldNumber The 0-indexed field to read.
FieldName$ The name of the field, read from the file.
Width The width of the field in bytes.
DecimalPlaces The number of decimal places for DOUBLE data. Otherwise 0.

Related Commands:
SHPReadAttribute      SHPWriteAttribute



SHPReadAttribute

geoPiXCL command. Reads the specified attribute value from the DBF file in the Shape file set.

Syntax:  SHPReadAttribute(ShapeBaseName$, Record, Field, Value|$|&, Result)

Parameters:
ShapeBaseName$ The full path. No extension is needed, as the SHP, SHX and DBF extensions are automatically 

added as required.
Record, Field The record and field numbers to read.
Value|$|& The appropriate type for the requested field. Note that setting a string variable and asking for an 

INTEGER or DOUBLE type field will return the string representation of the number.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
SHPAddAttribute      SHPWriteAttribute



SHPReadObject

geoPiXCL command. Reads the specified SHP/SHX file, and returns the information of the selected entity i.e. a particular 
shape within a shape file. The files are opened, read and closed by this command.

The arrays must be at least as large as the number of elements in the entity. Use the SHPFileGetInfo command to find the 
necessary size. Note that each entity will be of the same type, but does not have to have the same number of vertices.

Syntax: SHPReadObject(ShapeBaseName$, Entity, ShapeID, Parts, StartPart, 
X& [ StartIndex ] , Y&[ StartIndex], Z&[ StartIndex], M&[ StartIndex] , 
Bounds&[ StartIndex], Return)

Parameters:
ShapeBaseName$ The full path. No extension is needed, as the SHP, SHX and DBF extensions are automatically 

added as required.
Entity The entity to read.
ShapeID The type of entity. One of the following

POINT, ARC, POLYGON, MULTIPOINT, 
POINTZ, ARCZ, POLYGONZ, MULTIPOINTZ, 
POINTM, ARCM, POLYGONM, MULTIPOINTM, 
MULTIPATCH

Parts The number of parts in the entity.
StartPart The start ID
X& [ StartIndex ] The X coordinate array, and start index for loading data.
Y& [ StartIndex ] The Y coordinate array, and start index for loading data.
Z& [ StartIndex ] The Z coordinate array, and start index for loading data.
M& [ StartIndex ] The M coordinate array, and start index for loading data.
Bounds& [ StartIndex ] The XYZM bounds array, and start index for loading data.
Result 1 if the read was successful, otherwise 0.

Related Commands:
SHPFileCreate    SHPCreateSimpleObject    SHPFileGetInfo SHPReadAttribute



SHPReadObjectVertices

geoPiXCL command. Reads the specified SHP/SHX file, and returns the information of the selected entity i.e. a particular 
shape within a shape file. The files are opened, read and closed by this command. Note that each entity will be of the same type,
but does not have to have the same number of vertices.

Syntax: SHPReadObjectVertices(ShapeBaseName$, Entity, ShapeID, Parts, StartPart, Vertices)

Parameters:
ShapeBaseName$ The full path. No extension is needed, as the SHP, SHX and DBF extensions are automatically 

added as required.
Entity The entity to read, numbered from 0.
ShapeID The type of entity. One of the following

POINT, ARC, POLYGON, MULTIPOINT, 
POINTZ, ARCZ, POLYGONZ, MULTIPOINTZ, 
POINTM, ARCM, POLYGONM, MULTIPOINTM, 
MULTIPATCH

Parts The number of parts in the entity.
StartPart The start ID
Vertices The number of vertices in this object. This count can be used to set the size for the arrays 

required by a subsequent call to SHPReadObject. 

Related Commands:
SHPFileCreate    SHPCreateSimpleObject    SHPFileGetInfo    



SHPWriteAttribute

geoPiXCL command. Writes the specified attribute value to the DBF file in the Shape file set.

Syntax:  SHPWriteAttribute(ShapeBaseName$, Record, Field, Value|$|&, Result )

Parameters:
ShapeBaseName$ The full path. No extension is needed, as the SHP, SHX and DBF extensions are automatically 

added as required.
Record, Field The record and field numbers to read.
Value|$|& The appropriate type for the requested field. 
Result 1 if the operation was successful, otherwise 0.

Related Commands:
SHPAddAttribute      SHPReadAttribute    



Shutdown

Windows NT / 2000 command only!    Shuts down Windows as though you had clicked Start: Shutdown. It also displays a 
message box indicating the impending shutdown, and offers several options for controlling the shutdown process.

Syntax: Shutdown(ComputerName$,ShutdownMsg$,Timeout,RESTART/NORESTART)

Parameters:
ComputerName$ The network name of the computer you want to shut down.    The name must be in the UNC

form--for example, "\\VYSOR_P200". If you use a null string (" "), PiXCL shuts down the 
local computer.

ShutdownMsg$ The message to be displayed within the shutdown message box. 

Timeout The number of seconds before shutdown takes place. Also, the number of seconds that the
message box is displayed indicating the pending shutdown. If Timeout is set to zero, no 
message box is displayed.

RESTART Restarts the computer immediately after shutdown. 

NORESTART Displays a restart message box, allowing you to manually control the restart process.

A dialog something like show below will appear.

Remark:
You cannot shut down a computer unless you have the proper rights (e.g. Administrator) to do so.
You can cancel the shutdown process by issuing an AbortShutdown command (see the example).
If this command is used in Windows 95 or 98, a message box appears to inform you that the command is not supported. The 
program will then continue.

Example:

This example shuts down the PC named VYSOR_P200, displaying a message box for 20 seconds before completing the 
shutdown process. If the user presses ESC while the message box is displayed, the shutdown is aborted using the 
AbortShutdown command.

{Shut down PC named VYSOR_P200,}
    Shutdown("\\VYSOR_P200",
        "Click on the main window and press Esc to cancel shutdown",
        20,NORESTART)



{If the user mashes ESC, bail out of shutdown}
    Key = 27 {Virtual key for Esc}
    SetKeyboard(Key,Abort)

Wait_for_input:
    WaitInput()

Abort:
    AbortShutdown
    Goto Wait_for_input

Related Commands:

AbortShutdown, Logoff, ExitWindows



Sin

Floating Point math library function. Calculate the Sine of an angle in radians.

Syntax: Sin(Angle&, Value&)

Parameters:
Angle& The angle in radians
Value& The result of the function.

Related Commands:
Cos Tan  



Sinh

Floating Point math library function. Calculate the hyperbolic sine of an angle in radians.

Syntax: Sinh(Angle&, Value&)

Parameters:
Angle& The angle in radians
Value& The result of the function.

Related Commands:
Cosh Tanh 



Space

Initializes a string variable to a specified number of spaces.

Syntax: Space(String$,Length)

Parameters:
String$ The string variable you want to initialize.

Length The number of spaces you want to place in String$.

Remarks:

The Space command overwrites the existing contents of String$.

If you want to add spaces to the end of a string, use the Pad command. If you want to add spaces to the start of a string, use the 
+ operator to concatenate two strings together, as in Variable$ = "          " + "Ottawa".

Example:

The following example initializes the Title$ variable to 40 spaces. It then appends the text "A Not So Centered Title" to the end of 
Title$ and draws the result on the screen. 

Space(Title$,40)
Title$=Title$+"A Not So Centered Title"
DrawText(1,1,Title$)
WaitInput()

Related Commands:

Pad, Trim, Set



Sqrt

Floating Point math library function. Calculate the square root function,    sqrt(x).

Syntax: Sqrt(Number&, Root&)

Parameters:
Number& The positive number.
Root& The square root. If Number& is negative, Root& returns 0.0.

Related Commands:
Exp  



StatusWindow

Enables or disables a standard status bar display window on your application window, either at the default position at the bottom 
of the client area, or optionally at the top of the client area, just below the menu bar.    Status bars can also be split into up to four 
parts of varying lengths using the DrawStatusWinText command. 

 

Syntax:    StatusWindow(TOKEN_1, TOKEN_2, Parts, 
End#1,End#2,End#3,End#4)

Parameters:
TOKEN_1 ENABLE makes the status bar visible, and DISABLE removes it. If DISABLE is specified, 

the other arguments are ignored.

TOKEN_2 BOTTOM: Draw the status bar at the bottom of the client area. This is the most common 
position for Windows 95 and NT applications.

TOP: Draw the status bar at the top of the client area. Rarely used, as toolbars are 
generally placed at the top of the client area.

Parts The number of sunken parts or sub-sections to be drawn, to a maximum of 4. If this number
is zero, no sunken parts are drawn.

End#1 - End#4 The end pixel client co-ordinate of each part. A small gap is written between each part. If 
End#n is -1, the nth part is written to the right hand side of the client area. If Parts is zero, 
these values are ignored.

Remarks:
Status bars appear in gray, or to whatever color the system default has been set. Status bars will be redrawn automatically to the
correct position if you resize the application window. Any text in the status bar will remain unchanged.

Related Command:
DrawStatusWinText, DrawStatusText, ToolBar , ToolWindow 



StillImageAdmin

PiXCL 5 command. Windows 98 introduced the Still Image device concept and the Still Image Monitor (Stimon) that keeps track
of devices that support Still Image aware applications. The general idea is that a device e.g. a scanner or digicam can initiate an 
image acquisition event, like pressing a button on the device, and the appropriate Still Image Registered application will be 
started.    In Windows ME, this was extended to become Windows Image Acquisition, or WIA.

Syntax: StillImageAdmin(INIT|INFO|REG|UNREG,AppName$,EventName$,Result)

Parameters:
INIT Initialializes the Still Image system, and makes the application Still Image aware. This is 

automatically undone when the PiXCL application exits.
INFO Used to check if the application was started by a Still Image event.
REG Register the Application and the EventName.
UNREG Unregister the Application and the EventName.
AppName$ The name of the application to be (un)registered, or the application that launched it. See 

Remarks below.
EventName$ The name of the event to be (un)registered, or the event that launched the application. See 

Remarks below.
Result 1 if the operation was successful, otherwise 0.

Remarks:
When an application is registered with Still Image, the details get written to the Registry, and removed on an unregister 
operation.    The Registry key in HKEY_LOCAL_MACHINE is
Software\Microsoft\Windows\CurrentVersion\StillImage\Registered Applications
AppName$ becomes the key name e.g. MyImagingApp, and EventName$ becomes (say) 
C:\PiXCLTools\Samples\ MyImagingApp.EXE . The registration process adds 
/StiDevice:%1 /StiEvent:%2 to    EventName$. 

When an application has been started by a Still Image event, a call to StillImageAdmin with the INFO token returns EventName$ 
with a GUID, a number in the form    “{6bded1fc5-810f-11d0-bec7-08102be2092f}”, otherwise AppName$ and EventName$ are 
empty strings.

Another way to check if the application was started by a Still Image event is to check the command line with the GetCmdLine 
function for a “/StiDevice:<name> /StiEvent:<name>” string.

Related Commands:
GetCmdLine    



Str

Converts an integer to a string.

Syntax: Str(Number,String$)

Parameters:
Number The integer you want to convert; it must be in the range -2147483647 to 

2147483648.

String$ The string variable that will contain the result.

Example:

The following program creates a purple brush and draws a rectangle using it. It then converts the Red, Green, and Blue integers 
to strings. From these results, the program builds the string "The RGB value is 128,0,63" and places it on the screen below the 
rectangle.

Red=128
Green=0
Blue=63
UseBrush(SOLID,Red,Green,Blue)
DrawRectangle(10,10,30,20)
Str(Red,Str1$)
Str(Green,Str2$)
Str(Blue,Str3$)
Out$ = "The RGB value is "+Str1$
Out$ = Out$+","
Out$ = Out$+Str2$
Out$ = Out$+","
Out$ = Out$+Str3$
DrawText(10,25,Out$)
WaitInput()

Related Command:

Val



Str64

PiXCL 5.1 command. Converts a 64-bit integer to a string.

Syntax: Str64(Number64#,String$)

Parameters:
Number64# The integer you want to convert.
String$ The string variable that will contain the result.

Related Command:

Val64



StrCmp

Performs a case-sensitive comparison of two strings and returns an integer value indicating their relationship.

Syntax: StrCmp(String1$,String2$,Result)

Parameters:
String1$,String2$ The strings you want to compare.

Result An integer variable that will contain one of the following values based on the 
result of the comparison:

0 String1$ < String2$
1 String1$ = String2$ 
2 String1$ > String2$

Remark:

The comparison is made based on the current language (set in Control Panel).

Example:

The following program asks you to enter two strings. It then compares them and displays a message box indicating their 
relationship. For example, if you enter "Zaph" for the first string and "Dingbats" for the second, the message box will display 
"Zaph is greater than Dingbats."

TextBox("Enter one string","",String1$,Button)
TextBox("Enter another string","",String2$,Button)
StrCmp(String1$,String2$,Rel)
If Rel = 0 Then Rel$ = " is less than " | Goto Build_Message
If Rel = 1 Then Rel$ = " is equal to " | Goto Build_Message
Rel$ = " is greater than "
Build_Message:
Out$ = String1$ + Rel$
Out$ = Out$ + String2$
MessageBox(OK,1,INFORMATION,Out$,"Results of StrCmp",Temp)

Related Command:

StrCmpI



StrCmpI

Performs a case-insensitive comparison of two strings and returns an integer value indicating their relationship.

Syntax: StrCmpI(String1$,String2$,Result)

Parameters:
String1$,String2$ The strings you want to compare.

Result An integer variable that will contain one of the following values based on the
result of the comparison:

0 String1$ < String2$
1 String1$ = String2$ 
2 String1$ > String2$

Remark:

The comparison is made based on the current language (set in Control Panel).

Example:

The following program is a variation of the one shown for StrCmp. It compares two strings and displays a message box 
indicating their relationship.

TextBox("Enter one string","",String1$,Button)
TextBox("Enter another string","",String2$,Button)
StrCmpI(String1$,String2$,Rel)
If Rel = 0 Then Rel$ = " is less than " | Goto Build_Message
If Rel = 1 Then Rel$ = " is equal to " | Goto Build_Message
Rel$ = " is greater than "
Build_Message:
Out$ = String1$ + Rel$
Out$ = Out$ + String2$
MessageBox(OK,1,INFORMATION,Out$,"Results of StrCmpI",Temp)

Related Command:

StrCmp



StrRepl

Replaces one string with another in a target string. This can be handy when you need to replace, for example, a filename 
extension with a different extension.

Syntax: StrRepl(TargetString$,OldString$,NewString$,Result)

Parameters:
TargetString$ The string that contains the substring you want to replace. This can be a NULL 

string,in which case the result is NewString$.

OldString$ The string variable that contains the substring to be replaced. 

NewString$ The string variable that contains the substring that is to replace the old string. This can
be a NULL string if required.

Result If the operation was successful, Result returns a value of 1, otherwise it returns zero.

Remarks:
Result will return zero if the OldString$ does not exist in the TargetString$.

Related Command:

All the string commands.



StrReplAll

Replaces all instances of one string with another in a target string. This can be achieved with a For-Next loop, but is quicker for 
large strings with many instances of the string to be replaced.

Syntax: StrReplAll(TargetString$,OldString$,NewString$,Result)

Parameters:
TargetString$ The string that contains the substring you want to replace. This can be a NULL 

string,in which case the result is NewString$.

OldString$ The string variable that contains the substring to be replaced. 

NewString$ The string variable that contains the substring that is to replace the old string. This can
be a NULL string if required. The effect is removing the OldString$.

Result If the operation was successful, Result returns a value of 1, otherwise it returns zero.

Remarks:
Result will return zero if the OldString$ does not exist in the TargetString$.

Related Command:

All the string commands.



StrRev

Reverses the character order of a string. 

Syntax: StrRev(TargetString$)

Parameters:
TargetString$ The string that you want to reverse.

Related Command:

All the string commands.



Substr

Extracts one string (a substring) from another.

Syntax: Substr(String$,Places,Location,Result$)

Parameters:
String$ The string from which you want to extract a substring.

Places The number of characters you want to extract. (If the number you specify is 
greater than the number of characters remaining in String$, PiXCL extracts up to
the end of String$; see the example.)

Location A number indicating where in String$ to start extracting. (The first position in 
String$ is 1.)

Result$ A string variable that will contain the result.

Remark:

Starting at Location, this function extracts from String$ the number of characters indicated by Places and stores the resulting 
substring in Result$.

Example:

This program uses the Instr function to determine the location of the first blank space in the string "Hello World!" It then extracts 
the remainder of the string following the space and places the result on the screen.

Text$ = "Hello World!"
Instr(Text$," ",Location)
Location = Location + 1
Substr(Text$,99,Location,Result$)
DrawText(10,10,Result$)
WaitInput()

Related Commands:

Instr, Left, Right, Len



Switch

PiXCL 5 command. An extension of the If statement, the Switch command provides a means to check    any number of possible 
integer values, and handle them appropriately. 

Syntax: Switch (Integer_Variable)
Case (Integer_value)
…commands
Break
Default
… commands
EndSwitch

Remarks:
Each case has to be handled separately. Sequential Case statements are not supported (yet). The Break Keyword is required if 
the case value functions are complete, and program execution jumps to the commands following the EndSwitch keyword.      
Switch structures can be embedded within each other if desired.

Placing a Goto statement inside a Switch structure is not supported, and will eventually lead to a syntax error in ocde that 
previously worked.

Related Commands:
If-Then      If-Else-Endif    



SysCmdEndAt

There are times when you will want to save some of the work or data that has been done, and this is normally done with a menu 
option e.g. File->Exit. The exit label processing will save the current work or data.

The Close Window button on a main window has the default operation of closing the PIXCL application immediately, resulting in 
possible lost data. The SysCmdEndAt command provides a jump to label.

Syntax: SysCmdEndAt(Label)

Parameter:
Label The jump-to label name. If Label does not exist in the script, a syntax error is generated.

Related Commands:
PXLResumeAt 



Tan

Floating Point math library function. Calculate the tangent of an angle in radians.

Syntax: Tan(Angle&, Value&)

Parameters:
Angle& The angle in radians
Value& The result of the function.

Related Commands:
Sin    Cos 



Tanh

Floating Point math library function. Calculate the hyperbolic tangent of an angle in radians.

Syntax: Tanh(Angle&, Value&)

Parameters:
Angle& The angle in radians
Value& The result of the function.

Related Commands:
Sinh    Cosh 



TaskBarIcon

The Windows 95 and NT 4.0 TaskBar includes a notification area where an application can put an icon to indicate the status of 
an operation or to notify the user about an event. For example, an application might put a printer icon in the TaskBar to show that
a print job is under way. The notification area is at the right end of the TaskBar (if the TaskBar has a horizontal orientation) or at 
the bottom (if the TaskBar has a vertical orientation). 

An icon in the TaskBar can have a tooltip associated with it, and this appears if the mouse is moved over the icon in the 
notification area.

Syntax: TaskBarIcon(DELETE|ADD|MODIFY,IconNumber,ICONid,
ToolTipText$,Result)

Parameters
DELETE Remove the specified icon.
ADD Add an icon with the specified tool tip.
MODIFY Modify an existing Task Bar icon, function or tool tip.

IconNumber An application defined number. Can be positive or negative. Best used as a numeric 
variable.

ICONid One of ICON01 - ICON16, QUESTION, ASTERISK, EXCLAMATION, STOP. i.e. same as 
the DrawIcon command.

ToolTipText$ An icon in the TaskBar can have a tooltip control associated with it. The text string is limited 
to a maximum of 64 characters. If the string is NULL "", no tool tip will be displayed.

Result 1 if the operation succeeds, otherwise 0.

Remarks
If you close the PiXCL application that wrote the icon into the TaskBar, Windows will remove it within a few seconds. Good 
programming practice however suggests that you should clean up before you end a program.

If an IconNumber does not exist, Result returns 0.

If you left click on the mouse, interpreting will resume from the current position    i.e. the WaitInput().

If you right click, the pixel application is sent a right click message, that is, the equivalent of right clicking in a defined region in 
the PiXCL application client area. If a SetRightMouse command is valid, the application will process according to the code.

If you double left click, the pixel application is sent a double left click message, that is, the equivalent of double left click clicking 
in a defined region in the PiXCL application client area. If a SetDblMouse command is valid, the application will process 
according to the code.

Example
This simple example shows how an icon can be written to the notification area, and the window minimized. The PiXCL 
application will continue to process in the background. In this example, it sits in a WaitInput() loop.    If you move the mouse over 
the icon, the specified tool tip will be displayed. 

If you left click on the mouse, interpreting will resume from the current position (i.e. the WaitInput() ), and the window will be 



restored.

Initialize:
WinGetActive(Win$)
UseCoordinates(PIXEL)
WinLocate(Win$,100,100,600,450,Res)

Title$ = "Task Bar Icon Test"
WinTitle(Win$, Title$)
InfoMenu(REMOVE)
WaitInput(100)
SetMenu("&File",IGNORE,

"TaskBarAdd 1",TaskBarAdd1,
"TaskBarDel 1",TaskBarDel1,
"TaskBarMod 1",TaskBarMod1,
SEPARATOR,
"Exit!",Leave,
ENDPOPUP)

Wait_for_Input:
WaitInput()

TaskBarAdd1:
TaskBarIcon(ADD,1,ICON01,"PiXCL Test 1",Res)
WinShow(Title$,MINIMIZE,Res)
WaitInput()

WinShow(Title$,RESTORE,Res)
Goto Wait_for_Input

TaskBarMod1:
TaskBarIcon(MODIFY,1,ICON10,"PiXCL Test 2a",Res)
WaitInput(500)
TaskBarIcon(MODIFY,1,ICON11,"PiXCL Test 2b",Res)
WaitInput(500)
TaskBarIcon(MODIFY,1,ICON12,"PiXCL Test 2c",Res)
WaitInput(500)
TaskBarIcon(MODIFY,1,ICON13,"",Res)
Goto Wait_for_Input

TaskBarDel1:
TaskBarIcon(DELETE,1,ICON01,"PiXCL Test",Res)
Goto Wait_for_Input

Leave:
End



TextBox

Puts up a dialog box with a single-line edit control. You can use it to get one line of input from the user.

Syntax: TextBox(Text$,Caption$,Input$,ButtonPushed)

Parameters:
Text$ The message to be displayed within the dialog box.
 
Caption$ The text you want to appear in the title bar of the dialog box.

Input$ A string variable that will contain the text that is entered. If you choose Cancel (or press 
ESC) to leave the dialog box, Input$ is assigned a null string (" ").

ButtonPushed An integer variable that returns a number corresponding to the button that was pushed to 
leave the dialog box. OK is assigned the number 1, and Cancel is assigned the number 2.

Remark:

By initializing Input$, you can have some default text appear in the edit control (see the example).

Example:

 
TextBox solicits a single line of input.

This example displays 
a text box requesting 
you to enter your 
name, as shown at left.
After you enter your 
name and select OK, 
the program displays 
the result in a message
box.

Text$="Please enter your name"
Caption$="Enter name..."
Name$="Perry Harding"
TextBox(Text$,Caption$,Name$,Pushed)
If Pushed = 2 Then End   {Cancel selected, so quit}
Out$ = "Your name is " + Name$
Message:
MessageBox(OK,1,NOICON,Out$,"Name",Temp)

Related Commands

ListBox, MessageBox



TextBoxExt

This command extends the text box dialog with a large text area and Help button that displays context sensitive help in a 
standard MessageBox.

Syntax: TextBoxExt(Text$,Label$,Help$,Input$,Btn)

Parameters:
Text$ The static text in the dialog
Label$ The text in the title bar
Help$ The text in the Help MessageBox.
Input$ String displayed in the edit control.
Btn The button pushed. OK = 1, CANCEL = 2, Help = 3.

Example:

ExtdText:
Text$ = "Extended text box text field"
Label$ = "Enter some data from the keyboard"
Input$ = "blah blah blah"
Help$ = "This should be context sensitive help"
TextBoxExt(Text$,Label$,Help$,Input$,Btn)
Goto Wait_for_Input

Related Commands:
TextBox, MessageBox



TileBitmapWindows

PiXCL 5 command. Up to eight bitmap windows can be created within a PiXCL client area. Where you need to have multiple 
images displayed over the whole client area, the bitmap windows can be tiled in vertical or horizontal mode. 

Syntax: TileBitmapWindows(VERT|HORZ,Result)

Parameters:
VERT Bitmap windows are maximized in the current PiXCL client area, vertically across the screen.
HORZ Bitmap windows are maximized in the current PiXCL client area, vertically across the screen.
Result The number of bitmap windows that have been tiled. If no bitmap windows are present, Result 

returns 0.
Remarks:
The tiling process takes in to account the presence or absence of the toolbar and status bar, and adjusts the position 
accordingly. Hence, if you have tiled bitmap windows, and you resize the PiXCL client area, you would need to issue the 
TileBitmapWindows command again in the processing of a WinResizeAt command.

Related Commands:
DrawBitmapWindow    WinResizeAt    



TimeToASCII

The current system or local time can be returned in a string that can be used directly in applications or other commands, such as
Drawtext.

Syntax: TimeToASCII(SYSTEM | LOCAL, mode_TOKEN,TimeString$)

Parameters:
SYSTEM | LOCAL Defines the system or current time to be returned.
mode_TOKEN All example dates below are the same.

MMDDYYYY e.g.    2/8/1997
DDMMYYYY e.g.    8/2/1997
WDDDMYYYY e.g.    Saturday, 8 February, 1997
WDMDDYYYY e.g.    Saturday, February 8, 1997
MDDYYYY e.g.    February 8, 1997

TimeString$ The returned string in the above format.

Related Commands:
GetLocalTime, GetSystemTime, SetLocalTime, SetSystemTime, GetTimeZone



Toolbar

PiXCL 4.1 and later supports a standard Windows type application toolbar to simplify menu operations, or to provide button 
controls when using a menu is the second choice, such as selection of draw and paint tools.    In PiXCL, only one toolbar at the 
top of the screen under the menubar is supported,    and it can have a maximum of 64 buttons. Tooltips are supported in the 
command, and are automatically displayed in the standard Windows fashion.

The Toolbar command has a variable number of arguments, in the same fashion as the SetMenu, SetPopupMenu, the SetMouse
commands, SetEditControl, and ComboBox.

A Toolbar can be either RAISED mode (i.e. 3D), or the newer FLAT mode that appeared with Microsoft's Internet Explorer and in 
Windows 98 / 2000.

Syntax:    Toolbar()      to remove the toolbar
Toolbar(mode_TOKEN, size_TOKEN, 
button_TOKEN, state_TOKEN,    style_TOKEN, ToolTip$, label,. . .)

Parameters: 
mode_TOKEN RAISED | FLAT  must be present.
size_TOKEN STD_SMALL | STD_LARGE from common controls DLL

VIEW_SMALL | VIEW_LARGE from common controls DLL
HIST_SMALL | HIST_LARGE from common controls DLL
PXL_SMALL | PXL_LARGE built into PiXCL.

then sets of the following ...

button_TOKEN button bitmap, see below.
state_TOKEN ENABLED | CHECKED | DISABLED |NULL
style_TOKEN STD | CHECK | STD_G | CHECK_G | SEPARATOR
ToolTip$ Up to 79 characters, truncated if longer, can be null string. 
label Jump to label. Will often be same as one of your menu labels.

Toolbar Button Bitmap Tokens

Toolbars are created using the Windows Common Controls DLL, which includes three sets of toolbar buttons for the so-called 
application frame or Standard operations, application View operations, and History operations.

PiXCL includes the above buttons built-in, and also provides an additional set of built-in buttons bitmaps designed for typical 
paint, drawing tool select and general purpose buttons. Standard, View and History TOKEN bitmaps built into PiXCL have the 
prefix PXL_ . The following TOKEN values are used as indexes to the Standard, View and History bitmaps. 



 
Standard Bitmap TOKENs in Order, as shown above.
TOKEN name Typical use
CUT, PXL_CUT Edit operations: Cut out to clipboard
COPY,    PXL_COPY Edit operations: Copy to clipboard
PASTE, PXL_ PASTE Edit operations: paste from clipboard
UNDO, PXL_UNDO Undo the last edit operation.
REDO, PXL_REDO Redo the last edit operation.
DELETE, PXL_DELETE Delete the selected object.
FILENEW, PXL_FILENEW Create a new file of a specified type.
FILEOPEN, 
PXL_FILEOPEN

Open an existing file of a specified type. This 
button would generally invokes a FileGet 
command.

FILESAVE, 
PXL_FILESAVE

Save the current file. A FileSave command 
would generally be invoked.

PROPERTIES, 
PXL_PROPERTIES

Display properties of an object, perhaps in a 
dialog box or as text and images in the client 
area.

PRINTPRE, 
PXL_PRINTPRE

Display a print preview. This could be by 
running an external program or Windows utility.

SHOHLP, PXL_SHOHLP Invoke some sort of Help function. A WinHelp or
WinHTMLHelp command can be used here.

FIND, PXL_FIND Find the next occurrence of a string or object.
REPLACE, 
PXL_REPLACE

Replace the selected object with another object 
of the same or different type.

PRINT, PXL_PRINT Print a current document. This may involve 
running an external program or Windows utility.

View Bitmap TOKENs in Order, as shown above.
TOKEN name Typical use
LARGEICONS, 
PXL_LARGEICONS

Display a file tree view with large icons.



SMALLICONS, 
PXL_SMALLICONS

Display a file tree view with small icons.

VIEW_LIST, 
PXL_VIEWLIST

View a List of objects, typically filenames, but 
can be anything.

DETAILS, 
PXL_DETAILS

Create a dialog or other display showing more 
details about an object.

SORTBYNM, 
PXL_ SORTBYNM

Sort a list by name.

SORTBYSZ, 
PXL_ SORTBYSZ

Sort a list by file size.

SORTBYDT, 
PXL_ SORTBYDT

Sort a list by date.

SORTBYTYP,
PXL_SORTBYTYP

Sort a list by data or file type.

PARENTFOLDER, 
PXL_ PARENTFOLDER

Jump back to the parent folder of a file.

NETCNCT, 
PXL_ NETCNCT

Connect to a network, if available. This will 
require running external programs or Windows 
utilities.

NETDSCNCT, 
PXL_ NETDSCNCT

Disconnect to a network. This will require 
running external programs or Windows utilities.

NEWFOLDER, 
PXL_ NEWFOLDER

Create a new folder. A DirMake command would
be used for this.

History Bitmap TOKENs in Order, as shown above.

TOKEN name Typical use
BACK, 
PXL_BACK

Jump back to the previous display window 
history list. Used in Web browsers typically. 

FORWARD, 
PXL_FORWARD

Jump forward to the next display window history 
list. Used in Web browsers typically.

FAVORITES,
PXL_FAVORITES

Display a list of recently accessed locations. 
This might be in an INI type file. See 
FileRead_INI.

ADDTOFAVORITES,
PXL_ADDTOFAVORITES

Add to a list of recently accessed locations. This
might be in an INI type file. See FileWrite_INI.

VIEWTREE, 
PXL_VIEWTREE

View a list in a tree structure display.

NULL Only used with SEPARATOR keyword.

PiXCL Bitmap TOKENs in Order,    as shown above.
TOKEN name Typical use
ANNOT Invoke dialogs to annotate an image.
SQSELECT Select a square region with mouse.
POLYSELECT Select a polygon shaped region with the mouse.
ERASE Erase pixels in an image or in the client area.
OPENIMAGE Open an image file.
HISTOGRAM Create a histogram of an image or image set.
MIRROR Perform a horizontal mirror operation on an 

image.



FLIP Flip an image vertically.
ROTATE Rotate an image an arbitrary number of 

degrees.
SHOWRGB Show the RGB values of a pixel, or some other 

operation using RGB values.
PICKRGB Use the mouse to select a pixel to report RGB 

colors.
CLASSIFY Perform a classification of an image according 

to pixel color.
NORMALIZE Process an image to normalize the RGB 

histograms.
EQUALIZE Process an image to equalize the RGB 

histograms.
NEGATIVE Invert the colors of an image, creating a color 

negative effect.
GAMMACRCT Process an image to correct for gamma.
IMAGEINFO Display image information. This might be in an 

ImageBox or MessageBox.
FINGER Use the mouse to point to or select some object.
HAND Grab an object and drag it with the mouse. 
FLOOD Perform a flood fill operation.
SPRAY Perform a color spray paint operation.
ZOOMUP Zoom an image up for more detail.
ZOOMDN Zoom an image down to get a synoptic view.
BRUSH Select a brush. You could use ChooseColor and 

UseBrush commands.
PEN Select a pen. You could use ChooseColor and 

UsePen commands.
SCATTRGRM Create and display a scattergram of two images.

This requires third part utilities.
DIGITIZE Digitize points from the client area, or from an 

external device or application.
CDROM Perfrom some operation using a CD-ROM.
SAVEALL Save all the current open files.
HELPER#1 Start a Helper Application #1.
HELPER#2 Start a Helper Application #2.
HELPER#3 Start a Helper Application #3.
HELPER#4 Start a Helper Application #4.
HELPINFO Get on-line help information.

Extra PiXCL 5 buttons. Also available in geoPiXCL.
DIALOG Display a dialog.
RECYCLE Perform a Recycle bin operation.
CAMERA Perform a digital camera operation.
SCANNER_1 Perform a scanner operation.
GPS Do something related to a Global Positioning 

System data source or set.
ERASE_2 Another Erase button.
HELPCONTEXT Do a Help Context operation.
SCANNER_2 Perform a scanner operation.
SELECTSOURCE Display the TWAIN Select Source dialog.
SCANNER_3 Perform a scanner operation.
MEASURE Measure an image.



TOGGLE Toggle some operation.

GeoPiXCL buttons only. These bitmaps are not available in PiXCL44 
or PiXCL50.

POINTS Digitize points.
LINES Digitize lines.
POLYGONS Digitize polygons.
LABELS Digitize points for text labels.
NDVI Normalized Difference Vegetation Index
AVGIMGSET Average Image Set
SIGNATURE Create a spectral signature file.
TRGAREAS Define or extract training areas.
MLHCLAS Maximum likelyhood classifier.
PPDCLAS Parallelipiped classifier.
PCAENHANCE Principal components.
MARTAYMAP Martin-Taylor inverse colour mapping.
DECORREL Decorrelation stretch.
GLOBE Global or geoid operation.
GEOTAG Operations on geoTAGs in geoTIF files.
SHARPEN Sharpen an image.
BROVEY Brovey Transform Enhancement.

Toolbar Button States

ENABLED Button is functional. Most commonly used initial state.
CHECKED Button is grayed and appears to be checked. 
PRESSED Button is grayed and appears to be pressed.
DISABLED Button is grayed and non functional.
HIDDEN Button is hidden.
NULL Only used with SEPARATOR.

Toolbar Button Styles

A button’s style determines how the button appears and how it responds to user input. The STD style creates a toolbar button 
that behaves like a standard push button that pops out when you release it.    A button that has the CHECK style is similar to a 
standard push button, except it toggles between the pressed and nonpressed states each time the user clicks it. 

STD Draws the standard button that pops in an out when pressed.
CHECK Draws the button in a checked state.
STD_G Groups buttons. Groups are separated by any non-group button
CHECK_G Draws a grouped button in checked state.
SEPARATOR Draws a blank between buttons

Grouping Buttons

You can create groups of toolbar buttons by using the STD_G or CHECK_G (_G means    group the buttons) styles, causing a 
button to stay pressed until the user chooses another button in the group. The SEPARATOR    style creates a small gap between 
buttons. A button with this style does not receive user input. 

Toolbar Customization



By holding the SHIFT key, then selecting a button, you can either delete or move that button. All buttons can be moved or 
deleted.

To Delete a button: drag it into the client area and release the mouse.

To Move a button: drag it to another location in the toolbar and release the mouse. The button will be inserted to the left of the 
button at the release location. If you have defined two sequential SEPARATOR regions in the Toolbar command, you can insert a
button between them.

Double Click on the toolbar background and the standard Windows Common Controls DLL toolbar customization dialog will be 
displayed. 

Example:
See the sample program    toolbars.pxl.

Related Commands:
ChangeToolBarBtn    ComboBox    GetToolBarBtnStatus    SetEditControl    SetMenu    SetPopupMenu, the SetMouse commands, 
ToolWindow 



ToolWindow

This variable argument command is similar in syntax and operation as the Toolbar command, and lets you create any number of 
floating toolwindows anywhere in the screen i.e. popup toolwindows while a toolbar is created under the menubar of a PiXCL 
application.

The size and initial position are under your control, and individual toolwindows can overlap initially. ToolWindows have a smaller 
title bar than normal windows, and use a smaller font. ToolWindows are movable by selecting the titlebar and dragging with the 
mouse, but they cannot be resized.

Syntax:
ToolWindow() to remove all toolwindows.
and 
ToolWindow(x1,y1,x2,y2, POPUP, Title$,.

mode_TOKEN, size_TOKEN, 
button_TOKEN, state_TOKEN,    style_TOKEN, ToolTip$, label,    . . .)

Parameters:
x1,y1,x2,y2 The rectangle that defines the toolwindow. Note that the coordinates should be limited to the 

range of the current video screen i.e. regions between (0,0) (screen_Xmax, screen_Ymax). If the
PiXCL application client area is smaller than the screen, which will usually be the case, you may 
create CHILD toolwindows that are not immediately visible.    For the CHILD toolwindows 
x1,y1,x2,y2 coordinates are client area coordinates, and for POPUP toolwindows, x1,y1,x2,y2 
are screen coordinates.

POPUP POPUP produces a toolwindow that floats anywhere on the screen. CHILD mode is not 
supported.

Title$ The title string that appears on the toolwindow titlebar. It can be a null string "".

mode_TOKEN RAISED | FLAT  must be present.
size_TOKEN STD_SMALL | STD_LARGE from common controls DLL

VIEW_SMALL | VIEW_LARGE from common controls DLL
HIST_SMALL | HIST_LARGE from common controls DLL
PXL_SMALL | PXL_LARGE built into PiXCL.

then sets of the following ...

button_TOKEN button bitmap, see below.
state_TOKEN ENABLED | CHECKED | DISABLED |NULL
style_TOKEN STD | CHECK | STD_G | CHECK_G | SEPARATOR
ToolTip$ Up to 79 characters, truncated if longer, can be null string. 
label Jump to label. Will often be same as one of your menu labels.

ToolWindow Button Bitmap Tokens
ToolWindows are created using the Windows Common Controls DLL,    which includes three sets of toolbar buttons for the so-
called application frame or Standard operations, application View operations, and History operations.

PiXCL includes the above buttons built-in, and also provides an additional set of built-in buttons bitmaps designed for typical 
paint, drawing tool select and general purpose buttons. Standard, View and History TOKEN bitmaps built into PiXCL have the 



prefix PXL_ . The following TOKEN values are used as indexes to the Standard, View and History bitmaps. 

 
Standard Bitmap TOKENs in Order, as shown above.
TOKEN name Typical use
CUT, PXL_CUT Edit operations: Cut out to clipboard
COPY,    PXL_COPY Edit operations: Copy to clipboard
PASTE, PXL_ PASTE Edit operations: paste from clipboard
UNDO, PXL_UNDO Undo the last edit operation.
REDO, PXL_REDO Redo the last edit operation.
DELETE, PXL_DELETE Delete the selected object.
FILENEW, PXL_FILENEW Create a new file of a specified type.
FILEOPEN, 
PXL_FILEOPEN

Open an existing file of a specified type. This 
button would generally invokes a FileGet 
command.

FILESAVE, 
PXL_FILESAVE

Save the current file. A FileSave command 
would generally be invoked.

PROPERTIES, 
PXL_PROPERTIES

Display properties of an object, perhaps in a 
dialog box or as text and images in the client 
area.

PRINTPRE, 
PXL_PRINTPRE

Display a print preview. This could be by 
running an external program or Windows utility.

SHOHLP, PXL_SHOHLP Invoke some sort of Help function. A WinHelp or
WinHTMLHelp command can be used here.

FIND, PXL_FIND Find the next occurrence of a string or object.
REPLACE, 
PXL_REPLACE

Replace the selected object with another object 
of the same or different type.

PRINT, PXL_PRINT Print a current document. This may involve 
running an external program or Windows utility.

View Bitmap TOKENs in Order, as shown above.
TOKEN name Typical use



LARGEICONS, 
PXL_LARGEICONS

Display a file tree view with large icons.

SMALLICONS, 
PXL_SMALLICONS

Display a file tree view with small icons.

VIEW_LIST, 
PXL_VIEWLIST

View a List of objects, typically filenames, but 
can be anything.

DETAILS, 
PXL_DETAILS

Create a dialog or other display showing more 
details about an object.

SORTBYNM, 
PXL_ SORTBYNM

Sort a list by name.

SORTBYSZ, 
PXL_ SORTBYSZ

Sort a list by file size.

SORTBYDT, 
PXL_ SORTBYDT

Sort a list by date.

SORTBYTYP,
PXL_SORTBYTYP

Sort a list by data or file type.

PARENTFOLDER, 
PXL_ PARENTFOLDER

Jump back to the parent folder of a file.

NETCNCT, 
PXL_ NETCNCT

Connect to a network, if available. This will 
require running external programs or Windows 
utilities.

NETDSCNCT, 
PXL_ NETDSCNCT

Disconnect to a network. This will require 
running external programs or Windows utilities.

NEWFOLDER, 
PXL_ NEWFOLDER

Create a new folder. A DirMake command would
be used for this.

History Bitmap TOKENs in Order, as shown above.

TOKEN name Typical use
BACK, 
PXL_BACK

Jump back to the previous display window 
history list. Used in Web browsers typically. 

FORWARD, 
PXL_FORWARD

Jump forward to the next display window history 
list. Used in Web browsers typically.

FAVORITES,
PXL_FAVORITES

Display a list of recently accessed locations. 
This might be in an INI type file. See 
FileRead_INI.

ADDTOFAVORITES,
PXL_ADDTOFAVORITES

Add to a list of recently accessed locations. This
might be in an INI type file. See FileWrite_INI.

VIEWTREE, 
PXL_VIEWTREE

View a list in a tree structure display.

NULL Only used with SEPARATOR keyword.

PiXCL Bitmap TOKENs in Order,    as shown above.
TOKEN name Typical use
ANNOT Invoke dialogs to annotate an image.
SQSELECT Select a square region with mouse.
POLYSELECT Select a polygon shaped region with the mouse.
ERASE Erase pixels in an image or in the client area.
OPENIMAGE Open an image file.
HISTOGRAM Create a histogram of an image or image set.



MIRROR Perform a horizontal mirror operation on an 
image.

FLIP Flip an image vertically.
ROTATE Rotate an image an arbitrary number of 

degrees.
SHOWRGB Show the RGB values of a pixel, or some other 

operation using RGB values.
PICKRGB Use the mouse to select a pixel to report RGB 

colors.
CLASSIFY Perform a classification of an image according 

to pixel color.
NORMALIZE Process an image to normalize the RGB 

histograms.
EQUALIZE Process an image to equalize the RGB 

histograms.
NEGATIVE Invert the colors of an image, creating a color 

negative effect.
GAMMACRCT Process an image to correct for gamma.
IMAGEINFO Display image information. This might be in an 

ImageBox or MessageBox.
FINGER Use the mouse to point to or select some object.
HAND Grab an object and drag it with the mouse. 
FLOOD Perform a flood fill operation.
SPRAY Perform a color spray paint operation.
ZOOMUP Zoom an image up for more detail.
ZOOMDN Zoom an image down to get a synoptic view.
BRUSH Select a brush. You could use ChooseColor and 

UseBrush commands.
PEN Select a pen. You could use ChooseColor and 

UsePen commands.
SCATTRGRM Create and display a scattergram of two images.

This requires third part utilities.
DIGITIZE Digitize points from the client area, or from an 

external device or application.
CDROM Perfrom some operation using a CD-ROM.
SAVEALL Save all the current open files.
HELPER#1 Start a Helper Application #1.
HELPER#2 Start a Helper Application #2.
HELPER#3 Start a Helper Application #3.
HELPER#4 Start a Helper Application #4.
HELPINFO Get on-line help information.

Extra PiXCL 5 buttons. Also available in geoPiXCL.
DIALOG Display a dialog.
RECYCLE Perform a Recycle bin operation.
CAMERA Perform a digital camera operation.
SCANNER_1 Perform a scanner operation.
GPS Do something related to a Global Positioning 

System data source or set.
ERASE_2 Another Erase button.
HELPCONTEXT Do a Help Context operation.
SCANNER_2 Perform a scanner operation.
SELECTSOURCE Display the TWAIN Select Source dialog.
SCANNER_3 Perform a scanner operation.



MEASURE Measure an image.
TOGGLE Toggle some operation.

GeoPiXCL buttons only. These bitmaps are not available in PiXCL44 
or PiXCL50.

POINTS Digitize points.
LINES Digitize lines.
POLYGONS Digitize polygons.
LABELS Digitize points for text labels.
NDVI Normalized Difference Vegetation Index
AVGIMGSET Average Image Set
SIGNATURE Create a spectral signature file.
TRGAREAS Define or extract training areas.
MLHCLAS Maximum likelyhood classifier.
PPDCLAS Parallelipiped classifier.
PCAENHANCE Principal components.
MARTAYMAP Martin-Taylor inverse colour mapping.
DECORREL Decorrelation stretch.
GLOBE Global or geoid operation.
GEOTAG Operations on geoTAGs in geoTIF files.
SHARPEN Sharpen an image.
BROVEY Brovey Transform Enhancement.

Toolbar Button States

ENABLED Button is functional. Most commonly used initial state.
CHECKED Button is grayed and appears to be checked. 
PRESSED Button is grayed and appears to be pressed.
DISABLED Button is grayed and non functional.
HIDDEN Button is hidden.
NULL Only used with SEPARATOR.

ToolWindow Button Styles

A button’s style determines how the button appears and how it responds to user input. The STD style creates a toolbar button 
that behaves like a standard push button that pops out when you release it.    A button that has the CHECK style is similar to a 
standard push button, except it toggles between the pressed and nonpressed states each time the user clicks it. 

STD Draws the standard button that pops in an out when pressed.
CHECK Draws the button in a checked state.
STD_G Groups buttons. Groups are separated by any non-group button
CHECK_G Draws a grouped button in checked state.
SEPARATOR Draws a blank between buttons

Grouping Buttons

You can create groups of toolbar buttons by using the STD_G or CHECK_G (_G means    group the buttons) styles, causing a 
button to stay pressed until the user chooses another button in the group. The SEPARATOR    style creates a small gap between 
buttons. A button with this style does not receive user input. 



Toolbar Customization

By holding the SHIFT key, then selecting a button, you can either delete or move that button. All buttons can be moved or 
deleted.

To Delete a button: drag it into the client area and release the mouse.

To Move a button: drag it to another location in the toolbar and release the mouse. The button will be inserted to the left of the 
button at the release location. If you have defined two sequential SEPARATOR regions in the Toolbar command, you can insert a
button between them.

Double Click on the toolbar background and the standard Windows Common Controls DLL toolbar customization dialog will be 
displayed. 

Remarks:
If you click in a toolwindow, it takes the focus, that is, the title bar changes state to indicate that it is the current window. IN 
addition, when you use ToolWindow, the last toolwindow created gets the focus. To set the focus back to the main window, issue 
a WinSetActive(Title$,Res) command, where Title$ is the name of your application main window.

If you have moved the window around, and issue the same or different ToolWindow(...) command, the current toolwindows will 
be destroyed, and new windows created again. That is, whenever a ToolWindow(...) command is issued, it first clears all prior 
toolwindow records. This is the same method used by the Button(), SetEditControl() and Histogram() commands.

Hence, if you have, say, created two toolwindows, and you want to close one, issue a new ToolWindow(...) command that 
defines just the one toolwindow that you want. This is also the way that you can update toolwindows according to user actions.

Example:
See sample program toolbars.pxl

Related Commands:
ChangeToolBarBtn    ComboBox GetToolBarBtnStatus    SetEditControl    SetMenu    SetPopupMenu, the SetMouse commands, 
ToolBar 



Trackbar

There are many situations where you need to enter a numeric control variable, and instead of typing the value into an edit 
control, it is more logical to use a slider control called a Trackbar. 

Trackbars can be vertical or horizontal, and come in several styles.    When a Trackbar control is used, 
a) it takes the mouse and keyboard focus; and
b) when you release the mouse, jumps to the label in your script and executes the commands
found there.

You can have up to 16 Trackbars visible at any one time, and you can selectively update the range values, set the slider position,
get the current slider value, and delete one or more of the controls, using the related commands, TrackbarSetRange, 
TrackbarSetPosition, TrackbarGetValue and TrackbarRemove, respectively.

Syntax: Trackbar(x1,y1,x2,y2,mode_TOKEN, style_TOKEN, 
Min, Max, Frequency,Title$, TrackbarNumber, Label)

Parameters:
x1,y1,x2,y2 The client area position of each trackbar.

mode_TOKEN
F_VERT | F_HORZ Flat trackbar.
C_VERT | C_HORZ Client-edge (sunken) trackbar.

style_TOKEN
TOP |    BOTTOM Position of the tick marks for horizontal trackbars.
LEFT | RIGHT Position of the tick marks for vertical trackbars.
BOTH Trackbar tick marks are on both sides.

Min, Max Positive or negative range.

Frequency Tick mark frequency. Default is 1.

Title$ Title of the control. If this is "", no title bar is created. If a title bar is defined, the trackbar 
becomes movable by click-and-dragging on the control titlebar.

TrackbarNumber Zero if the operation failed, otherwise a number in the range 1-16. NOTE: The Trackbar 
command checks the value of TrackbarNumber. If this is non-zero, it checks if a trackbar of 
that ID already exists, and if it does, deletes it before creating the new trackbar.

Label Jump to label for Trackbar actions.

Remarks:
Trackbars are also controllable from the keyboard once the control has the focus.
END Moves the slider to the maximum position.
RIGHT or DOWN arrow key Increments the value by 1 and adjusts the slider position.
LEFT or UP arrow key Decrements the value by 1 and adjusts the slider position.
PAGEDOWN Click the channel below or to the right of the slider, incrementing the slider value and 

position.
PAGEUP Click the channel above or to the left of the slider, decrementing the slider value and 

position.
HOME Moves the slider to the minmum position.



For an example, see the sample program “controls.pxl”

Related Commands:
TrackbarSetRange    TrackbarSetPosition    TrackbarGetValue    TrackbarRemove 



TrackbarGetValue

Retrieves the current trackbar value

Syntax: TrackbarGetValue(TBnumber, Value)

Parameters:
TBnumber The number in range 1-16 of the Trackbar. This is the number returned by the Trackbar 

command.

Value The current value according to the range set in the Trackbar command. 

Related Commands:
Trackbar    TrackbarSetRange    TrackbarSetPosition    TrackbarRemove 



TrackbarRemove

Closes a trackbar window, or all trackbar windows.

Syntax: TrackbarRemove(TBnumber)

Parameters:
TBnumber The number in range 1-16 of the Trackbar to remove. If Tbnumber is 0, all Trackbars are 

removed.
Remarks:
A common programming error is to not reset Tbnumber variables to 0 when deleting trackbars. This can result in unexpected 
behavior such as Trackbars being deleted or not created. For example, in the code fragment below

Make_Trackbars:
TrackbarRemove(0)
TBnumber6 = 0 {because it may have been used}
UseFont("Arial",7,15,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(12,4,"Red")  DrawText(52,4,"Green")  DrawText(108,4,"Blue") 
DrawText(300,4,"Font Size")
Trackbar(0,20,49,170,C_VERT,BOTH, 0,255, 25, "Red", TBnumber3, DrawRGBr)
Trackbar(50,20,99,170,C_VERT,BOTH, 0,255, 25, "Grn", TBnumber4, DrawRGBg)
Trackbar(100,20,149,170,C_VERT,BOTH,0, 255, 25, "Blu", TBnumber5, DrawRGBb)
Trackbar(300,20,349,170,C_VERT,BOTH, 5, 36, 4, "Size",TBnumber6, DrawTestFont)
GoSub SubDrawRGB
Goto Wait_for_Input

Make_Single_Trackbar:
Trackbar(300,20,349,170,C_VERT,BOTH, 5, 36, 4, "Size",TBnumber6, DrawTestFont)
Goto Wait_for_Input

Delete_Single_Trackbar:
TrackbarRemove(TBnumber6)
Goto Wait_for_Input

If the code at    Make_Single_Trackbar: is run, a trackbar of ID TBnumber6 is created, which has a value 1 i.e. the first 
trackbar. If then the code at Make_Trackbars: is run, you have to set Tbnumber = 0, or else the Tbnumber3 gets created and 
immediately removed. This is is because the Trackbar command checks the value of the trackbarID variable argument. If this is 
non-zero, it checks if a trackbar of that ID already exists, and if it does, deletes it.

Related Commands:
Trackbar    TrackbarSetRange    TrackbarSetPosition    TrackbarGetValue



TrackbarSetRange

Use this command to reset the range, tick mark frequency and strings of an existing Trackbar control. This is useful when you 
want to change only one of a group of controls.

Syntax: TrackbarSetRange(TrackbarNumber,Min,Max,Frequency)

Parameters:
TrackbarNumber The number in range 1-16 of the Trackbar.

Min, Max Positive or negative range

Frequency Tick mark frequency. Default is 1.

Related Commands:
Trackbar    TrackbarSetPosition    TrackbarGetValue    TrackbarRemove 



TrackbarSetPosition

Use this command to set a new position of the slider. The range is automatically checked. If the new position is less than the 
minimum or greater than the maximum range value, the new position is set to the minimum or maximum position respectively.

Syntax: TrackbarSetPosition(TrackbarNumber, Position)

Parameters:
TrackbarNumber The number in range 1-16 of the Trackbar.

Position New numeric position of the slider. 

Related Commands:
Trackbar , TrackbarSetRange , TrackbarGetValue , TrackbarRemove 



Trim, TrimExt

These two functions trim leading and/or trailing spaces from a string.

Syntax: Trim(String$)
TrimExt(String$,L|R|A)

Parameters:
String$ A string variable containing the text whose leading or trailing spaces you want to trim.
L|R|A Left, Right or All leading or trailing spaces are trimmed from String$.

Example:

This example solicits a line of input from the user and then trims any trailing spaces that might have inadvertently been entered.

Text$="Please enter your city"
TextBox(Text$,"City",City$,Temp)
Trim(City$)
DrawText(10,10,City$)
WaitInput()



TWAIN_AbortAllPendingXfers

It is advisable to ensure that a TWAIN device is able to transfer an image to the calling application. When programmatically 
controlling a device, it can happen that the TWAIN Data Source Manager (TWAIN_32.DLL) may be    in an indeterminate or 
invalid state. Using the TWAIN_AbortAllPendingXfers command resets the Manager.

Syntax: TWAIN_AbortAllPendingXfers(Result)

Parameter:
Result Usually 1. Any other value is an unexpected error condition. Often the only way to clear errors of 

this type is to reboot Windows. We only experienced this problem during debugging of 
problematic code.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_AcquireNative    TWAIN_EnableSource    



TWAIN_AcquireNative 

Acquires a single image, from the currently selected Data Source, using Native-mode transfer. It waits until the source closes (if 
it's modal) or    forces the source closed if not. Only one image can be acquired per call.

Syntax: TWAIN_AcquireNative(Filename$,MODE_token,Handle)

Parameters:
Filename$ The name of the file that will contain the image. See Remarks below.
MODE_token BW = 1-bit per pixel, B&W.

GRAY = 1,4, or 8-bit grayscale.
RGB = 24-bit RGB color.
PALETTE = 1,4, or 8-bit palette.
ANYTYPE = any of the above.

Handle The bitmap handle returned. Non-zero if the operation was successful, otherwise 0. 

Remarks:
This command acquires the image and stores it in the PiXCL image list, as though it was loaded from the disk. Filename$ is the 
name that the list needs to store the image, and to reference it with the DrawBitmap commands. This image is NOT written to the
disk: if you need to write to disk, either subsequently use the SaveBitmap command, or initially use the 
TWAIN_AcquireToFilename command. Once Filename$ is stored in the PiXCL image list, it can be manipulated with any of the 
image processing commands, or deleted with the FreeBitmap or FreeBitmapAll commands.
Hence, if you issue a DrawBitmap command, PiXCL will display the image from memory. Only if you delete the image from the 
list, then issue a DrawBitmap command, PiXCL will attempt to read the image from the disk. Your program must take into account
the possibility that the file may not be on the disk, or may be other image data.

TWAIN_AcquireNative encapsulates a number of the lower level commands. i.e.
TWAIN_LoadSourceManager
TWAIN_OpenSourceManager
TWAIN_OpenDefaultSource
TWAIN_EnableSource 
TWAIN_ModalEventLoop … the image is acquired…
TWAIN_DisableSource
TWAIN_CloseSource

        TWAIN_CloseSourceManager
        TWAIN_UnloadSourceManager

See sample program twaindev.pxl for more information.

Related Commands:
TWAIN_AcquireToClipboard    TWAIN_AcquireToFilename 



TWAIN_AcquireToClipboard 

Acquire an image from the TWAIN device using the current device settings and passes it to the clipboard.

Syntax: TWAIN_AcquireToClipboard(Result)

Parameters:
Result 1 if the operation was successful, otherwise 0.

Remarks:
The bitmap in the clipboard can be deleted with the ClipBoardEmpty command. A clipboard image can also be transferred to any
other application that supports bitmap transfers. Eg. JASC PaintShopPro ™.
TWAIN_AcquireToClipboard encapsulates a number of the lower level commands. I.e.

TWAIN_LoadSourceManager
TWAIN_OpenSourceManager
TWAIN_OpenDefaultSource
TWAIN_EnableSource 
TWAIN_ModalEventLoop … the image is acquired and passed to the Clipboard…
TWAIN_DisableSource
TWAIN_CloseSource

        TWAIN_CloseSourceManager
        TWAIN_UnloadSourceManager

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_AcquireToFilename    TWAIN_AcquireNative    ClipboardEmpty 



TWAIN_AcquireToFilename 

Acquire an image from the TWAIN device using the current device settings, and writes it to a file.

Syntax: TWAIN_AcquireToFilename(Filename$,Result)

Parameters:
Filename$ The name of the file that will contain the image.
Result 1 if the operation was successful, otherwise 0.

Remarks:
IF FileName$ is a null string (“”), then the SaveFile common dialog is displayed.    If the file exists on disk, you will be prompted 
to overwrite or not.
TWAIN_AcquireToFilename encapsulates a number of the lower level commands. I.e.

TWAIN_LoadSourceManager
TWAIN_OpenSourceManager
TWAIN_OpenDefaultSource
TWAIN_EnableSource 
TWAIN_ModalEventLoop … the image is acquired and written to the file…
TWAIN_DisableSource
TWAIN_CloseSource

        TWAIN_CloseSourceManager
        TWAIN_UnloadSourceManager

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_AcquireNativeTWAIN_AcquireToClipboard



TWAIN_CloseSource 

Closes the open Data Source, if any. If the source is enabled, disables it first. If there is not an open source, it does nothing and 
returns 1.

Syntax: TWAIN_CloseSource(Result)

Parameters:
Result 1 if the operation was successful, otherwise 0.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_OpenDefaultSource  TWAIN_SelectSource 



TWAIN_CloseSourceManager 

Closes the Data Source Manager, if it is open. If a source is open, disables and closes it as needed. If the Source Manager is not
open does nothing and returns @TRUE.

Syntax: TWAIN_CloseSourceManager(Result)

Parameters:
Result 1 if the operation was successful, otherwise 0.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_OpenSourceManager       TWAIN_LoadSourceManager TWAIN_UnloadSourceManager 



TWAIN_CurrentSourceID

PiXCL 5 command. When working with multiple data sources, it can be helpful to be able to identify the source by name. This 
command reports the identity of the currently selected source.

Syntax: TWAIN_CurrentSourceID(Manufacturer$, Family$, Name$,Version$)

Parameters:
Manufacturer$ The source manufacturer e.g. “Microtek”
Family$ The product family e.g. “Scan Wizard Pro”
Name$ The product name e.g. “Microtek Scan Wizard Pro”
Version$ The source version e.g. “v3.20”

Example:
This code opens the source manager, gets a source selection, then displays it in a messagebox. Once a source is selected, it 
remains available in the source manager until another source is selected or the application exits.

TWAIN_LoadSourceManager(Res)
TWAIN_SelectSource(Res)
TWAIN_OpenSourceManager(Res)
TWAIN_OpenDefaultSource(Res)
TWAIN_CurrentSourceID(Mfgr$,Family$,Name$,Version$) 
Chr(13,cr$)
Res$ = Mfgr$ + cr$ + Family$ + cr$ + Name$ + cr$ +Version$
DebugMsgBox(Res$)

TWAIN_CloseSource(Res)
TWAIN_CloseSourceManager(Res)
TWAIN_UnLoadSourceManager(Res)

Related Commands:
TWAIN_OpenSourceManager    TWAIN_EnumSource    TWAIN_GetDefaultID    



TWAIN_DisableSource 

Disables the open Data Source, if any. This closes the source's user interface. If there is not an enabled source, does nothing 
and returns 1.

Syntax: TWAIN_DisableSource(Result)

Parameters:
Result 1 if the operation was successful, otherwise 0.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_EnableSource  



TWAIN_EnableSource 

Instructs the current TWAIN source to get ready to acquire an image. All TWAIN devices have a Data Source (often called a 
driver), and is a file with a .DS extension stored in the Windows directory (typically c:\windows). Some Data Sources may be 
stored in subdirectorys as well. The Data Source is the interface between the device itself, which may be connected to a COM 
port, parallel port, SCSI bus or Universal Serial Bus (USB), and the Windows TWAIN_32.DLL, which is the Data Source 
Manager. You can set the current device with the TWAIN_SelectSource command, and this selection is stored by Windows. That
is, you can select a source in a PiXCL application, shut it down, then restart it, and the previous TWAIN device selection is still 
valid.    If you shut down Windows and restart, the default TWAIN device is the first device in the list displayed by the 
TWAIN_SelectSource command.

Syntax: TWAIN_EnableSource(Result)

Parameters:
Result 1 if the operation was successful and an image was acquired, otherwise 0.

Remarks:
A series of commands is necessary prior to using this one. For example, TWAIN_AcquireNative encapsulates a number of the 
lower level commands. i.e.

TWAIN_LoadSourceManager
TWAIN_OpenSourceManager
TWAIN_OpenDefaultSource
TWAIN_EnableSource 
TWAIN_ModalEventLoop … the image is acquired…
TWAIN_DisableSource
TWAIN_CloseSource

        TWAIN_CloseSourceManager
        TWAIN_UnloadSourceManager
A PiXCL application will use a sequence like the above.

Example:
TWAIN_EnableSource is generally followed by TWAIN_ModalEventLoop. See the sample application twaindev.pxl.

Related Commands:
TWAIN_ModalEventLoop    TWAIN_AcquireNative    TWAIN_DisableSource  TWAIN_SelectSource 



TWAIN_EnableUI

A TWAIN data source has a 'hide source user interface' flag, which is cleared initially, but if you set it, when a source is enabled it
will be asked to hide its user interface. Note that this is only a request - some sources will ignore it! This affects 
TWAIN_AcquireNative, TWAIN_AcquireToClipboard, and TWAIN_EnableSource.

If the user interface is hidden, you will probably want to set at least some of the basic acquisition parameters yourself, using 
TWAIN_SetCurrentUnits, TWAIN_SetBitDepth, TWAIN_SetPixelType and TWAIN_SetCurrentRes below. Some data sources 
also require that brightness and contrast be initialized as well with a TWAIN_SetCapability command before an image is 
acquired. An example is the Microtek ScanWizardPro © product that does a calibration pass before attempting image acquisition.

Syntax: TWAIN_EnableUI(Mode)

Parameter:
Mode 1 or @TRUE (the default) to enable the user interface, or 0 or @FALSE to disable it.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_SetCurrentUnits TWAIN_SetBitDepth    TWAIN_SetPixelType    TWAIN_SetCurrentRes 



TWAIN_EnumSource

PiXCL 5 command. Instead of displaying the Select Source dialog, you can enumerate the installed sources and later use the 
TWAIN_OpenSpecificSource command.

Syntax: TWAIN_EnumSource(DS_List$,Number)

Parameters: 
DS_List$ A carriage-return delimited list of the TWAIN Data Source product names installed and 

recognized by the system. This is the same list of names that appears in the Select Source 
dialog.

Number The number of Data Sources located in the TWAIN and TWAIN_32 subdirectories.

Related Commands:
TWAIN_SelectSource    TWAIN_OpenSpecificSource    



TWAIN_GetBitDepth 

Get the current bit depth, which can depend on the current PixelType. Bit depth is bits per color channel e.g. 24-bit RGB has bit 
depth 8.    If anything goes wrong, this function returns 0.

Syntax: TWAIN_GetBitDepth(Result)

Parameters:
Result Bits per color channel if the operation was successful, otherwise 0.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_SetBitDepth  



TWAIN_GetBitmapParams 

Get the parameters of the bitmap acquired by the TWAIN source device..

Syntax: TWAIN_GetBitmapParams(Handle,Lines,Pixels,Bits,Colors)

Parameters:
Handle The handle of the current bitmap, returned from TWAIN_AcquireNative.
Lines Number of lines in the bitmap.
Pixels Number of pixels per line.
Bits Number of bits per pixel.
Colors Number of colors in the colormap.

Example:
See the sample application twaindev.pxl.

Related Commands:
GetBitmapDim TWAIN_AcquireNative  



TWAIN_GetCapability

PiXCL 5 command Any supported TWAIN device capability can be acquired with this command. Note that all devices do not 
support all capabilities, and the allowable range of values don’t necessarily apply to all devices.    In addition, TWAIN data 
sources (i.e. the driver) are often badly behaved, and don’t support all capabilities correctly.

There are over 150 capabilities defined in the TWAIN specification, and we have implemented most of the commonly 
used ones in    PiXCL. If you have a TWAIN device and a desired capability token is not listed here, please contact 
VYSOR Technical Support at http://www.vysor.com, and we’ll put into the next maintenance release. This typically takes 3-
5 business days.

Syntax: TWAIN_GetCapability(Cap_TOKEN,Value|Value&|Value$)

Parameters:
Cap_TOKEN One of the following tokens:
AUTOBRIGHT Use Value. Returns 0 or 1 if auto brightness correction is supported.
BRIGHTNESS Use Value or Value&. Default value 0, settable in range –1000 to + 1000. 
COMPRESSION Use Value. Returns 0 if compression is not supported, otherwise

1 = PACKBITS          Usually a TIFF format mode.
2 = GROUP31D Follows CCITT spec
3 = GROUP31DEOL Follows CCITT spec
4 = GROUP32D Follows CCITT spec
5 = GROUP4    Follows CCITT spec 
6 = JPEG Use capability for more info.
7 = LZW Must license from Unisys and IBM to use.
8 = JBIG For Bitonal images.
9 = PNG Portable Network Graphics
10 = RLE4  4 bits / pixel
11 = RLE8  8 bits / pixel
12 = BITFIELDS

CONTRAST Use Value or Value&. Default value 0, theoretically settable in range –1000 to + 1000. 
EXPOSURETIME Use Value. Returns the exposure time in seconds. Must be < 0. 
FILTER Use Value. Returns the colour characteristics of the subtractive filter applied to the image. 

Values are 
0 = Red      1 = Green      2 = Blue      3 = None      4 = White
5 = Cyan    6 = Magenta      7 = Yellow      8 = Black  

FLASHUSED Use Value. Returns 1 if a flash was used to acquire the image, otherwise 0.
GAMMA Use Value&. Default is 2.20, settable to any float value.
HIGHLIGHT Use Value. Specifies the lightest highlight value in the image, in the range 0-255. All higher 

values are clipped at this level.  
IMAGEFILEFORMAT  Use Value.
LAMPSTATE Use Value. A return of 1 indicates that the lamp is on or should be set to on.
LIGHTPATH Use Value. Returns 0 for reflective mode, and 1 for transmissive.
LIGHTSOURCE Use Value. Describes the current characteristics of the light source in use, Values are 

0 = Red      1 = Green      2 = Blue      3 = None      4 = White      5 = UV    6 = IR  
ORIENTATION Use Value. Returns the page orientation.
PHYSICALWIDTH Use Value. The maximum width of an image that can be acquired, in the current units 

value.
PHYSICALHEIGHT Use Value. The maximum height of an image that can be acquired, in the current units 

value.
SHADOW Use Value. Specifies the darkest shadow value in the image, in the range 0-255. All lower 



values are clipped at this level.
XNATIVERESOLUTION Use Value. Maximum X resolution of the device optics.
YNATIVERESOLUTION Use Value. Maximum Y resolution of the device optics.
XRESOLUTION Use Value. Current X scan resolution.  
YRESOLUTION Use Value. Current Y scan resolution.  
MAXFRAMES Use Value.
TILES Use Value.
BITORDER Use Value. Specifies which bit per pixel is the most significant. Returns 0 for LSB firstr and 

1 for MSB first (the default).  
BITORDERCODES Use Value.
CCITTKFACTOR Use Value.  
PIXELFLAVOR Use Value. Returns 0 for pixel value 0 = black, 1 for pixel value 0 = white.  
PIXELFLAVORCODES Use Value. 
PLANARCHUNKY Use Value  
ROTATION Use Value  
SUPPORTEDSIZES  Use Value
THRESHOLD Use Value  
XSCALING Use Value&.    Default is 1.0, can be any value > 0.0.  
YSCALING Use Value&. Default is 1.0, can be any value > 0.0.  
JPEGPIXELTYPE Use Value
TIMEFILL Use Value  
BITDEPTH Use Value. Returns the bits per pixel per channel. Must be >= 1. Most commonly used 

value is 8, but 4 and 16 are often supported too.  
BITDEPTHREDUCTION Use Value
UNDEFINEDIMAGESIZE Use Value
IMAGEDATASET Use Value  
EXTIMAGEINFO Use Value  
MINIMUMHEIGHT  Use Value
MINIMUMWIDTH Use Value
FLIPROTATION Use Value.
SERIALNUMBER Use Value$. Returns the serial number of the device, or an empty string if not supported.
AUTHOR Use Value$. Returns the image author, or an empty string if not supported. Sometimes is 

the name of the developer.

Value|&|$ The value to get, as the appropriate variable type. Unsupported capabilities return values of 0, 
0.0 or an empty string. If you get an unexpected 0 from what you might expect to be an integer 
value, try a floating point value instead.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_SetCapability    



TWAIN_GetCompression

PiXCL 5 command. Many TWAIN devices, particularly scanners, support data compression as an option for the acquired image 
data. You can use this command to query the current mode. 

Syntax: TWAIN_GetCompression(CompressMode)

Parameter:
CompressMode This returned value will be one of the following.

0 = NONE A device that does not support compression always reports this.
1 = PACKBITS        Usually a TIFF format mode.
2 = GROUP31D Follows CCITT spec
3 = GROUP31DEOL Follows CCITT spec
4 = GROUP32D Follows CCITT spec
5 = GROUP4    Follows CCITT spec 
6 = JPEG Use capability for more info.
7 = LZW Must license from Unisys and IBM to use.
8 = JBIG For Bitonal images.
9 = PNG Portable Network Graphics
10 = RLE4  4 bits / pixel
11 = RLE8  8 bits / pixel
12 = BITFIELDS

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_GetCapability      TWAIN_SetCompression    



TWAIN_GetCurrentRes 

Ask the source for the current device image acquisition resolution. Resolution is in dots per current unit. See also 
TWAIN_GetCurrentUnits.

Syntax: TWAIN_GetCurrentRes(Result)

Parameters:
Result Non-zero if the operation was successful, otherwise 0.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_GetCurrentUnits  



TWAIN_GetCurrentUnits 

Ask the source for its current unit of measure. If anything goes wrong, this function just returns 0, which is the default, signifying 
inches.

Syntax: TWAIN_GetCurrentUnits(Result)

Parameters:
Result Possible values are:

0 = INCHES
1 = CENTIMETERS 
2 = PICAS
3 = POINTS
4 = TWIPS
5 = PIXELS

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_GetCurrentRes  



TWAIN_GetFrame

PiXCL 5 command. Many devices, particularly scanners, have the option within the user interface to set a framed area from 
which the image is to be acquired. The current frame settings can be queried under program control while in State 4, assuming 
the Data Source allows it. The frame coordinates are expressed in the current UNITS as set by TWAIN_SetCurrentUnits or 
retrieved with TWAIN_GetCurrentUnits.

Syntax: TWAIN_GetFrame(x1&,y1&,x2&, y2&,Result)

Parameters:
x1&,y1&,x2&, y2& The current frame coordinates.
Result 1 if the operation was successful, otherwise 0.
Remarks:
The frame coordinates are directly related to the current scanning resolution, not the native resolution of the scanner. It is your 
responsibility to take into account both factors in your application. For example, consider a scanner that has a 10 inch square 
scanning surface. At 300 pixels per inch, the X and Y axis coordinates range from 0 to 3000, while at 50 pixels per inch, the 
range is 0 to 500.    Let’s say that you set frame coordinates of (100,100) and (600,700). At 300 pixels per inch a correct image 
will be scanned, while at 50 pixels per inch, you may get an image (or a badly behaved Data Source may crash itself and/or 
PiXCL) but it will be scambled, often due to scan line wrap around.

Related Commands:
TWAIN_SetFrame    



TWAIN_GetDefaultID

PiXCL 5 command. When working with multiple data sources, it can be helpful to be able to identify the source by name. This 
command reports the identity of the currently selected source without opening the default source.

Syntax: TWAIN_GetDefaultID(Manufacturer$, Family$, Name$,Version$)

Parameters:
Manufacturer$ The source manufacturer e.g. “Microtek”
Family$ The product family e.g. “Scan Wizard Pro”
Name$ The product name e.g. “Microtek Scan Wizard Pro”
Version$ The source version e.g. “v3.20”

Example:
This code opens the source manager, gets a source selection, then displays it in a messagebox. Once a source is selected, it 
remains available in the source manager until another source is selected or the application exits.

TWAIN_LoadSourceManager(Res)
TWAIN_SelectSource(Res)
TWAIN_OpenSourceManager(Res)
TWAIN_GetDefaultID(Mfgr$,Family$,Name$,Version$) 
Chr(13,cr$)
Res$ = Mfgr$ + cr$ + Family$ + cr$ + Name$ + cr$ +Version$
DebugMsgBox(Res$)

TWAIN_CloseSourceManager(Res)
TWAIN_UnLoadSourceManager(Res)

Related Commands:
TWAIN_OpenSourceManager    TWAIN_EnumSource    TWAIN_CurrentSourceID    



TWAIN_GetPixelType 

Ask the source for the current pixel type.    If anything goes wrong (it shouldn't), this function returns 0.

Syntax: TWAIN_GetPixelType(Result)

Parameters:
Result Possible values are 

0 =    BW
1 = GRAY
2 = RGB
3 = PALETTE
4 = CMY
5 = CMYK 
6 = YUV
7 = YUVK
8 = CIEXYZ

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_SetPixelType  



TWAIN_GetState 

TWAIN device communication protocol with the host application and TWAIN_32.DLL uses what are called States. Different 
states are generated as the acquisition operation proceeds. The TWAIN_GetState command is used when you need to handle 
low level commands, rather than high level commands like the TWAIN_Acquire* commands. Low level commands like 
TWAIN_SetBitDepth only work at State 4 or higher.

Syntax: TWAIN_GetState(CurrentState)

Parameters:
CurrentState If the operation was not successful returns 0, otherwise

1    = source manager not loaded
2    = source manager loaded
3    = source manager open
4    = source open but not enabled
5    = source enabled to acquire
6    = image ready to transfer
7    = image in transit

Related Commands:
TWAIN_IsAvailable    



TWAIN_IsAvailable 

Call this function at any time to find out if TWAIN is installed on the system. It takes a little time on the first call, after that it's fast, 
just testing a flag. Most standard Windows installations already include TWAIN_32.DLL. Also, when you install a TWAIN device 
such as a scanner, it will generally check if TWAIN is installed, and if not, install it.

Syntax: TWAIN_IsAvailable(Result)

Parameters:
Result Returns 1 if the TWAIN Source Manager (TWAIN_32.DLL) is installed and can be loaded, 

otherwise 0.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_LoadSourceManager 



TWAIN_LoadSourceManager 

Finds and loads the Data Source Manager, TWAIN_32.DLL. If the Source Manager is already loaded, the command does 
nothing and returns 1.    This can fail if TWAIN_32.DLL is not installed in the Windows directory, or if the library cannot load for 
some reason (e.g. insufficient memory) or if TWAIN_32.DLL has been corrupted.

If you have multiple TWAIN devices e.g. two scanners, and your application has to be able to select between devices, it a good 
idea to load and open the Source Manager once at start up, and shut it down on exit.

Syntax: TWAIN_LoadSourceManager(Result)

Parameters:
Result 1 if the operation was successful, otherwise 0.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_OpenSourceManager    TWAIN_UnloadSourceManager TWAIN_IsAvailable 



TWAIN_ModalEventLoop

When you are programmatically controlling a TWAIN device, you have to have a way to actually acquire the image. If you are 
using TWAIN_Acquire* commands, this is encapsulated within the command. When manually controlling the state of the TWAIN 
device, you must use this command.

Syntax: TWAIN_ModalEventLoop(ImageName$,Handle)

Parameters:
Filename$ The name of the file or image list entry that will contain the image. The image format is the current 

setting.
Handle The bitmap handle returned. Non-zero if the operation was successful, otherwise 0. 

Remarks:
Almost all TWAIN data sources display a message dialog “Transferring image to <name>”. You can hit the Escape key to 
abort the scan in progress. Handle will return 0, and can be used to check for the abort operation. To set <name> use 
TWAIN_RegisterApp.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_UnloadSourceManager TWAIN_IsAvailable 
TWAIN_EnableSource TWAIN_RegisterApp    



TWAIN_OpenDefaultSource 

This opens the source selected in the Select Source dialog.    If a source is already open, the command does nothing and returns
1.    Fails if the source manager is not loaded and open.

Syntax: TWAIN_OpenDefaultSource(Result)

Parameters:
Result 1 if the operation was successful, otherwise 0.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_LoadSourceManager      TWAIN_UnloadSourceManager TWAIN_IsAvailable 



TWAIN_OpenSourceManager 

Opens the Data Source Manager, if not already open.    If the Source Manager is already open, does nothing and returns 1.    
This call will fail if the Source Manager is not loaded.

Syntax: TWAIN_OpenSourceManager(Result)

Parameters:
Result 1 if the operation was successful, otherwise 0.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_LoadSourceManager      TWAIN_UnloadSourceManager TWAIN_IsAvailable 



TWAIN_OpenSpecificSource

PiXCL 5 command. If you know the name of the Data Source you want to open, you can use this command and bypass the 
Select Source dialog. Please note that this does NOT set the Default Data Source that is displayed by the TWAIN_SelectSource 
command.

Syntax: TWAIN_OpenSpecificSource(DS_Name$,Result)

Parameters:
DS_Name$ The specific Data Source name.
Result 1 if the source was opened, otherwise 0.

Related Commands:
TWAIN_EnumSource    TWAIN_OpenDefaultSource TWAIN_SelectSource    



TWAIN_PxlVersion 

Get the version number of the PXLtwain.dll library file.

Syntax: TWAIN_PxlVersion(Result)

Parameters:
Result The version number of the PXLtwain.dll. This will be >= 500.

Related Commands:
None.



TWAIN_RegisterApp 

TWAIN_RegisterApp can be called *AS THE FIRST CALL*, to register the application. If this function is not called, the 
application is given a    'generic' registration by PXLtwain.

Registration only provides this information to the TWAIN Source Manager and any sources you may open - it is used by some 
sources to give special treatment to certain applications. 

Syntax: TWAIN_RegisterApp(Major,Minor,Lang,Country,Version$,groupTOKEN,Mfg$,Fam$,Prod$)

Parameters:
Major,Minor Version numbers. E.g. 4, 40
Lang,Country Number Codes. Consult your Windows documentation for the correct codes for your language 

and country, or just set them to 0.
Version$ String e.g. “4.40”
groupTOKEN One of the following to mask the devices selectable from TWAIN_SelectSource.

IMAGE Most commonly used, for image acquisition devices only.
CONTROL Select control devices only.
AUDIO Occasionally used in recent devices with audio capture.
ALL All of the above.

Mfg$ e.g “VYSOR”
Fam$ e.g.”PiXCL Tools”
Prod$ e.g. “Image Scanner Application”. For example, Microtek scanners with Scan Wizard ™    or 

Scan Wizard Pro ™ display a dialog box when the scan is occurring, with the message 
“Transferring image to <name>”. This <name> can be replaced with Prod$.

Example:
See the sample application twaindev.pxl.

Related Commands:
None.



TWAIN_SelectSource 

This is the routine to call when the user chooses the standard "Select Source..." menu command from your application's File 
menu. The TWAIN specification calls for this feature to be available in your user interface, preferably as described.

Syntax (PiXCL 4): TWAIN_SelectSource(Result)
Syntax (PiXCL 5): TWAIN_SelectSource(HighLight | HighLight$, Result)

Parameters:
HighLight | HighLight$ The 0-based Data Source    index that is highlighted, or the name string of the Data Source. In 

the example dialog shown below, Highlight = 4, Highlight$ = “TWAIN_32 Sample Source”.
Result 1 if the operation was successful, otherwise 0.

Remarks:
This function posts the TWAIN Source Manager's Select Source dialog box. An example is shown below.

 

 A return of 1 indicates OK, 0 indicates one of the following:
      a) The user cancelled the dialog
      b) The Source Manager found no data sources installed
      c) There was a failure before the Select Source dialog could be posted

Only sources that can return images are displayed, and the current default source will be highlighted initially, unless the index or 
source name is specified.    In the standard implementation of "Select Source...", your application    doesn't need to do anything 
except make this one call.

If you want to be meticulous, disable your "Acquire" and "Select Source…"    menu items or buttons if TWAIN_IsAvailable 
returns 0.

Note#1: If only one TWAIN device is installed on a system, it is selected automatically, so there is no need for the user to do 
Select Source.    You should not require your users to do Select Source before Acquire.
Note#2: The selection you make on Select is retained within Windows, and becomes the Default Data Source for ALL 
applications.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_IsAvailable 



TWAIN_SetBitDepth 

This command tries to set the per-channel bit depth for the current acquisition pixel type. For most applications, a bit depth of 8 
is the default. Some data sources accept 1 and 16. Hence, if your pixel type is GRAY and bit depth is 8, then the bits per pixel of 
your image will be 8. If your pixel type is RGB and bit depth is 8, then the bits per pixel of your image will be 24. If your pixel type
is RGB and bit depth is 16, then the bits per pixel of your image will be 48. If your pixel type is CMYK and bit depth is 8, then the 
bits per pixel of your image will be 32. 

Syntax: TWAIN_SetBItDepth(Depth|Result)

Parameters:
Depth Must be a variable. The desired bit depth for scanning. The same 
Result variable returns 1 if the operation was successful, otherwise 0. The bit depth must be 

appropriate to the pixel type last set with TWAIN_SetPixelType. If the bit depth is not supported 
under the current pixel type, Result returns 0, and the bitdepth is unchanged.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_GetBitDepth  TWAIN_SetPixelType    



TWAIN_SetCapability

PiXCL 5 command. Any supported TWAIN device capability can be set with this command.

There are over 150 capabilities defined in the TWAIN specification, and we have implemented most of the commonly 
used ones in    PiXCL. If you have a TWAIN device and a desired capability token is not listed here, please contact 
VYSOR Technical Support at http://www.vysor.com, and we’ll put into the next maintenance release. This typically takes 3-
5 business days.

Syntax: TWAIN_SetCapability(Cap_TOKEN,Value|Value&|Value$)

Parameters:
Cap_TOKEN One of the following tokens:
AUTOBRIGHT Use Value. Returns 0 or 1 if auto brightness correction is supported.
BRIGHTNESS Use Value or better Value&. Default value 0, settable in range –1000 to + 1000. 
COMPRESSION Use Value. Returns 0 if compression is not supported, otherwise

1 = PACKBITS          Usually a TIFF format mode.
2 = GROUP31D Follows CCITT spec
3 = GROUP31DEOL Follows CCITT spec
4 = GROUP32D Follows CCITT spec
5 = GROUP4    Follows CCITT spec 
6 = JPEG Use capability for more info.
7 = LZW Must license from Unisys and IBM to use.
8 = JBIG For Bitonal images.
9 = PNG Portable Network Graphics
10 = RLE4  4 bits / pixel
11 = RLE8  8 bits / pixel
12 = BITFIELDS

CONTRAST Use Value or better Value&. Default value 0, theoretically settable in range –1000 to + 1000.
EXPOSURETIME Use Value. Returns the exposure time in seconds. Must be < 0. 
FILTER Use Value. Returns the colour characteristics of the subtractive filter applied to the image. 

Values are 
0 = Red      1 = Green      2 = Blue      3 = None      4 = White
5 = Cyan    6 = Magenta      7 = Yellow      8 = Black  

FLASHUSED Use Value. Returns 1 if a flash was used to acquire the image, otherwise 0.
GAMMA Use Value&. Default is 2.20, settable to any float value.
HIGHLIGHT Use Value. Specifies the lightest highlight value in the image, in the range 0-255. All higher 

values are clipped at this level.  
IMAGEFILEFORMAT  Use Value.
LAMPSTATE Use Value. A return of 1 indicates that the lamp is on or should be set to on.
LIGHTPATH Use Value. Returns 0 for reflective mode, and 1 for transmissive.
LIGHTSOURCE Use Value. Describes the current characteristics of the light source in use, Values are 

0 = Red      1 = Green      2 = Blue      3 = None      4 = White      5 = UV    6 = IR  
ORIENTATION Use Value. Returns the page orientation.
PHYSICALWIDTH Use Value. The maximum width of an image that can be acquired, in the current units 

value.
PHYSICALHEIGHT Use Value. The maximum height of an image that can be acquired, in the current units 

value.
SHADOW Use Value. Specifies the darkest shadow value in the image, in the range 0-255. All lower 

values are clipped at this level.
XNATIVERESOLUTION Use Value. Maximum X resolution of the device optics.



YNATIVERESOLUTION Use Value. Maximum Y resolution of the device optics.
XRESOLUTION Use Value. Current X scan resolution.  
YRESOLUTION Use Value. Current Y scan resolution.  
MAXFRAMES Use Value.
TILES Use Value.
BITORDER Use Value. Specifies which bit per pixel is the most significant. Returns 0 for LSB firstr and 

1 for MSB first (the default).  
BITORDERCODES Use Value.
CCITTKFACTOR Use Value.  
PIXELFLAVOR Use Value. Returns 0 for pixel value 0 = black, 1 for pixel value 0 = white.  
PIXELFLAVORCODES Use Value. 
PLANARCHUNKY Use Value  
ROTATION Use Value  
SUPPORTEDSIZES  Use Value
THRESHOLD Use Value  
XSCALING Use Value&.    Default is 1.0, can be any value > 0.0.  
YSCALING Use Value&. Default is 1.0, can be any value > 0.0.  
JPEGPIXELTYPE Use Value
TIMEFILL Use Value  
BITDEPTH Use Value. Returns the bits per pixel per channel. Must be >= 1. Most commonly used 

value is 8, but 4 and 16 are often supported too.  
BITDEPTHREDUCTION Use Value
UNDEFINEDIMAGESIZE Use Value
IMAGEDATASET Use Value  
EXTIMAGEINFO Use Value  
MINIMUMHEIGHT  Use Value
MINIMUMWIDTH Use Value
FLIPROTATION Use Value.
Value|&|$ The value to set, as the appropriate variable type.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_GetCapability    



TWAIN_SetCompression

PiXCL 5 command. Many TWAIN devices, particularly scanners, support data compression as an option for the acquired image 
data. You can use this command to set the current mode.

Syntax: TWAIN_SetCompression(CompressMode)

Parameter:
CompressMode This value must be one of the following.

0 = NONE A device that does not support compression always reports this.
1 = PACKBITS        Usually a TIFF format mode.
2 = GROUP31D Follows CCITT spec
3 = GROUP31DEOL Follows CCITT spec
4 = GROUP32D Follows CCITT spec
5 = GROUP4    Follows CCITT spec 
6 = JPEG Use capability for more info.
7 = LZW Must license from Unisys and IBM to use.
8 = JBIG For Bitonal images.
9 = PNG Portable Network Graphics
10 = RLE4  4 bits / pixel
11 = RLE8  8 bits / pixel
12 = BITFIELDS

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_GetCompression    



TWAIN_SetCurrentRes 

Try to set the current resolution for acquisition.    Resolution is expressed in dots per current unit. See TWAIN_GetCurrentUnits.   
This is only allowed in State 4 (TWAIN_SOURCE_OPEN) as returned by TWAIN_GetState. Note: The source may select this 
resolution, but don't assume it will.

Syntax: TWAIN_SetCurrentRes(Resolution|Result)

Parameters:
Resolution|Result Must be a variable with a non-zero value.    Consult your data source documentation for the set 

of correct values.    Typical values are 300, 600, 1200, 2400.    Returns 1 if the operation was 
successful, otherwise 0.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_GetCurrentUnits TWAIN_GetState  



TWAIN_SetCurrentUnits 

Set the TWAIN device current units type. In most cases you will use PIXELS.

Syntax: TWAIN_SetCurrentUnits(UNIT_token,Result)

Parameters:
UNIT_token INCHES, CENTIMETERS, PICAS, POINTS, TWIPS, PIXELS
Result 1 if the operation was successful, otherwise 0.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_GetCurrentUnits     



TWAIN_SetFrame

PiXCL 5 command. Many devices, particularly scanners, have the option within the user interface to set a framed area from 
which the image is to be acquired. This frame can also be set under program control wwhile in TWAIN    State 4 only, assuming 
the Data Source allows it. The frame coordinates are expressed in the current UNITS as set by TWAIN_SetCurrentUnits or 
retrieved with TWAIN_GetCurrentUnits.

Syntax: TWAIN_SetFrame(x1&,y1&,x2&, y2&,Result)

Parameters:
x1&,y1&,x2&, y2& The desired new frame coordinates.
Result 1 if the operation was successful, otherwise 0.

Remarks:
The frame coordinates are directly related to the current scanning resolution, not the native resolution of the scanner. It is your 
responsibility to take into account both factors in your application. For example, consider a scanner that has a 10 inch square 
scanning surface. At 300 pixels per inch, the X and Y axis coordinates range from 0 to 3000, while at 50 pixels per inch, the 
range is 0 to 500.    Let’s say that you set frame coordinates of (100,100) and (600,700). At 300 pixels per inch a correct image 
will be scanned, while at 50 pixels per inch, you may get an image (or a badly behaved Data Source may crash itself and/or 
PiXCL) but it will be scambled, often due to scan line wrap around.

Related Commands:
TWAIN_GetFrame    



TWAIN_SetPixelType 

Try to set the current pixel type for acquisition.    This is only allowed in State 4, as returned by TWAIN_GetState. The source 
may select this pixel type, but don't assume it will.

Syntax: TWAIN_SetPixelType(TYPE_token,Result)

Parameters:
TYPE_token BW, GRAY, RGB, PALETTE, CMY, CMYK, YUV, YUVK, CIEXYZ.

Result 1 if the operation was successful, otherwise 0.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_GetPixelType  TWAIN_GetState



TWAIN_UnloadSourceManager

Unloads the TWAIN device manager and sets the State to 1.

Syntax: TWAIN_UnloadSourceManager(Result)

Parameters:
Result 1 if the operation was successful, otherwise 0.

Example:
See the sample application twaindev.pxl.

Related Commands:
TWAIN_LoadSourceManager  





UCase

Converts a string to uppercase.

Syntax: UCase(String$)

Parameter:
String$ The string to convert.

Example:

This program reads the text on the Clipboard, converts it to uppercase, and then writes it back out to the Clipboard.

ClipboardGet(String$,Result)
UCase(String$)
ClipboardPut(String$,Result)

Related Command:

LCase



UninstallColorProfile

PiXCL 5 command: Windows 98 or later and Windows 2000 include colour management functions using the standardised 
profiles in the International Colour Consortium (ICC) format.    Colour profiles are stored in the c:\windows\system\color 
directory, and have to be made known to Windows before they can be used. At times it may be required to uninstall an existing 
profile and install a new one of the same name.

Syntax: UninstallColorProfile(ProfileName$,Result)

Parameters:

ProfileName$ The name of a colour profile, extension .icm.
Result 1 if the operation was successful, otherwise 0.

Related Commands:

InstallColorProfile    



UnpackRGB

PiXCL 5 command. It can often be handy to unpack RGB color values from an integer array variable into integers.

Syntax: UnpackRGB(PackedColour, Red, Green, Blue)

Parameters:
PackedColour The packed colour value, in hex format, 0x00bbggrr
Red, Green, Blue Integer values for the defined colour.

Related Commands:
PackRGB        PackRGBA



UnpackRGBA

PiXCL 5 command. It can often be handy to unpack RGB and Alpha color values from an integer array variable into integers.

Syntax: UnpackRGBA(PackedColour, Red, Green, Blue,Alpha)

Parameters:
PackedColour The packed colour value, in hex format, 0x00bbggrr
Red, Green, Blue,Alpha Integer values for the defined colour.

Related Commands:
PackRGBA        PackRGB



UnregisterUserCmds

Use this command to unregister all user commands. If you use an extension command after this command, a syntax error occurs
unless the command or command library have been re-registered. If the DLL that registered the command set is loaded, it is 
automatically unloaded. Note that if the DLL calls other large DLLs that reference special hardware drivers, the unload process 
may take some seconds.

Syntax: UnregisterUserCmds(Count)

Parameter:
Count The number of commands unregistered.

Related Commands:
CountRegdUserCmds    RegisterUserCommand    RegisterExtLibCmdSet    



UpdateHistogram

Histogram windows can be updated without recreating the window. This is handy when there are multiple Histograms displayed 
in the application. If the image has been changed with one of the image processing commands, or you want to change from one 
display mode to another, the UpdateHistogram command should be used.

Syntax: UpdateHistogram(ImageHandle, Histogram_ID, mode_TOKEN,Result)

Parameters:
ImageHandle The handle of a loaded bitmap or bitmap channel. This is only relevent for the RECALC display 

modes. Set to 0 otherwise. 
Histogram_ID The ID number returned by the Histogram command.
mode_TOKEN One of the following display modes:
CUM | NONCUM Sets cumulative or non-cumulative mode.
RECALC_CUM Recalculates the cumulative histogram before display.
RECALC_NONCUM Recalculates the non-cumulative histogram before display.
Result 1 if the command was successful, otherwise zero.

Remarks:
When a loaded bitmap brightness and contrast have been changed, for example, by the NormalizeImage or EqualizeImage 
command, the channel handles returned previously by GetChannel are no longer valid. Using the old values will result in the 
histogram not being updated. You have to make additional calls to GetChannel before the call to UpdateHistogram.

Related Commands:
Histogram        GetChannel    



UpdateProgressBar

If a progress bar has been enabled, this command will update the display. The example image shows the effect.    If a progress 
bar has not been enabled, this command has no effect.

 

Syntax: UpdateProgressBar(Value,RELATIVE | ABSOLUTE | INCREMENT)

Parameter:
Value A number used to update the progress bar according to the TOKEN. These numbers must 

be in the range 0 - 100. This value is ignored if the INCREMENT mode is selected.

RELATIVE The positive or negative integer value that the progress display is to be incremented. This 
number also sets the value that the INCREMENT mode will update the progress bar.

ABSOLUTE The positive percentage value that is used to redraw the progress bar. For example, a 
value of 50 will draw the bar half completed.

INCREMENT Updates the progress bar the amount last set with the RELATIVE mode.

Related Command:

ProgressBar, StatusWindow, DrawStatusWinText



UseBackground

This command has the dual role of controlling the background mode and the background color. The background mode 
establishes whether the GDI removes existing background colors before drawing any of the following:

· Text

· Shapes with a hatched brush

· Lines with a dotted pen

The GDI uses the background color to fill the small rectangles behind characters (called character cells), the gaps in dotted 
pens, and hatched lines in brushes.

Syntax: UseBackground(OPAQUE/TRANSPARENT,r,g,b) 

Parameters:
OPAQUE Causes the background to be filled with the current color specified by r, g, b.

TRANSPARENT The background is left unchanged. This is the most commonly used.

r,g,b Specifies the color of the background using a combination of red, green, and blue. The
default background color is white (255,255,255).

Remarks:

When you draw a character on the screen, the GDI does more than draw the squiggles that make up the character. It actually 
draws a rectangular area enclosing the character, called the character cell. The current font color determines the color of the 
characters, but the current background color controls the color in the character cells.

When the background mode is set to OPAQUE, the GDI fills the character cells with the RGB value you've set with the r, g, b 
parameters. On the other hand, when the background mode is set to TRANSPARENT, the GDI does not change the color in the 
character cells.

These same principles apply to hatched brushes and dotted pens. That is, when the background mode is set to OPAQUE, the 
GDI fills the gaps in dotted pens and hatched brushes with the RGB value you've set with the r, g, b parameters. When the 
background mode is set to TRANSPARENT, the GDI does not change the color in the gaps.

You can change the color of the entire window's background using the DrawBackground command. This command also erases 
any window contents. (The background mode setting--OPAQUE or TRANSPARENT--has no effect on the DrawBackground 
command.)

Example:

The following example shows the effect of the background mode and color settings when you draw text, draw lines with a dotted 
pen, and draw rectangles with a hatched brush. Notice that the white background only appears for character cells and the gaps 
in dotted pens and hatched brushes when the background mode is set to OPAQUE.

 



The effect of the background mode and color settings. 
The character cell is visible as the white background.

{Change window's background to light gray}
     UseBackground(TRANSPARENT,192,192,192)
     DrawBackground

{Change background mode to TRANSPARENT and color to white}
     UseBackground(TRANSPARENT,255,255,255)

{Draw text, dotted line, and hatched rectangle}
     DrawText(10,10,"Text with a TRANSPARENT background")
     UsePen(DOT,1,0,0,0)      {Dotted pen}
     DrawLine(10,21,40,21)
     UsePen(SOLID,1,0,0,0)    {Reset the pen to solid}
     UseBrush(CROSS,0,0,0)    {Cross hatched brush}
     DrawRectangle(10,30,40,40)

{Change back to default background mode and color (white)}
     UseBackground(OPAQUE,255,255,255)

{Draw more text and another dotted line and hatched rectangle}
     DrawText(10,60,"Text with an OPAQUE background")
     UsePen(DOT,1,0,0,0)      {Dotted pen}
     DrawLine(10,71,40,71)
     UsePen(SOLID,1,0,0,0)    {Reset the pen to solid}
     UseBrush(CROSS,0,0,0)    {Cross hatched brush}
     DrawRectangle(10,80,40,90)

{Wait for input}
     WaitInput()

See DrawRoundRectangle for another example of UseBackground. 

Related Commands:

DrawBackground, DrawText, UsePen, UseBrush, DrawShadeRectangle    GetBackground  



UseBrush

Defines the style and color of the brush that will be used in subsequent drawing operations. 

Syntax:
UseBrush(SOLID/DIAGONALUP/DIAGONALDOWN/DIAGONALCROSS/
                HORIZONTAL/VERTICAL/CROSS/NULL,r,g,b) 

Parameters:
SOLID A solid brush.

DIAGONALUP 45-degree upward hatch (left to right).

DIAGONALDOWN 45-degree downward hatch (left to right).

DIAGONALCROSS 45-degree crosshatch.

HORIZONTAL Horizontal hatch.

VERTICAL Vertical hatch.

CROSS Horizontal and vertical crosshatch.

NULL A null or "hollow" brush (no color is drawn).

r,g,b Specifies the color of the brush using a combination of red, green, and blue.

Examples:

This program defines a crosshatched red brush and draws a round rectangle with it.

UseBrush(CROSS,255,0,0)
DrawRoundRectangle(10,10,40,40,10,10)
WaitInput()

 
The eight different brush styles.

This next example draws a 
series of circles using the 
eight available brush 
styles. The program below 
produces the window at 
left.

UseFont("Arial",5,11,NOBOLD,
 NOITALIC,NOUNDERLINE,0,0,0)

UseBrush(SOLID,0,0,255)
DrawEllipse(15,10,35,30)
DrawText(14,32,"SOLID")

UseBrush(DIAGONALUP,0,0,255)
DrawEllipse(83,10,103,30)



DrawText(70,32,"DIAGONALUP")

UseBrush(DIAGONALDOWN,0,0,255)
DrawEllipse(151,10,171,30)
DrawText(130,32,"DIAGONALDOWN")

UseBrush(DIAGONALCROSS,0,0,255)
DrawEllipse(219,10,239,30)
DrawText(199,32,"DIAGONALCROSS")

UseBrush(HORIZONTAL,0,0,255)
DrawEllipse(15,50,35,70)
DrawText(4,72,"HORIZONTAL")

UseBrush(VERTICAL,0,0,255)
DrawEllipse(83,50,103,70)
DrawText(76,72,"VERTICAL")

UseBrush(CROSS,0,0,255)
DrawEllipse(151,50,171,70)
DrawText(148,72,"CROSS")

UseBrush(NULL,0,0,255)
DrawEllipse(219,50,239,70)
DrawText(221,72,"NULL")

WaitInput()

Related Commands:

DrawArc DrawChord    DrawEllipse    DrawFlood    DrawPie    DrawRectangle    DrawRoundRectangle    DrawTriangle    
DrawPolygon    UseBrushPattern 



UseBrushPattern

The UseBrush command provides solid and standard Windows hatch pattern fills. With the UseBrushPattern command, you can 
create your own fill pattern bitmaps in any of the supported bitmap formats. There are differences in operation between Windows
95/98 and NT 4.0.

In Windows 95/98: the image must be an 8x8 bitmap only. Microsoft does not support use of a larger bitmap, and the brush 
selection will fail. PiXCL sets the brush to the default.

In Windows NT 4.0: the image can be any size, and if possible the image will be tiles into the available fill region. Windows also 
produces a maximum size tile of about 256x256 from the selected image, even if it is larger.

Syntax: UseBrushPattern(ImageName$)

Parameters:
ImageName$ The name of the pattern image file. If the image is not in memory, it is loaded. If ImageName$ is 

null, the pattern brush flag is cleared. Changing ImageName$ will change the brush bitmap, but 
does not clear the pattern brush flag.

Remarks:
You can also load the pattern bitmap with the LoadBitmap command prior to using the pattern. Pattern bitmaps can be 
freed from memory with the FreeBitmap command. 

The pattern bitmap is 8x8. We recommend drawing the bitmap using a 16 color pallette (though you can use 256 or full 
color bitmaps as well), as the draw and fill operations will be faster. If you specify a larger bitmap, only the top left corner 
8x8 section will be used. Pattern bitmaps can be created with any paint program such as MS-Paint that comes with 
Windows, or JASC™    Paint Shop Pro™ 4 or later.

You could also create your own pattern editor using PiXCL. For example, define a 64x64 (i.e. zoom factor 8) region, and 
draw with the mouse using flood commands. Save with the SaveRectangle command as a BMP file, then ResizeImage 
to make the 8x8 pattern bitmap desired.

The UseBrush(NULL,r,g,b) command does not clear a selected brush pattern image: place a UseBrushPattern(“”) in 
your script to do this.

Example:

 

This code fragment produces the window above, showing a combination of UseBrush and UseBrushPattern commands.
Bitmap_Color:

DrawBackground
LoadBitmap(Patt1$,FULL)
LoadBitmap(Patt2$,FULL)



LoadBitmap(Patt3$,FULL)
LoadBitmap(Patt4$,FULL)
WinGetClientRect("",cx1,cy1,cx2,cy2)
UsePen(SOLID,2,0,0,0)
UseBrush(NULL,255,255,0)
DrawRectangle(cx1,cy1,cx2,cy2)
UseBrush(SOLID,255,255,0)
DrawRectangle(100,50,200,150)
UseBrush(DIAGONALCROSS,255,0,0)
DrawRectangle(100,50,200,150)
UseBrushPattern(Patt3$)
DrawTriangle(240,70,320,120,290,20) 
UseBrushPattern(Patt4$)
GetBackground(r,g,b)
DrawFloodExt(90,50,r,g,b,SURFACE)
Goto Wait_for_Input

Related Commands:

DrawArc, DrawChord, DrawEllipse, DrawFlood, DrawPie, DrawRectangle, DrawRoundRectangle, DrawTriangle, DrawPolygon, 
LoadBitmap, FreeBitmap, UseBrush 



UseCaption

Updates a caption at the top of the PiXCL window, in the titlebar.

Syntax: UseCaption(Text$)

Parameter:
Text$ The text you want to use for the caption.

Remark:

The UseCaption command is used to set the title of the current PiXCL application. You can also use the WinTitle command as a 
more powerful replacement for UseCaption, because it lets you set the caption for any application window, including PiXCL's.

Example:

This command places the caption "Bluesky" at the top of the PiXCL window.

UseCaption("Bluesky")
WaitInput()

Related Command:

WinTitle



UseCoordinates

Specifies PiXCL's coordinate system as either pixel or metric and controls the unit of measure that PiXCL uses for all 
subsequent drawing and window sizing operations.

Syntax: UseCoordinates(PIXEL/METRIC)

Parameters:
PIXEL Causes PiXCL to use pixels as the unit of measure.

METRIC Causes PiXCL to use millimeters as the unit of measure. METRIC is the default.

Remarks:

By using metric coordinates, you can make your programs more device independent. For example, any shapes you draw on the 
screen will appear the same regardless of the video display driver.

Programs written using pixel coordinates are more device dependent, which may or may not be a problem for you. For example, 
suppose you have a VGA system and you write a program that draws shapes in a window. When you run that program on a 
Super VGA system, the shapes will appear smaller. One virtue of pixel coordinates is that they are much more accurate than 
metric. Therefore, if you need to address the screen with the highest precision, you'll want to use pixel coordinates rather than 
metric.

One way to make your programs device independent without resorting to metric coordinates is to use the GetScreenCaps 
function to get the pixel resolution of the Windows display driver (use the HORZRES and VERTRES tokens). You can then 
perform your drawing and window resizing taking into account the resolution of the current display driver.

Example:

 
Pixel versus metric coordinates.

The following program draws 
the same shapes using pixel 
and metric coordinates. The 
different results are shown at 
left.

UseCoordinates(PIXEL)
DrawEllipse(50,10,70,30)
DrawRectangle(50,30,70,50)



DrawText(50,55,"Pixel")
UseCoordinates(METRIC)
DrawEllipse(50,10,70,30)
DrawRectangle(50,30,70,50)
DrawText(50,55,"Metric")
WaitInput()

Related Commands:

All Draw commands, GetScreenCaps



UseCursor

Changes the mouse cursor to one of the predefined Windows cursors, or one of the cursors built into PiXCL.

Syntax:
UseCursor(APPSTARTING / ARROW / CROSS / IBEAM / 

ICON / NO / SIZE / SIZEALL /    SIZENESW / 
SIZENS / SIZENWSE / SIZEWE / UPARROW / 
WAIT / ZOOM / CROSSHAIR / TOPLEFT /
TOPRIGHT / BOTTOMLEFT / BOTTOMRIGHT)

Parameters:
APPSTARTING Standard arrow and small hourglass. 
ARROW Standard arrow. 
CROSS Crosshair. 
IBEAM Text I-beam. 
ICON Empty icon. 
NO Slashed circle. 
SIZE Four-pointed arrow. 
SIZEALL Same as SIZE. 
SIZENESW Double-pointed arrow pointing northeast and southwest. 
SIZENS Double-pointed arrow pointing north and south. 
SIZENWSE Double-pointed arrow pointing northwest and southeast. 
SIZEWE Double-pointed arrow pointing west and east. 
UPARROW Vertical arrow. 
WAIT Hourglass. 

ZOOM Magnifying glass.
CROSSHAIR Crosshair for selecting a pixel.
TOPLEFT Top left corner symbol.
TOPRIGHT Top right corner symbol.
BOTTOMLEFT Bottom left corner symbol.
BOTTOMRIGHT Bottom right corner symbol.

Remarks:

The UseCursor command has an effect only under these circumstances:

· The new cursor is different from the previous cursor.

· PiXCL is waiting for mouse input; a SetMouse, SetCtrlMouse, SetRightMouse, SetShftRightMouse or SetDblMouse is in 
effect.

Example:

The following example changes the mouse cursor to a crosshair. It then draws a label at the current cursor location when the 
user clicks the mouse.

{Get screen capacity in pixels}
     UseCoordinates(PIXEL)
     GetScreenCaps(HORZRES,PixelsX)
     GetScreenCaps(VERTRES,PixelsY)

{Use a cross-hair cursor}
     UseCursor(CROSS)



{Set up mouse hit-testing}
     SetMouse(0,0,PixelsX,PixelsY,LabelIt,MouseX,MouseY)

{Wait for input}
Wait_for_input:
     WaitInput()

{Draw the label "Click!" whenever the mouse is clicked}
LabelIt:
     DrawText(MouseX,MouseY,"Click!")
     Goto Wait_for_input

Related Commands:

SetCtrlMouse, SetMouse, SetDblMouse, SetRightMouse, WaitInput



UseFont

Establishes the font that will be used for subsequent text-drawing operations in PiXCL. It lets you specify the width, height, style 
(bold, italics, and underlining), and color of the font. 

Syntax:
UseFont(Name$,Width,Height,Set_bold,Set_italic,

Set_underline,r,g,b)

Parameters:
Name$ The name of the font.

Width The width of the font using the current coordinate mode (either pixels or millimeters). If you 
specify a width of zero, then the default width is used for the given font.

Height The height of the font using the current coordinate mode (either pixels or millimeters). If you 
specify a height of zero, then the default height is used for the given font.

Set_bold Controls whether the font is bold and must be one of the following tokens:

BOLD Font is bold
NOBOLD Font is not bold

Set_italic Controls whether the font is italic and must be one of the following tokens:

ITALIC Font is italic
NOITALIC Font is not italic 

Set_underline Controls whether the font is underlined and must be one of the following tokens:

UNDERLINE Font is underlined
NOUNDERLINE Font is not underlined 

r,g,b The color of the font using a combination of red, green, and blue.

Remarks:

The GDI maintains all the fonts that are available in the system in a font table. When you describe a font with the UseFont 
command, it may or may not exist in the GDI's table. In a process known as font mapping, the GDI compares the font 
parameters you've supplied--point size, serif or sans serif, and fixed or proportional--to the fonts it has in its table and uses the 
font that is the closest match.

In some cases, the GDI will synthesize a font to match the parameters you've supplied. In early versions of Windows, when the 
GDI synthesized a font, it would sometimes match only the point size. In Windows NT and Windows 95, because TrueType fonts 
are used, font mapping is more reliable. In fact, if you specify a TrueType font for Name$, it will always display the attributes you 
request.

To see a list of the fonts available in your system, activate the Fonts icon in Control Panel. To use one of these fonts in an PiXCL 
program, simply supply its name as the Name$ parameter in UseFont. Just be sure to spell the name exactly as you see it on 
the screen. The standard fonts that are available in Windows NT are MS Sans Serif, MS Serif, Courier, Small Fonts, Modern, 
Roman, Script, Terminal, Arial, Times New Roman, Courier New, Symbol, System, and Wingdings (see the second example).

Certain TrueType fonts already have bold and italic attributes--for example, Times New Roman Bold Italic. When using these 
fonts, the tokens you specify for Set_bold, Set_italic, and Set_underline have no effect. Nevertheless, as long as you provide the
full name of the font in the Name$ parameter, PiXCL will use the font, complete with attributes, without a problem.

PiXCL also lets you access fonts you've added with third-party font packages. The names of these fonts may or may not be 
listed in Control Panel.



The default font is the System font in black.

If the color that appears behind each character is not what you want, you may need to change the background mode or color. 
See the UseBackground command for more details.

Examples:

The following program shows the effect of explicitly controlling the width and height of a font versus using the default width and 
height.

{Set the coordinate mode to pixel}
     UseCoordinates(PIXEL)

{Set font's width to 10 and height to 20 and draw text}
     UseFont("Times New Roman",10,20,
     NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
     DrawText(10,10,
     "Times New Roman with specified height and width")

{Use the default width and height to draw text}
     UseFont("Times New Roman",0,0,
     NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
     DrawText(10,40,
     "Times New Roman with default height and width")

     WaitInput()

This next program shows some samples of the standard fonts available in Windows 95 and NT. The standard fonts are MS Sans 
Serif, MS Serif, Courier, Small Fonts, Modern, Roman, Script, Terminal, Arial, Times New Roman, Courier New, Symbol, 
Wingdings, and System. 

UseCoordinates(METRIC)
UseFont("MS Sans Serif",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(10,10,"MS Sans Serif")
UseFont("MS Serif",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(10,18,"MS Serif")
UseFont("Courier",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(10,26,"Courier")
UseFont("Small Fonts",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(10,34,"Small Fonts")
UseFont("Modern",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(10,42,"Modern")
UseFont("Roman",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(10,50,"Roman")
UseFont("Script",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(10,58,"Script")
UseFont("Terminal",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(70,10,"Terminal")
UseFont("Arial",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(70,18,"Arial")
UseFont("Times New Roman",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(70,26,"Times New Roman")
UseFont("Courier New",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(70,34,"Courier New")
UseFont("Symbol",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(70,42,"Symbol")
UseFont("Wingdings",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)



DrawText(70,50,"Wingdings")
UseFont("System",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
DrawText(70,58,"System")

WaitInput()

The above code generates the window below.

 

Related Commands:
AddFont  RemoveFont GetTextSpacing  SetTextSpacing  DrawText, DrawTextExt, UseBackground, ChooseFont, UseFonExt 



UseFontExt

This command is designed to be compatible with the ChooseFont command that uses the COMDLG32.DLL library function. The 
main difference between UseFontExt and UseFont is that there are integer variables, Bold, Italic and Underline in place of the 
(NO)BOLD, (NO)ITALIC and (NO)UNDERLINE tokens,    plus a new variable Strikeout. 

Syntax: UseFontExt(Font$,Width,Height,Bold,Italic,Underline,Strikeout,r,g,b)

Parameters:
Font$ The name of the font.

Width,Height The width of the font using the current coordinate mode (either pixels or        
millimeters). If you specify a width of zero, then the default width is used for the given 
font.

Bold,Italic,
Underline,Strikeout The Bold variable takes a value of either NORMAL (400), or BOLD (700), and the 

Italic, Underline, Strikeout variables take values of either 0 (e.g. NOBOLD), or 1 
(BOLD), If these variables are assigned any value other than 0, they are internally 
converted to 1 before being used.

Related Commands
ChooseFont, DrawText, DrawTextExt, UseFont



UsePen

Establishes the pen that will be used for subsequent drawing operations. It lets you specify the style, width, and color for the pen.

Syntax: UsePen(Style,Width,r,g,b) 

Parameters:
Style The style of the pen. It must be one of the tokens in the table below. The default is SOLID.

Width The width of the line in pixels. It must be 1, unless the pen style is SOLID or NULL. The 
default width is 1.

r,g,b Specifies the color of the pen using a combination of red, green, and blue. The default is 
black (0,0,0).

Token Description Result

SOLID Solid line ___________

DASH Dashed line - - - - - -

DOT Dotted line . . . . . . 

DASHDOT Dash-dot line _._._._._._

DASHDOTDOT Dash-dot-dot line _.._.._.._..

NULL No line

Table: Pen Styles

Example:

 
The effect of different pens.

The following example 
draws five lines, each using
a different pen style and 
color, and produces the 
windows at left.

{Solid line in black}
UsePen(SOLID,1,0,0,0)
DrawLine(10,10,90,10)

{Dashed line in red}
UsePen(DASH,1,255,0,0)
DrawLine(10,20,90,20)

{Dotted line in green}
UsePen(DOT,1,0,255,0)
DrawLine(10,30,90,30)



{Dash-dot line in blue}
UsePen(DASHDOT,1,0,0,255)
DrawLine(10,40,90,40)

{Dash-dot-dot line in pink}
UsePen(DASHDOTDOT,1,255,0,255)
DrawLine(10,50,90,50)
WaitInput()

Related Commands:

All the Draw commands that draw lines and shapes.



Val

Converts a string to a number.
 
Syntax: Val(String$,Number,Result)

Parameters:
String$ A string representing the number you want to convert.

Number An integer variable that will contain the converted number.

Result An integer variable that indicates the outcome of the conversion. If it was 
successful, this variable is assigned a value of 1. If it was not successful, this 
variable is assigned a value of 0.

Remarks:

The numeric string you provide in String$ must represent an integer from -2147483647 to 2147483648.

If a positive number exceeds 10 digits or a negative number exceeds 11 digits, this function returns with Number = 0 and Result 
= 0.

Examples:

This example uses the TextBox command to prompt you for a number in the form of a string. It then converts the numeric string 
to an integer using Val.

Again:
Number$ = "1"
TextBox("Enter a number",
        "Val function test",Number$,Button)
If Button = 2 Then End          {Cancel selected}
Val(Number$,Number,Result)
If Result = 1 Then Goto OK
MessageBox(OK,1,EXCLAMATION,"Invalid number","Invalid",Button)
Goto Again:

OK:
TextOut$ = "You entered " + Number$
MessageBox(OK,1,EXCLAMATION,TextOut$,"Number entered",Button)

Related Command:
Str    FpVal    



Val64

PiXCL 5.1 command. Converts a string to a 64-bit number.
 
Syntax: Val64(String$,Number64#,Result)

Parameters:
String$ A string representing the number you want to convert.

Number64# A 64-bit integer variable that will contain the converted number.

Result An integer variable that indicates the outcome of the conversion. If it was 
successful, this variable is assigned a value of 1. If it was not successful, this 
variable is assigned a value of 0.

Related Command:
Str64 



VidAutoPalette

PiXCL 5 Command. Assuming the selected device driver supports palettes, you can generate a video palette. This is only 
relevent when capturing 8 bits per pixel. Most new video frame devices (e.g. USB) support 24 bits per pixel.

Syntax: VidAutoPalette(VideoHandle, SampleFrames, MaxColours, Result)

Parameters: 
VideoHandle A non zero handle from VidCreateCaptureWindow.
SampleFrames The number of frames to sample to make the palette.
MaxColours A number between 1 and 256.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
VidLoadPalette    VidSavePalette



VidCamConnect

 PiXCL5 Command. Select an available video capture device. If your camera is Video-For-Windows or DirectShow compatible, 
this command shoiuld work.

Syntax: VidCamConnect(VideoHandle,Index,Result)

Parameters:
VideoHandle A non zero handle from VidCreateCaptureWindow.
Index A driver index value of 0 – 9.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
VidCamDisconnect    



VidCamDisconnect

PiXCL5 Command. Deselect an available video capture device. If your camera is Video-For-Windows or DirectShow 
compatible, this command should work.

Syntax: VidCamDisconnect(VideoHandle,Index,Result)

Parameters:
VideoHandle A non-zero handle from VidCreateCaptureWindow.
Index A driver index value of 0 – 9.
Result 1 if the operation was successful, otherwise 0.

Related Commands:
VidCamConnect    



VidCaptureDlg

PiXCL 5 Command. Video sources have four possible dialogs that set up the source parameters. Note that the dialogs 
(esspecially FORMAT) displayed are part of the video driver files installed with your camera. If you have multiple cameras, you 
will see different dialogs depending on which camera is selected.

Syntax: VidCaptureDlg(VideoHandle,COMPRESSION,Result)

Parameters:
VideoHandle A non zero handle from VidCreateCaptureWindow.
Token COMPRESSION, DISPLAY, FORMAT, SOURCE.
Result 1 if the dialog is displayed, otherwise 0. Note that the button pushed does not return any 

variable.

Related Commands:
VidCreateCaptureWindow    



VidCaptureSingleFrame

PiXCL 5 Command. Add a single frame to the capture file specified in VidSetCaptureFile.

Syntax: VidCaptureSingleFrame(VideoHandle,Result)

Parameters:
VideoHandle A non zero handle from VidCreateCaptureWindow.
Result 1 if the operation was sucessful, otherwise 0. 

Related Commands:
VidCreateCaptureWindow VidSetCaptureFile    



VidCaptureSingleFrameClose

PiXCL 5 Command. Close the capture file specified in VidSetCaptureFile.

Syntax: VidCaptureSingleFrameClose(VideoHandle,Result)

Parameters:
VideoHandle A non zero handle from VidCreateCaptureWindow.
Result 1 if the operation was sucessful, otherwise 0. 

Related Commands:
VidCreateCaptureWindow VidSetCaptureFile    



VidCaptureSingleFrameOpen

PiXCL 5 Command. Open the capture file specified in VidSetCaptureFile.

Syntax: VidCaptureSingleFrameOpen(VideoHandle,Result)

Parameters:
VideoHandle A non zero handle from VidCreateCaptureWindow.
Result 1 if the operation was sucessful, otherwise 0. 

Related Commands:
VidCreateCaptureWindow VidSetCaptureFile    



VidClipboardPutBitmap

PiXCL 5 Command. Copy the current frame to the clipboard as a BMP file. The ClipboardGetBitmap command is usually then 
used to copy the bitmap into the PiXCL image list, where you can perform any of the PiXCL image processing and handling 
functions.

Syntax: VidClipboardPutBitmap(VideoHandle,Result)

Parameters:
VideoHandle A non zero handle from VidCreateCaptureWindow.
Result 1 if the operation was sucessful, otherwise 0. 

Related Commands:
VidCreateCaptureWindow VidSetCaptureFile ClipboardGetBitmap 



VidCloseCaptureWindow

PiXCL 5 Command. Use this command to close any of the open video capture windows. Its preferable that you use a 
VidCamDisconnect command prior to this command, esspecially if you have more than one camera on your system.

Syntax: VidCloseCaptureWindow(VideoHandle)

Parameters:
VideoHandle A handle returned by the VidCaptureWindow command.

Related Commands:
VidCamDisconnect    VidCaptureWindow    



VidCaptureWindow

PiXCL 5 Command. This command, and the rest of the Vid* command set work with Video-For-Windows or DirectShow 
compatible devices, and create a child window within the PiXCL client area that displays the available video stream. You can 
make up to 10 windows with a different camera displayed on each one. Note that Preview windows take a LOT of cpu time, so 
don’t expect that 6 windows will have smooth video. Perhaps when cpu clocks reach 2GHz …

Syntax: VidCaptureWindow(Title$,x1,y1,x2,y2,Index, FrameRate,PreviewMode,VideoHandle)

Parameters:
Title$ The title to appear in the title bar of the window, which makes the window movable. If an empty 

string, no title bar is displayed, and the window is not movable.

x1,y1,x2,y2 The client area coordinates for the video window.

Index The camera driver index 0 – 9. The default is 0. See the VidGetDriverDescription command.

FrameRate The number of frames per second to be displayed. 15 is often the supported rate. In general the 
video hardware driver will set the closest rate specified.

PreviewMode 0 or @TRUE to enable preview mode i.e. live video feed to the Window.
1 or @FALSE to set the mode to capture the first available frame.
The mode is bit 0 in the integer value. 
Bit 1 = 1 creates a status window on the video display and writes the frame number.
Bit 2 = 1 sets a buffer that averages the current and previous frame. This can be helpful to clean 
up quantization jitter, if speed is not an issue.

VideoHandle A non-zero handle of the created window, used with most of the other Vid* commands.

Related Commands:
VidGetDriverDescription    VidSetCaptureFile 



VidEnablePreview

PiXCL 5 Command. The video preview mode and frame rate can be set with this command.

Syntax: VidEnablePreview(VideoHandle, FrameRate, PreviewMode)

Parameters:
VideoHandle A non-zero handle from VidCreateCaptureWindow.

FrameRate The number of frames per second to be displayed. 15 is often the supported rate. In general the 
video hardware driver will set the closest rate specified.

PreviewMode @TRUE to enable preview mode i.e. live video feed to the Window.
@FALSE to set the mode to capture the first available frame.

Related Commands:
VidCreateCaptureWindow



VidGetCaptureFile

PiXCL 5 Command. The video capture set with this command. The default is c:\capture.avi.

Syntax: VidGetCaptureFile(VideoHandle,Filename$)

Parameters:
VideoHandle A non zero handle from VidCreateCaptureWindow.

FileName$ The capture filename.

Related Commands:
VidCreateCaptureWindow



VidGetDevCaps

PiXCL 5 Command. The current video device capabilities are obtained with this command. 

Syntax: VidGetDevCaps(VideoHandle,DriverName$,CapsArray[Start],Result)

Parameters:
VideoHandle A non zero handle from VidCreateCaptureWindow.
DriverName$ The current video capture drivername reported.
CapsArray[ ] A previously defined integer array of at least 8 elements. In order, these capabilities are:

 [0] = DeviceIndex:    0 - 9
 [1] = HasVideoOverlay:    0, or 1 if the device supports video overlay.
 [2] = HasVideoSourceDlg:    0 or 1
 [3] = HasVideoFormatDlg:    0 or 1
 [4] = HasVideoDisplayDlg:    0 or 1
 [5] = CaptureInitialized:    0 or 1
 [6] = DvrSuppliesPalettes:    0 or 1

Start The start element index in the array. This wiill usually be 0.
Result 1 if the operation was sucessful, otherwise 0. 

Related Commands:
VidCreateCaptureWindow



VidGetDriverDescription

PiXCL 5 Command. The installed video capture drivers can be listed with this command. 

Syntax: VidGetDriverDescription(Index, NameVersion$)

Parameters:
Index Installed drivers have an index of 0 – 9.
NameVersion$ The returned name and version string.

Related Commands:
VidCamConnect    VidCamDisconnect 



VidGetStatus

PiXCL 5 Command. The video device status is returned by this command. Just two values are returned at present, but there are
many more that may be added in the future.

Syntax: VidGetStatus(VideoHandle,VideoWidth, VideoHeight)

Parameters:
VideoHandle A non zero handle from VidCreateCaptureWindow.
VideoWidth The width in pixels of the current video mode.
VideoHeight The height in pixels of the current video mode.

Related Commands:
VidCreateCaptureWindow



VidLoadPalette

PiXCL 5 Command. The video capture device driver may support loading a palette. This can be useful where you need to 
colourize a monochrome video stream. 

Syntax: VidLoadPalette(VideoHandle, VideoPaletteFile$, Result)

Parameters:
VideoHandle A non zero handle from VidCreateCaptureWindow.
VideoPaletteFile$ The name of the palette file. We recommend calling these *.vpl to not confuse them with .pal 

files.
Result 1 if the operation was sucessful, otherwise 0. 

Related Commands:
VidSavePalette



VidOverlay

PiXCL 5 Command. The video capture device driver may support overlays (often in hardware). This command enables or 
disables overlays for the selected device.

Syntax: VidOverlay(VideoHandle, @TRUE | @FALSE)

Parameters:
VideoHandle A non zero handle from VidCreateCaptureWindow.
@TRUE Enable overlay.
@FALSE Disable overlay.

Related Commands:
VidLoadPalette      



VidPreviewScale

PiXCL 5 Command. The video capture device driver supports scaling the video stream to the video preview window.

Syntax: VidPreviewScale(VideoHandle, @TRUE | @FALSE)

Parameters:
VideoHandle A non zero handle from VidCreateCaptureWindow.
@TRUE Enable scaling.
@FALSE Disable scaling.

Related Commands:
VidEnablePreview      



VidSavePalette

PiXCL 5 Command. The video capture device driver may support saving a palette. This can be useful where you need to 
colourize a monochrome video stream. 

Syntax: VidSavePalette(VideoHandle, VideoPaletteFile$, Result)

Parameters:
VideoHandle A non zero handle from VidCreateCaptureWindow.
VideoPaletteFile$ The name of the palette file. We recommend calling these *.vpl to not confuse them with .pal 

files.
Result 1 if the operation was sucessful, otherwise 0. 

Related Commands:
VidLoadPalette      



VidSetCaptureFile

PiXCL 5 Command. The video capture file is obtained with this command. The default is c:\capture.avi.

Syntax: VidSetCaptureFile(VideoHandle,Filename$)

Parameters:
VideoHandle A non zero handle from VidCreateCaptureWindow.

FileName$ The capture filename.

Related Commands:
VidCreateCaptureWindow



ViewFilterFile

A 5x5 or 15x15 filter file can be displayed in a MessageBox with this command.

Syntax: ViewFilterFile(FilterFile$)

Parameter:
FilterFile$ The filter file to read and display in a MessageBox. If the file cannot be read, or does not exist, 

the command is ignored.

Related Files:
Create5x5Filter  



WaitCommEvent

This command is issued once you are ready to send or receive data via a serial port. It should be followed by a WaitInput() 
command.

Syntax: WaitCommEvent(R|W,Label,Timeout) 

Parameters:
R | W R: wait for a CR-LF terminator to be received.

W: wait till the last character in the buffer is written. If the serial device written has to do some 
processing, this may take a few seconds.

Label The jump-to location in your script to process the event.

Timeout The timelimit after which an event is issued anyway. This may happen if the attached device is 
not responding, so your program will have to be able to handle this situation. For example, if a Read timeout occurs, the 
buffer will be empty, and ReadCommPort will return a NULL string. Timeout has a default value of 5000 mS    (i.e. 5 
minutes). If you set Timeout to <= 0, it defaults to 5000.

Remarks:
WaitCommEvent will interact with the WaitInput() idle loop. If a WaitCommEvent is active, and a mouse or keyboard event 
occurs, this will be processed immediately.    You can set a flag variable to indicate that a WaitCommEvent is active, and put a 
WaitCommEvent into a temporary idle loop. Please remember that you can’t put a WaitInput() within a subroutine, because the 
keyboard and mouse events are disabled until the Return is processed. 

Related Commands:
ClearCommPort EscCommFunction GetCommPort    ReadCommPort    SetCommPort WriteCommPort 



WaitInput

Pauses a program a specified number of milliseconds or pauses it indefinitely to wait for user input. This can be input either for 
the PiXCL application, or to also let other applications operate. 

Syntax:

WaitInput()

or

WaitInput(Milliseconds)

Parameter:

Milliseconds The number of milliseconds you want to pause the program.

Remarks:

WaitInput without an argument pauses a program indefinitely to wait for user input. When the user presses a key, clicks the 
mouse, or makes a menu selection and a Button, SetKeyboard, any SetMouse, or SetMenu command is in effect, PiXCL 
immediately transfers control to the appropriate label specified in one of these commands. For example, if a SetMouse command
is in effect and the user clicks the mouse within a specified hit-testing region, control transfers to the label associated with that 
region.    You can also send a PiXCL application a resume command from another PiXCL application with the PXLResume and 
PXLResumeAt commands. Note that the script will continue execution immediately after the WaitInput() command for the 
PXLResume command.

WaitInput with an argument pauses a program a specified number of milliseconds. For example, WaitInput(1000) pauses PiXCL 
for 1 second, WaitInput(3000) for three seconds, and WaitInput(250) for a quarter second.

You will also find that WaitInput(100) is useful for allowing Windows to update toolbar buttons, push buttons and status bars 
before the script continues processing. For example, when you click a toolbar button, script execution will jump to the defined 
label, but Windows needs to be given time to redraw the button from pressed to unpressed mode, otherwise the button will 
appear blank until your program gives Windows some processing time.

Because the PC's clock ticks only 16 times a second, the granularity of the WaitInput command is not as fine as a milliseconds 
argument might have you believe. For example, WaitInput(1) has the same effect as WaitInput(62); they both pause your 
program for approximately 1/16 of a second.

WaitInput(0) is treated the same as WaitInput(1). 

Please note that these wait periods are approximate, and cannot and should not be used in any 
real time application that relies on exact timing.

As a general rule, you should always use WaitInput() when you are not performing work in the PiXCL window. This gives more of
the system's resources to other programs at a time when your PiXCL program does not need them.

Because of Windows 95 and NT’s multitasking architecture, you can pause PiXCL after executing a Run command, using some 
sort of polling operation. See also the PXLResume and PXLResumeAt commands.

Example:

The following program displays a message on the screen, pauses for 2 seconds, places another message on the top of the 
previous one, and then pauses indefinitely until you close the window. 

DrawText(10,10,"PiXCL will pause for 2 seconds")
WaitInput(2000)
DrawText(10,10,
  "PiXCL will now pause indefinitely until you close the window") WaitInput()



See the SetMenu, SetMouse, and SetKeyboard commands for other examples of WaitInput.

Remarks:
If you are writing additional programs with a C or C++ compiler, the resume message can be declared as

#define WM_USER_INTERPRETSCRIPT (WM_USER+50)
#define WM_USER_INTERPRETSCRIPTAT(WM_USER+53)

Related Commands:
SetWaitMode, SetMenu, SetKeyboard, any SetMouse, PXLResume and PXLResumeAt 



WAVGetDevCaps

If a WAV sound file play device (e.g. A SoundBlaster™ compatible) is installed, you can query the device to find out the 
capabilities of the board.

Syntax: WAVGetDevCaps(Device, TOKEN, ReturnString$, Result)

Parameters:
Device The 0 indexed device number. If only one sound card is fitted, this is always zero.

PLAYERNAME A string stored in the registry when the board is installed.
FORMATS The best capability of the card, see remarks below.
NUMCHANNELS Returns MONO or STEREO.
FUNCTIONS Returns the modifiable available functions e.g. Pitch, PlayRate, Volume.
ReturnString$ The device cap string.

Result 0 if the function fails, otherwise 1.

Remarks:

The possible WaveForm Device Formats are 

"11.025 kHz, mono, 8-bit"
"11.025 kHz, mono, 16-bit"
"11.025 kHz, stereo, 8-bit"
"11.025 kHz, stereo, 16-bit"
"22.05 kHz, mono, 8-bit"
"22.05 kHz, mono, 16-bit"
"22.05 kHz, stereo, 8-bit"
"22.05 kHz, stereo, 16-bit"
"44.1 kHz, mono, 8-bit"
"44.1 kHz, mono, 16-bit"
"44.1 kHz, stereo, 8-bit"
"44.1 kHz, stereo, 16-bit"

If your card reports, say, "22.05 kHz, stereo, 16-bit", then it will support all the preceding formats.

Related Commands:
WAVGetNumDevs    WAVGetPitch    WAVGetPlayRate    WAVPlaySound    WAVSetPitch    WAVSetPlayRate 



WAVGetNumDevs

This command reports the number of WAV output devices installed in your computer.

Syntax: WAVGetNumDevs(Number)

Parameters:
Number If only one sound card is fitted, this will return a value of 1.    Note that sound device 

numbers are 0 indexed, hence most computers with one sound card will always use device 
number 0.

Related Commands:
WAVGetDevCaps    WAVGetPitch    WAVGetPlayRate    WAVPlaySound    WAVSetPitch    WAVSetPlayRate 



WAVGetPitch

Sound cards such as the industry standard SoundBlaster (TM Creative Labs) may support playback pitch (i.e. the sound 
playback frequency) changes. This command returns the current pitch setting as a percentage. The default value is 100.

Syntax: WAVGetPitch(Device,Pitch)

Parameters:
Device The device number of the sound device. For a system with one sound card, this will be 0.

Pitch The default value is 100, and the WAV file will play as recorded.

Remarks:
Not all sound cards support Pitch control. Use the WAVGetDevCaps command to list the available controls for your card.

Related Commands:
WAVGetDevCaps    WAVGetNumDevs      WAVGetPlayRate    WAVPlaySound    WAVSetPitch    WAVSetPlayRate 



WAVGetPlayRate

Sound cards such as the industry standard SoundBlaster (TM Creative Labs) may support playback rate control. This command 
returns the current rate setting as a percentage. The default value is 100.

Syntax: WAVGetPlayRate(Device,PlayRate)

Parameters:
Device The device number of the sound device. For a system with one sound card, this will be 0.

PlayRate The default value is 100, and the WAV file will play as recorded.

Remarks:
Not all sound cards support playback rate control. Use the WAVGetDevCaps command to list the available controls for your card.

Related Commands:
WAVGetDevCaps    WAVGetNumDevs    WAVGetPitch    WAVPlaySound    WAVSetPitch    WAVSetPlayRate 



WAVGetVolume

Sound cards such as the industry standard SoundBlaster (TM Creative Labs) may support volume control. This command 
returns the current volume setting as a percentage. The default value is 50.

Syntax: WAVGetVolume(Device,LeftVol, RightVol,Result)

Parameters:
Device The device number of the sound device. For a system with one sound card, this will be 0.

LeftVol, RightVol The default value is 50, and the WAV file will play as recorded.

Result 1 if the operation was successful. If the operation fails, the value may be
0    =    could not open the play device.
-1 = INVALID DEVICE specified
-2 = NO DRIVER loaded
-3 = NO MEMORY for operation
-4 = function NOT SUPPORTED

Remarks:
Not all sound cards support volume control. Use the WAVGetDevCaps command to list the available controls for your card.

Related Commands:
WAVGetDevCaps    WAVGetNumDevs    WAVGetPitch    WAVPlaySound    WAVSetPitch    WAVSetPlayRate 



WAVPlaySound

This function plays a specified waveform audio (.WAV) file or an entry in the [sounds] section of the registry. In Windows 3.1 and 
NT 3.51, there is a set of WAV files in the windows directory. These are

chimes.wav      chord.wav      ding.wav      mmsound.wav      tada.wav

In Windows 95 and NT 4 the so called “Microsoft Sound” is in c:\windows\media\themic~1.wav.    There are numerous WAV 
files that can be found by looking around the Internet and on bulletin boards.

Syntax:

WAVPlaySound(Sound$,SYNC/ASYNC/LOOP,ALIAS/FILENAME,Result)

Parameters:
Sound$ A waveform sound filename or the name of an entry in the [sounds] section of the registry. 

If this parameter is a null string (" "), any currently playing sound is stopped.

SYNC Causes PiXCL to play the sound synchronously, and the WAVPlaySound function does not 
return until the sound ends.

ASYNC Causes PiXCL to play the sound asynchronously, and the function returns immediately after
beginning the sound. To terminate an asynchronously played sound, WAVPlaySound must 
be called again with Sound$ set to a NULL string.

LOOP The sound plays asynchronously and repeatedly until WAVPlaySound is called again with 
the Sound$ parameter set to NULL. 

ALIAS The Sound$ parameter is a system-event alias in the registry or the WIN.INI file. 

FILENAME The Sound$ specified is a filename. A good programming practice is to include the full path 
in the filename specified.

Result If the sound is played, this integer variable is assigned a value of 1. Otherwise, it is 
assigned a value of 0.

Remarks:

Before PiXCL can play a sound file, you must first install a supported sound board and its associated waveform audio device 
driver. In addition, the sound file must fit in available physical memory and be playable by the installed waveform audio device 
driver.

If a sound card is not fitted or enabled, this command has no effect.

The WAVPlaySound function also plays waveform sounds referred to by a keyname in the Sounds section of the registry. (You 
can see this section of the registry by starting the Registry Editor [REGEDT32.EXE in the Windows NT and 95 system directory] 
and selecting the tree HKEY_CURRENT_USER on Local Machine.) For example, the Sounds section of the registry might look 
like this:

SystemAsterisk:REG_SZ:chord.wav,Asterisk
SystemDefault:REG_SZ:ding.wav,Default Beep
SystemExclamation:REG_SZ:chord.wav,Exclamation
SystemExit:REG_SZ:chimes.wav,Windows Logoff
SystemHand:REG_SZ:chord.wav,Critical Stop
SystemQuestion:REG_SZ:chord.wav,Question
SystemStart:REG_SZ:tada.wav,Windows Logon

To play a sound identified by a registry entry, call WAVPlaySound with Sound$, set to a string that contains the name of the entry
that identifies the sound. For example, to play the sound associated with the SystemStart entry and wait for the sound to finish 



before returning, use the following statement:

WAVPlaySound("SystemStart",SYNC,DEFAULT,Result)

The directories searched for sound files are (in order)

1. The current directory.

2. The Windows directory.

3. The Windows system directory.

4. The directories listed in the PATH environment variable.

Example:

This example plays the tada.wav sound file and doesn't return until the sound is finished. It then plays the sound associated with 
the SystemExclamation setting in the registry, which is by default ding.wav.

WAVPlaySound("tada.wav",SYNC,FILENAME,Result)
WAVPlaySound("SystemExclamation",ASYNC,ALIAS,Result)

Related Commands:
MessageBeep    WAVGetDevCaps    WAVGetNumDevs    WAVGetPitch    WAVGetPlayRate    WAVSetPitch    WAVSetPlayRate 



WAVSetPitch

Sound cards such as the industry standard SoundBlaster (™ Creative Labs) may support playback pitch (i.e. the sound playback
frequency) changes. This command set the current pitch setting as a percentage. The default value is 100. Values can be less 
(e.g. 80) or more (e.g. 130).

Syntax: WAVSetPitch(Device,Pitch)

Parameters:
Device The device number of the sound device. For a system with one sound card, this will be 0.

Pitch The default value is 100, and the WAV file will play as recorded. If the operation fails, the 
value may be
 0 =    could not open the play device.
-1 = INVALID DEVICE specified
-2 = NO DRIVER loaded
-3 = NO MEMORY for operation
-4 = function NOT SUPPORTED

Remarks:
Not all sound cards support Pitch control. Use the WAVGetDevCaps command to list the available controls for your card.

Related Commands:
WAVGetDevCaps    WAVGetNumDevs    WAVGetPitch    WAVGetPlayRate    WAVPlaySound    WAVSetPlayRate 



WAVSetPlayRate

Sound cards such as the industry standard SoundBlaster (TM Creative Labs) may support playback rate control. This command 
sets the current rate setting as a percentage. The default value is 100.

Syntax: WAVGetPlayRate(Device,PlayRate)

Parameters:
Device The device number of the sound device. For a system with one sound card, this will be 0.

PlayRate The default value is 100, and the WAV file will play as recorded.

If the operation fails, the value may be
0    =    could not open the play device.
-1 = INVALID DEVICE specified
-2 = NO DRIVER loaded
-3 = NO MEMORY for operation
-4 = function NOT SUPPORTED

Remarks:
Not all sound cards support playback rate control. Use the WAVGetDevCaps command to list the available controls for your card.

Related Commands:
WAVGetDevCaps    WAVGetNumDevs    WAVGetPitch    WAVGetPlayRate    WAVPlaySound    WAVSetPitch



WAVSetVolume

Sound cards such as the industry standard SoundBlaster (TM Creative Labs) may support volume control. This command sets 
the current volume setting as a percentage. The default value is 50, minimum value is 0, and maximum value is 100.

Syntax: WAVSetVolume(Device,LeftVol, RightVol,Result)

Parameters:
Device The device number of the sound device. For a system with one sound card, this will be 0.

LeftVol, RightVol The default value is 50, and the WAV file will play as recorded.

Result 1 if the operation was successful. If the operation fails, the value may be
0    =    could not open the play device.
-1 = INVALID DEVICE specified
-2 = NO DRIVER loaded
-3 = NO MEMORY for operation
-4 = function NOT SUPPORTED

Remarks:
Not all sound cards support volume control. Use the WAVGetDevCaps command to list the available controls for your card.

Related Commands:
WAVGetDevCaps    WAVGetNumDevs    WAVGetPitch    WAVPlaySound    WAVSetPitch    WAVSetPlayRate 



While Loops

PiXCL supports the structured WHILE loop, as follows.

Syntax: While num_equality | string_equality
       ... commands
        If <condition> Then Break {optional}
        ... commands
EndWhile

Example:
While supports numeric or string equality tests. You must ensure that the testing variable is initialized before the loop is started, 
or a syntax error occurs.    For example, a While loop that tests a numeric variable ...

Count = 0
While Count <= 5
    ...commands
    Count++
EndWhile

and a While loop that tests a string variable ...

Count$ = “A”
While Count = “A”
    ...commands
    If <condition> Then Count$ = “B”
    ... commands
EndWhile

See the sample program ForWhile.pxl for a detailed example.

Remarks:
PiXCL commands within a While loop do not need to be indented, but we recommend that that you do for clarity.

Inserting a Break command within a For-Next loop will break out of the loop. If a Break command is located outside of a For-Next
or While loop, it is ignored.

You can have GoSub commands within While-EndWhile structures, so long as the subroutine does in fact return to the structure. 
A GoTo statement within the While-EndWhile is acceptable, but a GoTo that jumps outside the structure is not only poor 
programming practice, but may eventually cause a syntax error in code that previously runs correctly. This is not a bug: its 
been intentionally left in the parser code so a Syntax Error will be flagged. The Syntax Error occurs because PiXCL keeps 
a record of the embedded pointers to EndWhile keywords, and resets them as the code is executed. A jump outside the structure
leaves a valid EndWhile pointer, and eventually all the entries are used up.

The same situation applies to using a GoTo to jump out of a If-Else-Endif loop. 

Related commands:
For-Next 



WinAdjustRect

One of the first commands in a PiXCL script is WinLocate that sets the position of the window. Because your PC may be set to 
small or large fonts, the size of the titlebar and menu bar (if present), plus the border style defines the size of the client area. 

It is often handy to be able to specify the desired client area position and dimensions, without having to be concerned with the 
actual window size. The WinAdjustRect command provides this facility. You specify the screen coordinates of the desired client 
area, and the WinAdjustRect returns the required coordinates for the WinLocate command.

Syntax: WinAdjustRect(cx1,cy1,cx2,cy2,NOMENU | MENU, wx1,wy1,wx2,wy2)

Parameters:
cx1,cy1,cx2,cy2 The desired client area in screen coordinates.

NOMENU | MENU Defines if the application has a menubar using the SetMenu command.

wx1,wy1,wx2,wy2 The returned window area in screen coordinates.

Remarks:
The returned window area coordinates can be negative. For example, a client area of 0,0,300,200 will produce a window with 
negative top left coordinates. A following WinLocate command will set the window to these negative coordinates.

Example:
Initialize:

Title$ = "PiXCL 4.2 Image Processing"
UseCaption(Title$)
WinAdjustRect(50,100,880,635,MENU,wx1,wy1,wx2,wy2)
WinLocate(Title$,wx1,wy1,wx2,wy2,Res)
. . .

Related Commands:
WinLocate , WinGetClientRect , WinGetLocation 



WinClose

Closes an active application.

Syntax: WinClose(Windowname$,Result)

Parameters:
Windowname$ The name of the application you want to check. Be sure to specify the full 

window name exactly as it appears in the Task List, paying careful attention to 
spacing (case doesn't matter).

Result An integer variable indicating whether Windowname$ has been closed. If it was 
closed, this variable is assigned a value of 1. Otherwise, it is assigned a value of 
0.

Remark:

PiXCL is quite picky about Windowname$. If you don't enter the window's name exactly as it appears in the title bar, paying 
careful attention to case and spacing, the function will fail and return a Result of zero.

Example:

The following program tries to close a copy of Notepad (one that has NETWORKS.TXT open) and displays a message to that 
effect.

App$ ="Notepad - NETWORKS.TXT"
WinClose(App$,Result)
If Result = 1
    TextOut$ = App$ + " was closed." 
Else
    TextOut$ = App$ + " was not closed."
Endif
DrawText(10,10,TextOut$)
WaitInput()

Related Commands:
EnumWindows    WinGetActive    WinSetActive    WinGetLocation    WinLocate    WinShow    WinClose



WinDisableInput

PiXCL 5 command. At times you may need to keep your application running, but disable the keyboard and mouse inputs. The 
WinDisableInput command provides the way to do this. This command works on the current PiXCL application only.

Syntax: WinDisableInput(Time, Result)

Parameters: 
Time 0 = the default condition with all input enabled.

1 = keyboard and mouse input is disabled until re-enabled.
>1 = the time in mS that inputs will be disabled.

Result A non-zero value if the operation was successful, otherwise 0.

Remarks:
This command is best used to disable keyboard and mouse while a critical process that you don’t want interrrupted is running. 
E.g.

WinDisableInput(1,Res)
. . . some processing code
WinDisableInput(0,Res)

Related Commands:
WinShow    WaitInput    



WinExist

Determines whether an application is active.

Syntax: WinExist(Windowname$,Result)

Parameters:
Windowname$ The name of the application you want to check. Be sure to specify the full 

window name exactly as it appears in the Task List, paying careful attention to 
spacing (case doesn't matter).

Result An integer variable indicating whether Windowname$ is active. If it is active, this 
variable is assigned a value of 1. Otherwise, it is assigned a value of 0.

Remark:

PiXCL is quite picky about Windowname$. If you don't enter the window's name exactly as it appears in the title bar, paying 
careful attention to case and spacing, the function will fail and return a Result of zero.

Example:

The following program tests for whether a copy of Notepad (one that has NETWORKS.TXT open) is active and displays a 
message to that effect.

App$="Notepad - NETWORKS.TXT"
WinExist(App$,Result)
If Result = 1 Then TextOut$ = App$ + " is active" | Goto Draw
TextOut$ = App$ + " is not active"
Draw:
DrawText(10,10,TextOut$)
WaitInput()

Related Commands:
WinClose    WinGetActive    WinLocate    WinSetActive    WinShow



WinGetActive

Returns the name of the active application window.

Syntax: WinGetActive(Windowname$)

Parameter:
Windowname$ A string variable that will contain the name of the active application window as it 

appears in the application's title bar.

Remark:

The name that PiXCL returns is the one that appears in the active application title bar. In the multi-tasking environment of 
Windows 95 and NT, this may not always get you the window that you expect. This is because other applications may get their 
slice of cpu time just after the PiXCL application issues the WinGetActive command to Windows. If this is a problem in your 
PiXCL application, try to write your script to verify that the partial name of the located window. This is usually easy to do. For 
example, the name of the application, or the file that is being handled can often be used as the check.

Example:

The following program gets the name of the active application and minimizes its window to an icon.

WinGetActive(Windowname$)
WinShow(Windowname$,MINIMIZE,Result)

Related Commands:
WinClose    WinSetActive    WinLocate    WinShow



WinGetClientRect

The WinGetClientRect function retrieves the coordinates of a window's client area. The client coordinates specify the upper-left 
and lower-right corners of the client area. Because client coordinates are relative to the upper-left corner of a window's client 
area, the coordinates of the upper-left corner are (0,0). 

Syntax WinGetClientRect(Window$,x1,y1,x2,y2)

Parameters
Window$ The name of the target window. This can be acquired from several commands. If

Window$ is NULL (i.e. "") the current PiXCL application window name is used.

x1,y1,x2,y2 The returned client area coordinates of the selected window. x1, y1 always 
return zero

Remarks
If the Window does not exist, x2,y2 will also return zero. This command is useful in determining if the system is using small or 
large fonts, as this affects the number of absolute vertical screen pixels used for the title and menu bars. 

The returned coordinates can be passed directly to any of the SetMouse commands, when the whole client area is required to be
mouse active.

Example:
WinGetClientRect(Win$,cx1,cy1,cx2,cy2)
SetMouse(cx1,cy1,cx2,cy2,Process,X,Y)
Goto Wait_for_Input

Process:
{ handle the mouse click...}
SetMouse()
Goto Wait_for_Input

Related Commands:
EnumWindows    WinShow    WinGetLocation    WinLocate    WinAdjustRect 



WinGetLocation

Gets the co-ordinate location of a parent window    and returns the upper-left corner of window    using (x1,y1) and the lower-right 
corner using (x2,y2).

Syntax: WinGetLocation(Windowname$,x1,y1,x2,y2,Result)

Parameters:
Windowname$ The name of the application you want to reposition. Be sure to use the full 

window name exactly as it appears in the Task List, paying careful attention to 
spacing (case doesn't matter).

x1,y1 The upper-left corner of the specified window. 

x2,y2 The lower-right corner of the specified window.

Result An integer variable indicating whether or not Windowname$ was successfully 
located.    If the co-ordinates can be located, this variable is assigned a value of 
1. Otherwise, it is assigned a value of 0.

Remarks:

By default PiXCL uses metric coordinates. If you want to position windows with a higher degree of precision, use the 
UseCoordinates command to change the unit of measure to pixels.

The returned co-ordinates can be positive or negative, since windows can be moved to a very large co-ordinate space. The top 
left corner of your screen is co-ordinate (0,0).

Example:

The following program changes the coordinate system to pixels, launches Notepad, and then repositions it elsewhere on the 
screen, set to TOPMOST display.

UseCoordinates(PIXEL)
Run("Notepad")
WinGetLocation("Notepad - (Untitled)",X1,Y1,X2,Y2,Result)
X1 = X1 + 200     Y1 = Y1 + 200
X2 = X2 + 200 Y2 = Y2 + 200
WinLocate("Notepad - (Untitled)",X1,Y1,X2,Y2,Result)
WinShow("Notepad - (Untitled)",TOPMOST,Result)

Related Commands:
EnumWindows    WinClose    WinGetActive    WinSetActive    WinShow    WinAdjustRect



WinHelp

Run the WinHelp utility to access any Help file, or Helpfile topics by topic number or name or keyword.

Syntax: WinHelp(HelpFile$,COMMAND_TOKEN,KeyWord$)

Parameters:
Windowname$ The name of the help file you want to view. This can be in the current directory, 

or any directory in the PATH. It is best to specify the exact path in the help 
filename string.

COMMAND_TOKEN The type of command to be issued to WinHlp32. This can any one of 
COMMAND, CONTENTS, CONTEXT, HELPONHELP, FINDER, KEY, 
PARTIALKEY or QUIT.

KeyWord$ This argument varies depending on the COMMAND_TOKEN, as follows:

COMMAND KeyWord$    contains a Windows Help macro or set of macros in one string. For 
example, KeyWord$ can be set to "About()" and will display the Help file 
AboutBox information.    See more information on Help Macros.

CONTENTS Display the selected Help file Contents topic. All Help files are supposed to have 
a Contents topic, even if not labeled as such. KeyWord$ should be set to NULL 
(i.e. "") for this command.

CONTEXT KeyWord$    is an integer number string that references a particular help topic. It 
is unlikely that you will have this information unless you are building the help files
yourself. This argument can be set to “0” when not required or known.

HELPONHELP Displays the standard Window that provides instructions on how to use Helpfiles.
KeyWord$ should be set to NULL (i.e. "") for this command.

FINDER Displays the standard Index and Find property sheets. KeyWord$ should be set 
to NULL (i.e. "") for this command.

KEY KeyWord$  is the keyword for which WinHlp32 searches. It displays the topic in 
the keyword table that matches the specified keyword, if there is an exact match.
If there is more than one match, it displays the Index with the topics listed in the 
Topics Found list box. To display the Index without passing a keyword, you 
should set KeyWord$ to a NULL string. Multiple keywords must be separated by 
semicolons within the string.

PARTIALKEY KeyWord$  is the keyword for which WinHlp32 searches. It displays the topic in 
the keyword table that matches the specified keyword, if there is an exact match.
If there is more than one match, it displays the Topics Found dialog box. To 
display the Index without passing a keyword, you should use a pointer to a NULL
string. Multiple keywords must be separated by semicolons.

QUIT Closes the specified Help window if it exists. KeyWord$ should be set to NULL 
(i.e. "") for this command.

Starting a Help file at a specific topic using the Run(“WinHlp32 ...”) method.

WINHLP32 also accepts arguments that allow you to specify a Help file topic to be displayed, either by an integer ID number or 
symbol, which you won’t know unless you are the author of the Help file, and are using a Help authoring tool such as BlueSky 
ROBOhelp (TM), or by specifying the EXACT topic title string as it appears in the Help file. The arguments are



winhlp32.exe [[-H] [-G[n]] [-W window_name] [-K keyword] 
[-N integer] [-I topic_name] [-P popup-id] 

HLP_filename]

Parameter Description
-G[n] Creates a configuration (.gid) file and quits. If a number is specified, it determines

which extensible tab to display by default the first time the Help file is opened. A 
value of 1 would be the first tab beyond the Find tab.

-H Displays the Winhlp32.hlp Help file.
-I topic_name Displays the Help topic with the specified the topic ID.
-K keyword Displays the topic identified by the specified keyword.
-N integer Displays the topic specified by the context number (defined in the [MAP] section 

of the project file).

-P popup_id Displays the specified pop-up topic. You must use the -P switch in combination 
with the -I or -N switch, as shown in the following examples:
WINHELP -P -I EXEC_WINHELP HCW.HLP
WINHELP -P -N 311 MYFILE.HLP

-W window_name Displays the topic in the specified window definition.
HLP_filename Specifies the Help file to display. If a name is not specified, the File Open dialog 

box appears.

Comments

The -G switch should be used by Setup programs when they install a newer version of a Help file or a contents file. This switch 
causes the .gid file to be rebuilt. WinHlp32 will automatically build the .gid file the first time a Help file is opened — unless the 
winhlp32 -G command has already been run on the file.

If the topic_name or keyword is two or more words, the spaces and any other punctuation characters must be replaced by the 
underscore character (“_”). Multiple keywords should be separated by a semi-colon.

Here is some PiXCL code that starts a Help file at a specific topic. Observe that the existence of the Help file is first verified.

Start:
HelpFile$ = SourceDir$ + “\newapp.hlp”
FileExist(HelpFile$,Res)
If Res = 1 Then Goto See_Help
    MessageBox(OK,1,EXCLAMATION,
    HelpFile$,”WARNING: Unable to locate Help file”,Res)

        Goto Wait_For_Input
{endif}

See_Help:
CommandLine$ = “WinHlp32 -n 125 “ + HelpFile$
{or use this alternative ...
CommandLine$ = “WinHlp32 -i Help_topic_Two “ + HelpFile$
 ...end of comment}
Run(CommandLine$)
Goto Wait_for_Input

Notes:
1. While .HLP is one of the default Windows file associations, and the Program Manager (and similar) Run commands will 
automatically assume that WINHLP32.EXE should be invoked because of in-built file associations, it is not the case with the 
PiXCL Run(...) command. If you issue a command

Run(“newapp.hlp”)
you will get a message box informing you that the “...file cannot be accessed at this time.”

Related Command



WinHTMLHelp



WinHTMLHelp

Run the HTMLHelp utility (if installed) to access any compiled HTML Help file, or Helpfile topics by topic name or keyword. This 
command in PiXCL 4.20 and later requires HTML Help controls and DLLs. If you have Internet Explorer 4.01 or later installed 
these controls and DLLs are already present on your PC. There are also found in the Microsoft free download HHUPD.EXE, 
which is available from http://www.microsoft.com and from the PiXCL Registered Users’ Area. Download these if you don’t 
want to install Internet Explorer 4.01

HTML Help is the new “standard” being promoted by Microsoft, and is at least as capable as the traditional WinHelp method, 
which will continue to be supported.    Microsoft also has a free HTML help utility called HTML Help Workshop, available at 
http://www.microsoft.com/workshop/author/htmlhelp. Please consult this site or a variety of publications for full details on 
HTML Help authoring.

Syntax: WinHTMLHelp(HtmlHelp$, MODE_TOKEN, COMMAND_TOKEN, KeyWord$,x1,y1,x2,y2)

Parameters:
HtmlHelp$ The name of the help file you want to view. This can be in the current directory, 

or any directory in the PATH. It is best to specify the exact path in the help 
filename string. The extension is .chm.

MODE_TOKEN The HTMLHelp view mode. This can any one of 
SIBLING Display help in a window that is initially on top of the PiXCL application, but any 

other window can cover it.
OWNED Display help in a window that is always on top of the PiXCL application, but not 

any other application window.
CHILD Display help in a window that is a child of the PiXCL application.

COMMAND_TOKEN The type of command to be issued to the HTMLHelp viewer. This can any one of
CONTENTS, CONTEXT, POPUP, KEY or QUIT.

KeyWord$ This argument varies depending on the COMMAND_TOKEN, as follows:

CONTENTS Display the selected Help file Contents topic. All Help files are supposed to have 
a Contents topic, even if not labeled as such. KeyWord$ should be set to NULL 
(i.e. "") for this command. Arguments x1, y1, x2, y2 should be set to zero, and 
are ignored.

CONTEXT KeyWord$ is an integer number string that references a particular help topic. It is
unlikely that you will have this information unless you are building the help files 
yourself, and creating context IDs. This argument can be set to a null string 
when not required or known. x1 is used for the context ID. y1, x2,y2 should be 
set to zero, and are ignored.

POPUP Displays a popup window with the text string defined in HtmlHelp$ with the desired font in 
KeyWord$, in the form “facename[,point size[,charset[,color[, BOLD ITALIC UNDERLINE]]]]”. 
Note there are no commas between BOLD ITALIC UNDERLINE. 
Charset is either left blank or set to 0. Values of 1 and 2 may produce alternative character sets 
for the selected font.
Color  takes the form #00bbggrr. This is the same format for colours as in the HTML keyword 
<FONT>. Hence red is defined as #000000ff.
If the parameter is not used e.g. charset, it is left blank, but the comma is still required.This 
command is very handy because you can create HTML string variables within your PiXCL 
application, without the need for external files. The windows top-center screen coordinates are 
x1,y1. Arguments x2,y2 should be set to zero, and are ignored. If KeyWord$ is NULL, the 
current font and popup text color are set by a UseFont command is used. If no font is selected, 
the default is “Arial,,, “. Note the multiple commas.

KEY KeyWord$  is the keyword for which HTML Help searches. It displays the topic in
the keyword table that matches the specified keyword, if there is an exact match.
If there is more than one match, it displays the Index with the topics listed in the 
Topics Found list box. To display the Index without passing a keyword, you 
should set KeyWord$ to a NULL string. Multiple keywords must be separated by 



semicolons within the string. Arguments x1,y1, x2,y2 should be set to zero, and 
are ignored.

QUIT Closes the specified Help window if it exists. KeyWord$ should be set to NULL 
(i.e. "") for this command. Arguments x1,y1, x2,y2 should be set to zero, and 
are ignored.

x1, y1, x2, y2 Used for general purpose position and values, depending on the command.

Examples.
Here is some PiXCL code that starts a Help file at a specific topic. Observe that the existence of the Help file is first verified.

Start:
HTMLHelpFile$ = SourceDir$ + “\newapp.chm”
FileExist(HTMLHelpFile$,Res)
If Res = 1 Then Goto See_Help
    MessageBox(OK,1,EXCLAMATION,
    HelpFile$,”WARNING: Unable to locate HTML Help file”,Res)

        Goto Wait_For_Input
{endif}

See_Help:
WinHTMLHelp(HTMLHelpFile$,SIBLING,CONTENTS,””,0,0,0,0)
WinHTMLHelp(HTMLHelpFile$,SIBLING,POPUP,”This is a popup”,100,120,0,0)
Goto Wait_for_Input

CloseHelp:
WinHTMLHelp(HTMLHelpFile$,SIBLING,QUIT,””,0,0,0,0)
Goto Wait_for_Input

See also the sample application source, htmlhelp.pxl.

Remarks:
1. If you don’t close the HTML Help file, PiXCL will unload the HTML Viewer library.
2. Popup windows will be cleared on the next left or right mouse click.
3. If you invoke WinHTMLhelp from a toolbar button, it is VERY advisable to include a WaitInput(1) as the first command after 

the button handler label, so that Windows can catch up.

Related Commands:
HTMLControl    



WinLocate

Positions a window to a new location. You specify the upper-left corner of the new location using (x1,y1) and the lower-right 
corner using (x2,y2).

Syntax: WinLocate(Windowname$,x1,y1,x2,y2,Result)

Parameters:
Windowname$ The name of the application you want to reposition. Be sure to use the full 

window name exactly as it appears in the Task List, paying careful attention to 
spacing (case doesn't matter).

x1,y1 The upper-left corner of the window.

x2,y2 The lower-right corner of the window.

Result An integer variable indicating whether or not Windowname$ was successfully 
repositioned. If it was repositioned, this variable is assigned a value of 1. 
Otherwise, it is assigned a value of 0.

Remarks:

By default PiXCL uses metric coordinates. If you want to position windows with a higher degree of precision, use the 
UseCoordinates command to change the unit of measure to pixels.

If a window is maximized or minimized, be sure to use the WinShow command to restore it to its normal size before moving it 
with WinLocate.

Example:

The following program changes the coordinate system to pixels, launches Notepad, and then repositions it to occupy a small 
square at the upper-left corner of the screen.

UseCoordinates(PIXEL)
Run("Notepad")
WinLocate("Notepad - (Untitled)",0,0,200,200,Result)

Related Commands:
WinClose    WinGetActive    WinSetActive    WinShow    WinAdjustRect



WinResizeAt

Some applications require idle loop processing that needs to know when the main PiXCL application window has been resized. 
The WinResizeAt command provides a jump-to label so processing (usually some sort of client area redraw) can be done as 
needed, without having an inefficient polling loop.    Once set, the jump-to label can only be changed, not disabled. You can set 
the jump-to label to a dummy label or the main idle loop label if required.

Syntax: WinResizeAt(Label)

Parameter:
Label The jump-to label. If Label does not exist in the script, a syntax error is generated.

Related Commands:
BMWSysCmdEndAt      SysCmdEndAt 



WinSetActive

Activates an application.

Syntax: WinSetActive(Windowname$,Result)

Parameters:
Windowname$ The name of the application you want to make active. Be sure to use the full 

window name exactly as it appears in the Task List, paying careful attention to 
spacing (case doesn't matter).

Result An integer variable indicating whether or not Windowname$ was successfully 
activated. If it was activated, this variable is assigned a value of 1. Otherwise, 
this variable is assigned a value of 0.

Remarks:

When using this command, be aware that window names can change. Most applications append the name of the working file to 
the end of the application name in the window title bar. For example, Notepad might have window names like

Notepad - (Untitled)
Notepad - README.TXT

Example:

The following program gets the name of the PiXCL window and then launches three applications in succession: Notepad, Write, 
and Cardfile. After launching each application, it stores its name in a string variable--for example, Win1$ is assigned "Notepad - 
(Untitled)". Next, it reactivates the PiXCL window (bringing it to the front of the stack), puts up a list box containing the names of 
the three applications, and prompts you to choose one to activate. After you select a name from the list followed by OK, the 
program activates the chosen application.

WinGetActive(PiXCL$)
Run("Notepad")
WinGetActive(Win1$)
Run("Write")
WinGetActive(Win2$)
Run("Cardfile")
WinGetActive(Win3$)
Caption$ = "Choose an application to activate"
List$ = Win1$ + ";"
List$ = List$ + Win2$
List$ = List$ + ";"
List$ = List$ + Win3$
WinSetActive(PiXCL$,Ignore)
ListBox(Caption$,List$,";",Window$)
If Window$ = "" Then End
WinSetActive(Window$,Ignore)
WaitInput()

Related Commands:
WinClose    WinGetActive    WinLocate      WinShow



WinShow

Hides, unhides, minimizes, maximizes, or restores an application window.

Syntax:
WinShow(Windowname$,

HIDE / UNHIDE/ MINIMIZE / MAXIMIZE / 
RESTORE / TOP/ TOPMOST / NOTOPMOST / 
BOTTOM / SHOWINNOACTIVE / SHOWNOACTIVATE /
NOMOVE / NOSIZE / NOTITLE, 
Result)

Parameters:
Windowname$ The name of the application whose window you want to affect.

HIDE Hides the window.

UNHIDE or SHOW Unhides the window.

MAXIMIZE Maximizes the window.

MINIMIZE Minimizes the window.

RESTORE Restores the window.

TOP Sets the window to the top of the Z-order list.
TOPMOST Sets the window to always topmost window
NOTOPMOST Resets the TOPMOST flag
BOTTOM Move the window to the bottom of the Z-order list
SHOWINNOACTIVE Minimize the window but don’t change the focus.
SHOWNOACTIVATE Display the window in the last current position but don't change the focus.

NOMOVE For PiXCL applications only: removes the title bar and sets the window style 
so that it cannot be moved except with the WinLocate command.

NOSIZE For PiXCL applications only: sets the border style to thin, preventing the 
window being sized with the mouse. To size, use the WinLocate command.

NOTITLE For PiXCL applications only: removes the title bar from the displayed window.
It is still possible to resize the window and move it with the WinLocate 
command.

Result An integer variable indicating the outcome of the operation. If the display 
characteristics of the window were successfully changed, this variable is 
assigned a value of 1. Otherwise, it is assigned a value of 0.

Remark:

You can use this command to change the display characteristics of any running application, including the PiXCL window. 
Using NOMOVE, NOSIZE and NOTITLE has no effect on other application windows: i.e. the commands affect only the current 
running PiXCL application that includes the command.

Example:

This example gets the name of the PiXCL window and then displays a message box asking whether you want to hide the 
window. If you select Yes, the window immediately disappears from view and reappears after two seconds.

WinGetActive(Win$)



MessageBox(YESNO,1,QUESTION,
           "Hide window for 2 seconds?","Hide",Button)
If Button = 2 Then End
WinShow(Win$,HIDE,Result)
WaitInput(2000)
WinShow(Win$,UNHIDE,Result)
DrawText(10,10,"We're back")
WaitInput()

The HIDE token should be used with care. If you HIDE a window, and don’t UNHIDE it later, it will be completely hidden from 
access, even though it is still running. The Windows task list will not show the application, and you will not be able to stop it 
unless you log out of the system. You can recover from this by writing another PiXCL program that uses the EnumWindows(...) 
command, then WinShow(Win$, UNHIDE,Result).

Related Commands:
EnumWindows WinClose    WinGetActive    WinSetActive    WinGetLocation    WinLocate     WinShowLayered    



WinShowLayered

PiXCL 5 command. For Windows 2000 systems only, you can set either a transparency color or alpha blend level to display 
what is called a layered window. This command has no effect under Windows 9x/ME/NT4, as the layering functions are not 
present in Windows itself.

Syntax: WinShowLayered(WindowName$,R,G,B, AlphaLevel, modeTOKEN,Result)

Parameters:
WindowName$ The target window.
R,G,B The RGB transparency colour, if COLORKEY mode is selected.
AlphaLevel A value between 0 = completely transparent, to 255 = completely opaque, if ALPHA mode is 

selected.
COLORKEY Use the RGB value to set the tranparency colour.
ALPHA Display the window at the alpha value.
UNLAYER Turn off the transparency or alpha blending. 
Result 1 if the operation was sucessful, otherwise 0.

Related Command:
WinShow    



WinTitle

Sets the text that appears in the title bar of a main window.

Syntax: WinTitle(Windowname$,Title$)

Parameters:
Windowname$ The name of the application whose title bar you want to change.

Title$ The text you want to appear in the title bar.

Remark:

If you want to use this command to change the caption of the PiXCL window, be sure to provide the current caption in its entirety 
for WindowName$--for example, "PiXCL44 - test.pxl".

Example:

This example starts Notepad and then changes its caption to "George's Editor":

Run("Notepad")
WinTitle("Notepad - (Untitled)","George's Editor")

Related Command:
UseCaption



WinVersion

Returns the current Windows version number.

Syntax: WinVersion(Major,Minor,Build,ServicePack$)

Parameters:
Major The version number: 4 for Windows 95, 98, ME, NT4 and 5 for 2000.

Minor The decimal portion of the version number: 00 for Windows 95, NT4 and 2000, 
10 for Windows 98, and 90 for Windows ME.

Build This is the build number of the specific version. Build numbers are specially 
relevent during the Microsoft pre-release programs. They can be useful in 
locating issues between different Win32 releases, for example between 
Windows NT, Windows 95 and Windows 98.    In Windows 95, this is reported as 
950, in Windows 98, as 1998. OEM versions of Windows 98 report other 
numbers: Dell systems for example will often report 2222AA which indicates 
Windows 98 2nd edition. In NT 4 Workstation, this is usually1381 for the English 
language version. The point is that the build number is quite variable, and is 
provided for information purposes only, or where a system administration task 
requires it.

ServicePack$ In Windows NT, this string reports the installed service pack, e.g. “Service Pack 
3”. In Windows 95 and 98, this string will generally be null, but may report 
arbitrary information about the software version.

Example:

If you're writing an PiXCL program that you expect will be used on Windows 95, 98, NT4 and Windows 2000 systems, you can 
tailor your font selection accordingly. For example, this program determines the Windows version number and then uses Arial for 
Windows NT 4, Roman for Windows 95, and Garamond for Windows 98. It then displays some sample text using the chosen 
font.

WinVersion(Major,Decimal,Build,Pack$)
If Build = 0950
    UseFont("Roman",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
    SampleText$="This is Windows 95’s Roman"
Endif
If Build = 1998
    UseFont("Garamond",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
    SampleText$="This is Windows 98’s Garamond"
Endif
If Build = 1381
    UseFont("Arial",0,0,NOBOLD,NOITALIC,NOUNDERLINE,0,0,0)
    SampleText$="This is Windows NT4's Arial"
Endif
DrawText(10,10,SampleText$)



WriteBitmapID

PiXCL 5 command. Any bitmap loaded into the PiXCL image list can have an identifier string written into the bitmap data at an 
arbitrary location. Because strings are ascii characters in the range 0-127 and 128-255 for other characters, an identifier string 
will often be in effect invisible.    The general term for this hiding of data within other data is steganography.

Syntax: WriteBitmapID(Imagename$,Pixel,Line,Idstring$,Result)

Parameters:
Imagename$ The image loaded into the PiXCL image list. If the image is not loaded, the function fails.
Pixel, Line The start coordinate for the ID string.
Idstring$ The string to write. This must fit into the current line.
Result 1 if the operation succeeded, otherwise 0.

Related Command:
ReadBitmapID    SaveBitmap 



WriteBitmapRect

Write a sub-area of a BMP bitmap on the disk, using the current image in the PiXCL image list. The current image must have the 
same bits per pixel as the target bitmap.

Syntax: WriteBitmapRect(ImageFile$,x1,y1,x2,y2,Result)

Parameters:
ImageFile$ The target image on the disk. Your PiXCL code must ensure that you are accessing the current 

image in the list.
x1,y1,x2,y2 The region in the target bitmap on disk that is to be replaced.
Result 1 if the operation is successful, otherwise 0.

Example:
This code fragment reads an image rectangle into memory, then writes it out to the target bitmap, after converting the subarea 
into 24 bits per pixel.
ProcessSubArea:

ReadBitmapRect(Image9$,0,0,100,100,Res)
DrawBitmap(100,100,Image9$)
DrawStatusWinText(0,Image9$)
ConvertColorSpace(RGB24,NONE,Res)
WriteBitmapRect(Image5$,0,0,100,100,Res)
If Res = 0 Then DrawStatusWinText(0,"Write Rectangle failed.")
FreeBitmapAll
DrawBitmap(60,60,Image5$)
Goto Wait_for_Input

Related Commands:
ReadBitmapRect 



WriteCommPort

Asynchronous data streams typically include variable length data, followed by a terminating character or string.    Most useful 
serial devices like digitizing tablets let you configure the terminating string. In the current version of PiXCL, this string MUST be 
set to a carriage return and linefeed pair (CR-LF). 

PiXCL maintains a write buffer of about 4 KB. When the last character in the buffer is written to the port,    a comms event is 
generated to which your PiXCL program can respond, in much the same way that your program responds to mouse or keyboard 
events in the WaitInput() idle loop.

Hence, to receive a write comms event, you would use a command
WaitCommsEvent(W,<label>,Timeout) 

Syntax: WriteCommPort(COMx,Data$)

Parameters:
COMx Port,where x = 1 - 4

Data$ The data written to the port buffer. 

Related Commands:
ClearCommPort    EscCommFunction    GetCommPort    ReadCommPort    SetCommPort    WaitCommEvent 



ZoomBitmapWindow

You can set the positive or negative zoom factor of the image in a bitmap window with this command. The minimum 
zoom factor available is 16:1, which is reported by the GetBMWZoom command as ”[.063:1]”.

Syntax: ZoomBitmapWindow(WindowId,ImageFile$, xPos,yPos, Factor,
RELATIVE|INCREMENT|ABSOLUTE)

Parameters:
WindowID The ID number returned by the DrawBitmapWindow command.

xPos,yPos The BITMAP coordinates to zoom on, which may have been returned by the 
SetBMWMouse or SetBMWRightMouse command. The command will try to put this 
point in the center of the bitmap window.

Factor The new zoom factor in the range -16 to -2 and +1 to +16, multiplied by 10. Hence a 
zoom factor of 2 requires a Factor of 20.    A value of -1 or 0 is equivalent to +1.

RELATIVE Zoom relative to the current factor.
INCREMENT Zoom from the current factor.
ABSOLUTE Zoom absolute mode.

Related Commands:
BMWinTitle    CloseBitmapWindow    DrawBitmapWindow    GetBMWZoom    SetBMWMouse 



MCI Command Strings

The following command strings are used with MCI devices.
break 
capability 
capture 
close 
configure 
copy 
cue 
cut 
delete 
escape 
freeze 
index 
info 
list 
load 
mark 
monitor 
open 
paste 
pause 
play 
put 
quality 

realize 
record 
reserve 
restore 
resume 
save 
seek 
set 
setaudio 
settimecode 
settuner 
setvideo 
signal 
spin 
status 
step 
stop 
sysinfo 
undo 
unfreeze 
update 
where 

    window 



break

The break command specifies a key to abort a command that was invoked using the "wait" flag. This command is an MCI 
system command; it is interpreted directly by MCI.

MCI Syntax: “break    DeviceID    VirtualKey    Flags”

Parameters:
DeviceID Identifier of an MCI device. This identifier or alias is assigned when the device is 

opened. 
VirtualKey One of the following flags: 

on virtual key code Specifies the key that aborts a command that was started 
using the "wait" flag.

off Disables the current break key.
Flags Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be 

specified.



capability

The capability command requests information about a particular capability of a device. All MCI devices recognize this command.
MCI Syntax: “capability    DeviceID    Request    Flags”

Parameters:
DeviceID Identifier of an MCI device. This identifier or alias is assigned when the device is 

opened. 
Request Flag that identifies a device capability. The following table lists device types that 

recognize the capability command and the flags used by each type: 
cdaudio can eject

can play
can record
can save
compound device

device type
has audio
has video
uses files

digitalvideo can eject
can freeze
can lock
can play
can record
can reverse
can save
can stretch
can stretch input
can test

compound device
device type
has audio
has still
has video
maximum play rate
minimum play rate
uses files
uses palettes
windows

overlay can eject
can freeze
can play
can record
can save
can stretch

compound device
device type
has audio
has video
uses files
windows

sequencer can eject
can play
can record
can save
compound device

device type
has audio
has video
uses files

vcr can detect length
can eject
can freeze
can monitor sources
can play
can preroll
can preview
can record
can reverse
can save
can test

clock increment rate
compound device
device type
has audio
has clock
has timecode
has video
number of marks
seek accuracy
uses files

videodisc can eject
can play
can record
can reverse
can save
CAV
CLV
compound device

device type
fast play rate
has audio
has video
normal play rate
slow play rate
uses files

waveaudio can eject
can play
can record
can save
compound device
device type

has audio
has video
inputs
outputs
uses files

The following table lists the flags that can be specified in the Request parameter and their meanings: 
can detect length Returns TRUE if the device can detect the length of the media.



can eject Returns TRUE if the device can eject the media.
can freeze Returns TRUE if the device can freeze data in the frame buffer.
can lock Returns TRUE if the device can lock data.
can monitor sources Returns TRUE if the device can pass an input (source) to the monitored 

output, independent of the current input selection.
can play Returns TRUE if the device can play.
can preroll Returns TRUE if the device supports the "preroll" flag with the cue 

command.
can preview Returns TRUE if the device supports previews.
can record Returns TRUE if the device supports recording.
can reverse Returns TRUE if the device can play in reverse.
can save Returns TRUE if the device can save data.
can stretch Returns TRUE if the device can stretch frames to fill a given display 

rectangle.
can stretch input Returns TRUE if the device can resize an image in the process of 

digitizing it into the frame buffer.
can test Returns TRUE if the device recognizes the test keyword. 
cav When combined with other items, this flag specifies that the return 

information applies to CAV format videodiscs. This is the default if no 
videodisc is inserted.

clock increment rate Returns the number of subdivisions the external clock supports per 
second. If the external clock is a millisecond clock, the return value is 
1000. If the return value is 0, no clock is supported. 

clv When combined with other items, this flag specifies that the return 
information applies to CLV format videodiscs.

compound device Returns TRUE if the device supports an element name (filename).
device type Returns a device type name, which can be one of the following: 

cdaudio
dat
digitalvideo
other
overlay
scanner
sequencer
vcr
videodisc
waveaudio

fast play rate Returns the fast play rate in frames per second, or zero if the device 
cannot play fast.

has audio Returns TRUE if the device supports audio playback.
has clock Returns TRUE if the device has a clock.
has still Returns TRUE if the device treats files with a single image more 

efficiently than motion video files.
has timecode Returns TRUE if the device is capable of supporting timecode, or if it is 

unknown.
has video Returns TRUE if the device supports video.
inputs Returns the total number of input devices.
maximum play rate Returns the maximum play rate, in frames per second, for the device.
minimum play rate Returns the minimum play rate, in frames per second, for the device.
normal play rate Returns the normal play rate, in frames per second, for the device.
number of marks Returns the maximum number of marks that can be used; zero indicates 

that marks are unsupported.
outputs Returns the total number of output devices.
seek accuracy Returns the expected accuracy of a search in frames; 0 indicates that the

device is frame accurate, 1 indicates that the device expects to be within 
one frame of the indicated seek position, and so on.



slow play rate Returns the slow play rate in frames per second, or zero if the device 
cannot play slowly.

uses files Returns TRUE if the data storage used by a compound device is a file.
uses palettes Returns TRUE if the device uses palettes.
windows Returns the number of simultaneous display windows the device can 

support.

Flags Can be "wait", "notify", or both. For digital-video and VCR devices, "test" can also be 
specified.



capture

The capture command copies the contents of the frame buffer and stores it in the specified file. Digital-video devices recognize 
this command.

MCI Syntax: "capture DeviceID Capture Flags”
 
Parameters
DeviceID Identifier of an MCI device. This identifier or alias is assigned when the device is 

opened. 
Capture One or more of the following flags: 

as pathname Specifies the destination path and filename for the captured image. This
flag is required. 
at rectangle Specifies the rectangular region within the frame buffer that the device 
crops and saves to disk. If omitted, the cropped region defaults to the rectangle 
specified or defaulted on a previous put "source" command for this device instance. 

Flags Can be "wait", "notify", "test", or a combination of these 

Remarks
This command might fail if the device is currently playing motion video or executing some other resource-intensive operation. If 
the frame buffer is being updated in real time, the updating momentarily pauses so that a complete image is captured. If the 
device pauses the updating, there might be a visual or audible effect. If the file format, compression algorithm, and quality levels 
have not been set, their defaults are used.



close

The close command closes the device or file and any associated resources. MCI unloads a device when all instances of the 
device or all files are closed. All MCI devices recognize this command.

MCI Syntax: "close DeviceID Flags”
 
Parameters
DeviceID Identifier of an MCI device. This identifier or alias is assigned when the device is 

opened. 
Flags Can be "wait", "notify", "test", or a combination of these 

Remarks
To close all devices opened by your application, specify the "all" device identifier for the DeviceID parameter.

The following command closes the "mysound" device:
close mysound
 



configure

The configure command displays a dialog box used to configure the device. Digital-video devices recognize this command. 

MCI Syntax: "configure DeviceID Flags”
 
Parameters
DeviceID Identifier of an MCI device. This identifier or alias is assigned when the device is 

opened. 
Flags Can be "wait", "notify", "test", or a combination of these 



copy

The copy command copies data to the clipboard. Digital-video devices recognize this command. 

MCI Syntax:    "copy DeviceID Item Flags”
 
Parameters
DeviceID Identifier of an MCI device. This identifier or alias is assigned when the device is 

opened. 
Item One of the following flags identifying the item to copy: 

at rectangle Specifies the portion of each frame that will be copied. If omitted, the 
default setting is the entire frame. 
audio stream stream Specifies the audio stream in the workspace affected by the 
command. If you use this flag and also want to copy video, you must also use the 
"video stream" flag. (If neither flag is specified, all audio and video streams are 
copied.) 
from position Specifies the start of the range copied. If omitted, the default setting is 
the current position. 
to position Specifies the end of the range copied. The audio and video data copied 
are exclusive of this position. If omitted, the default setting is the end of the 
workspace. 
video stream stream Specifies the video stream in the workspace affected by the 
command. If you use this flag and also want to copy audio, you must also use the 
"audio stream" flag. (If neither flag is specified, all audio and video streams are 
copied.) 

Flags Can be "wait", "notify", "test", or a combination of these 



cue

The cue command prepares for playing or recording. Digital-video, VCR, and waveform-audio devices recognize this command. 

MCI Syntax: "cue DeviceID InOutTo Flags”
 
Parameters
DeviceID Identifier of an MCI device. This identifier or alias is assigned when the device is 

opened. 
InOutTo Flag that prepares a device for playing or recording. The following table lists device 

types that recognize the cue command and the flags used by each type: 
digitalvideo input output

noshow to position 
vcr from position preroll

input reverse
output to position 

waveaudio input output 

The following table lists the flags that can be specified in the InOutTo parameter and their meanings:
from position Indicates where to start. 
input Prepares for recording. For digital-video devices, this flag can be omitted if the 

current presentation source is already the external input. 
noshow Prepares for playing a frame without displaying it. When this flag is specified, 

the display continues to show the image in the frame buffer even though its 
corresponding frame is not the current position. A subsequent cue command 
without this flag and without the "to" flag displays the current frame. 

output Prepares for playing. If neither "input" nor "output" is specified, the default 
setting is "output". 

preroll Moves the preroll distance from the in-point. The in-point is the current position,
or the position specified by the "from" flag. 

reverse Indicates play direction is in reverse (backward). 
to position Moves the workspace to the specified position. For VCR devices, this flag 

indicates where to stop. 

Flags Can be "wait", "notify", "test", or a combination of these 



cut

The cut command removes data from the workspace and copies it to the clipboard. Digital-video devices recognize this 
command. 

MCI Syntax: "cut DeviceID Item Flags”
 
Parameters
DeviceID Identifier of an MCI device. This identifier or alias is assigned when the device is 

opened. 
Item One of the following flags identifying the item to cut: 

at rectangle Specifies the portion of each frame cut. If omitted, it defaults to the entire 
frame. When this item is specified, frames are not deleted. Instead the area inside the 
rectangle becomes black. 
audio stream stream Specifies the audio stream in the workspace affected by the 
command. If you use this flag and also want to cut video, you must also use the 
"video stream" flag. (If neither flag is specified, all audio and video streams are cut.) 
from position Specifies the start of the range cut. If omitted, it defaults to the current 
position. 
to position Specifies the end of the range cut. The audio and video data cut are 
exclusive of this position. If omitted it defaults to the end of the workspace. 
video stream stream Specifies the video stream in the workspace affected by the 
command. If you use this flag and also want to cut audio, you must also use the 
"audio stream" flag. (If neither flag is specified, all audio and video streams are cut.) 

Flags Can be "wait", "notify", "test", or a combination of these 



delete

The delete command deletes a data segment from a file. Digital-video and waveform-audio devices recognize this command. 

MCI Syntax: "delete DeviceID Position Flags”
 
Parameters
DeviceID Identifier of an MCI device. This identifier or alias is assigned when the device is 

opened. 
Position Flag that identifies a data segment to delete. The following table lists device types that

recognize the delete command and the flags used by each type: 
digitalvideo at rectangle to position

audio stream stream video stream stream
from position 

waveaudio from position to position 

The following table lists the flags that can be specified in the lpszPosition parameter 
and their meanings:
at rectangle Specifies the portion of each frame cut. If omitted, it defaults to the entire 
frame. When this item is specified, frames are not deleted. Instead the area inside the 
rectangle becomes black. 
audio stream stream Specifies the audio stream in the workspace affected by the 
command. If you use this flag and also want to cut video, you must also use the 
"video stream" flag. (If neither flag is specified, all audio and video streams are cut.) 
from position Specifies the start of the range cut. If omitted, it defaults to the current 
position. 
to position Specifies the end of the range cut. The audio and video data cut are 
exclusive of this position. If omitted it defaults to the end of the workspace. 
video stream stream Specifies the video stream in the workspace affected by the 
command. If you use this flag and also want to cut audio, you must also use the 
"audio stream" flag. (If neither flag is specified, all audio and video streams are cut.) 

Flags Can be "wait", "notify", "test", or a combination of these.

Remarks
Before issuing any commands that use position values, you should set the desired time format by using the set command.
The following command deletes the waveform-audio data from 1 millisecond through 900 milliseconds (assuming the time format
is set to milliseconds):

delete mysound from 1 to 900



escape

The escape command sends device-specific information to a device. Videodisc devices recognize this command. 

MCI Syntax: "escape DeviceID Escape Flags”
 
Parameters
DeviceID Identifier of an MCI device. This identifier or alias is assigned when the device is 

opened. 
Escape Custom information to send to the device. Consult your device documentation.

Flags Can be "wait", "notify", or both. 

Remarks
The following command sends the escape string "SA" to a videodisc device:

escape videodisc SA



freeze

The freeze command freezes video input or video output on a VCR or disables video acquisition to the frame buffer. Digital-
video, video-overlay, and VCR devices recognize this command. 

MCI Syntax: "freeze DeviceID FreezeFlags Flags”
 
Parameters
DeviceID Identifier of an MCI device. This identifier or alias is assigned when the device is 

opened. 
FreezeFlags Flag that identifies what to freeze. The following table lists device types that recognize 

the freeze command and the flags used by each type: 
digitalvideo at rectangle outside 
overlay at rectangle    
vcr field input

frame output 

The following table lists the flags that can be specified in the FreezeFlags parameter and their meanings:
at rectangle Specifies the region that will be frozen. For video-overlay devices,

this region will have video acquisition disabled. For digital-video 
devices, the pixels within the rectangle will have their lock mask 
bit turned on (unless the "outside" flag is specified). The 
rectangle is relative to the video buffer origin and is specified as 
X1 Y1 X2 Y2. The coordinates X1 Y1 specify the upper left corner 
of the rectangle, and the coordinates X2 Y2 specify the width and 
height. 

field Freezes the first field. Field is assumed by default (if neither frame
nor field is specified). 

frame Freezes the entire frame, displaying both fields. 
input Freezes the current frame of the input image, whether it is paused

or running. 
output Freezes the current frame of the output from the VCR. If the VCR 

is playing when freeze is issued, the current frame is frozen and 
the VCR is paused. If the VCR is paused when this command is 
issued, the current frame is frozen. The frozen image remains on 
the output device until an unfreeze command is issued. If neither 
"input" nor "output" is specified, "output" is assumed. 

outside Indicates that the area outside the region specified using the "at" 
flag is frozen. 

Flags Can be "wait", "notify", "test", or a combination of these.

Remarks
When used with VCR devices, this command is intended for frame-grabbing cards. 

To specify irregular acquisition regions with the "at" flag, use a series of freeze and unfreeze commands. Some video-overlay 
devices limit the complexity of the acquisition region.

This command is supported only if a call to the capability command with the "can freeze" flag returns TRUE. 

The following command disables video acquisition in a 100-pixel square at the upper left corner of the video buffer:
freeze vboard at 0 0 100 100





index

The index command controls a VCR's on-screen display. VCR devices recognize this command. 

MCI Syntax: “index DeviceID Mode Flags”
Parameters
DeviceID Identifier of an MCI device. This identifier or alias is assigned when the device is 

opened. 

Mode One of the following flags: 
off Turns off the on-screen display.
on Turns on the on-screen display. The item to be displayed is specified by the 
"index" flag of the set command.

Flags Can be "wait", "notify", or "test". 



info

The info command retrieves a hardware description from a device. All MCI devices recognize this command. 

MCI Syntax: “info DeviceID Infotype Flags”

Parameters
DeviceID Identifier of an MCI device. This identifier or alias is assigned when the device is 

opened. 
InfoType Flag that identifies the type of information required. The following table lists device 

types that recognize the info command and the flags used by each type: 
cdaudio info identity product

info upc
digitalvideo audio algorithm usage 

audio quality version 
file video algorithm 
product video quality
still algorithm window text
still quality

overlay file window text
product

sequencer copyright file name product
vcr product version
videodisc product
waveaudio file output 

input product 
The following table lists the flags that can be specified in the InfoType parameter and their meanings: 
audio algorithm Returns the name of the current audio compression algorithm.
audio quality Returns the name for the current audio quality descriptor. This might return "unknown" 

if the application has set parameters to specific values that do not correspond to 
defined qualities.

copyright Retrieves the MIDI file copyright notice from the copyright meta event.
file Retrieves the name of the file used by the compound device. If the device is opened 

without a file and the load command has not been used, a null string is returned.
info identity Produces a unique identifier for the audio CD currently loaded in the player being 

queried.
info upc Produces the Universal Product Code (UPC) that is encoded on an audio CD. The 

UPC is a string of digits. It might not be available for all CDs.
input Retrieves the description of the current input device. Returns "none" if an input device 

is not set.
name Retrieves the sequence name from the sequence/track name meta event.
output Retrieves the description of the current output device. Returns "none" if an output 

device is not set.
product Retrieves a description of the device. This information often includes the product name

and model. The string length will be 31 characters or fewer. 
still algorithm Returns the name of the current still image compression algorithm.
still quality Returns the name for the current still image quality descriptor. This might return 

"unknown" if the application has set parameters to specific values that do not 
correspond to defined qualities.

usage Returns a string describing usage restrictions that might be imposed by the owner of 
the visual or audio data in the workspace.

version Returns the release level of the device driver and hardware.
video algorithm Returns the name of the current video compression algorithm.



video quality Returns the name for the current video quality descriptor. This might return "unknown" 
if the application has set parameters to specific values that do not correspond to 
defined qualities.

window text Retrieves the caption of the window used by the device.

Flags Can be "wait", "notify", or "test". 



list



load



mark



monitor



open



paste



pause



play



put



quality



realize



record



reserve



restore



resume



save



seek



set



setaudio



settimecode



settuner



setvideo



signal



spin



status



step



stop



sysinfo



undo



unfreeze



update



where



window




